Computational Foundations of Cognitive Neuroscience

Chapter 9: Plasticity as optimization

Neural plasticity refers broadly to adaptive change over time in the
brain. Much of the work on neural plasticity has focused on synapses
as the site of learning and memory. This chapter conceptualizes
synaptic plasticity in terms of optimization: modifications of synap-
tic strength lead to improvements in performance (as measured by an
objective function). The most efficient algorithms for improving per-
formance are based on gradient descent, delivering vector feedback
that assigns credit to individual synapses. We review ways that synap-
tic plasticity might approximate gradient descent, either explicitly or
implicitly.

Change happens everywhere in the brain, but not all of it is adap-
tive. For example, thermodynamics places limits on the stability
of molecular structures, and mechanical perturbations (stretching,
compression) place limits on the stability of cellular structures. It
is therefore non-trivial to claim that some forms of change reflect
adaptations—i.e., they confer advantages upon an organism that ulti-
mately improve evolutionary fitness. We will refer to these adaptive
changes as neural plasticity.

The most well-studied form of neural plasticity is experience-
dependent synaptic modification (or synaptic plasticity for short),
which plays an important role in learning. This chapter analyzes
synaptic plasticity from a normative perspective: given an objective
function, how can the brain adapt to efficiently optimize the objec-
tive? Efficiency means several things in this context, including sample
complexity (how much data are needed to achieve a particular level
of performance?), time complexity (how much computation is re-
quired as a function of network size and other parameters?), and
space complexity (how much information needs to be stored in order
to implement the algorithm?). Another important consideration is
scalability: how well does the algorithm work in practice on realisti-
cally large-scale problems?

In addition to efficiency and scalability considerations, we need
to also consider biological constraints: can synapses implement the
algorithm based only on the information available to it? Will the
algorithm work for spiking neurons? As we will see, these considera-
tions strongly constrain the space of efficient optimization algorithms
plausibly realizable by the brain.

Here learning will refer to adaptive
changes in behavior at the level of the
organism. The existence of synaptic
plasticity is uncontroversial, but its
contribution to behavioral adaptation
has been disputed, as discussed further
below.



1 A brief tour of synaptic plasticity

Before turning to the normative analysis, it will be useful to lay some
groundwork for how synaptic plasticity works in the brain. This will
help us see connections between the technical ideas elaborated below
and the relevant empirical phenomena.

Much of what we know about synaptic plasticity comes from
protocols in which the axon of a presynaptic neuron is electrically
stimulated while recording from its postsynaptic partner. At baseline,
a brief pulse of electrical stimulation induces a measurable change
in the membrane potential of the postsynaptic neuron—an excitatory
postsynaptic potential (EPSP). A high-frequency train of stimulation is
then applied, and the EPSP in response to the same test pulse used
at baseline is measured. The classic finding, now known as long-term
potentiation (LTP), is that the resulting EPSP is higher compared to
baseline (Bliss and Lemo, 1973), indicating an increase in synaptic
strength. The “long-term” designation refers to the persistence of this
change, in some cases lasting up to several months (Abraham, 2003).
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Several cellular changes underlie LTP. At relatively short timescales

(minutes to hours), there are modifications of existing receptors, such
as phosphorylation of AMPA receptors by protein kinases, convert-
ing them to a high-conductance state (Soderling and Derkach, 2000).
These kinases are activated by calcium influx into the cell (more on
this below). At relatively long timescales (hours to days), signaling
cascades reach the nucleus, activating gene expression that ultimately
results in the synthesis of plasticity-related proteins and the traffick-
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Figure 1: Long-term potentiation.
(Top) Experimental protocol applied

to synapses in the hippocampus. (Bot-
tom) Change in the synaptic response
following repetitive high-frequency
(tetanic) stimulation is used to measure
potentiation. Reproduced from Hayashi
(2022).



ing of receptors to the postsynaptic membrane.

Studies of LTP have supported an associative view of synaptic
plasticity, often attributed to Hebb (1949), who postulated that “when
an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.” The simplest formalization of this
idea, applied to firing rates, is a simple coactivation rule:

Aw « xy, (1)

where x is the presynaptic firing rate, y is the postsynaptic firing
rate, and w is the synaptic strength connecting the two neurons, such
that y is a monotonically increasing function of the product wx. Sup-
port for the associative view comes from studies showing that both
presynaptic and postsynaptic activity is necessary to induce LTP. For
example, hyperpolarization (i.e., deactivation) of the postsynaptic
neuron prevents LTP induction (Malinow and Miller, 1986).

The associative nature of LTP fits broadly with associative models
of learning. According to these models (Pearce and Bouton, 2001),
changes in behavior during associative learning tasks (e.g., Pavlovian
conditioning; see next chapter) arise from changes in associations
between stimuli. For example, in a Pavlovian fear conditioning task,
an animal is repeatedly exposed to a neutral stimulus (e.g., tone)
paired with an aversive stimulus (e.g., footshock). The animal learns
to produce a conditioned response (freezing) when it hears the tone,
a process that depends on the amygdala. The conditioned response
can be inactivated by inducing LTD at amygdala synapses, and reac-
tivated by inducing LTP (Nabavi et al., 2014), indicating that synaptic
plasticity plays a causal role in associative learning. We’ll have more
to say about Pavlovian conditioning in the next chapter.

Hebb’s postulate is actually stronger than mere coactivation: it
stipulates that the presynaptic neuron “takes part in firing” the
postsynaptic neuron. In other words, it is a causal statement. One
prerequisite of causality is that it is temporally asymmetric: a cause
(presynaptic firing) must occur prior to an effect (postsynaptic firing),
typically within a relatively short time window. This is consistent
with the phenomenon of spike timing-dependent plasticity (STDP; Bi
and Poo, 2001), the requirement that presynaptic spikes must occur
within 50 ms before postsynaptic spikes in order to produce LTP (Fig-
ure 2). If they instead occur within 50 ms after postsynaptic spikes, a
reduction in synaptic strength, known as long-term depression (LTD),
is obtained. Outside this 50 ms window, the synaptic strength does
not change at all.

The essential mechanisms underlying STDP can be captured with
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As noted in Chapter 1, Hebb’s postu-
late can be summarized by the mantra
“neurons that fire together, wire to-
gether” (Shatz, 1992).

This is sometimes referred to as the
basic Hebb rule.
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Figure 2: Spike timing-dependent
plasticity. The x-axis show the relative
timing between presynaptic and postsy-
naptic spikes, as illustrated by the inset
postsynaptic voltage traces. The y-axis
shows the change in synaptic strength,
ranging from negative values (LTD) to
positive values (LTP). Reproduced from
Bi and Poo (2001), based on data from
Bi and Poo (1998).



a relatively simple calcium-dependent model (Graupner and Brunel,
2012). Postsynaptic calcium influx plays a crucial role in the induc-
tion of LTP and LTD. One way calcium enters neurons is through
NMDA receptors, which are highly permeable to calcium when they
bind to the excitatory transmitter glutamate. At the resting poten-
tial, magnesium ions block NMDA receptors, preventing calcium
influx; when the neuron is depolarized, the magnesium block is
removed and calcium can enter. Depolarization can also activate
voltage-dependent calcium channels (VDCCs).

In the model of Graupner and Brunel (Figure 3), calcium levels
that exceed a depression threshold induce LTD, and levels exceed-
ing a higher potentiation threshold induce LTP. Calcium transients
produced by weak inputs are able to cross the depression thresh-
old, but require larger potential changes produced by postsynaptic
spiking in order to cross the potentiation threshold. The temporal
asymmetry arises from the fact that NMDA receptors have slower
kinetics than VDCCs; as a consequence, presynaptic and postsynap-
tic spiking are more likely to synergistically push the calcium level
above the potentiation threshold when presynaptic spikes (driving
NMDA receptor activation) occur prior to postsynaptic spikes (driv-
ing VDCC activation). When presynaptic spikes occur shortly after
postsynaptic spikes, the calcium transient due to VDCC activation
may have already decayed, leaving the calcium level above the de-
pression threshold but below the potentiation threshold.

The Graupner-Brunel model also helps resolve a fundamental
problem with Eq. 1: synaptic strength can potentially increase with-
out bound, which is obviously problematic for biological synapses.
The postulate that low levels of synaptic activity produce LTD, while
high levels produce LTP, provides an important stabilizing force.
However, plasticity thresholds do not automatically prevent runaway
plasticity; it is necessary for the thresholds to grow more quickly
than the changes in postsynaptic firing rate. This leads to models
with sliding thresholds, where the threshold update is a supralinear
function of the firing rate. For example, according to BCM theory
(Bienenstock et al., 1982):

Aw x x(y —0), (2)

where 6§ is a plasticity threshold updated according to a quadratic
function of the firing rate:

A6 y2 — 6. (3)

Evidence for a sliding threshold comes from experiments on visual
deprivation. A rodent reared in the dark will have weaker activation
of neurons in visual cortex, and therefore is predicted to have a lower
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Figure 3: Model of calcium dynamics
underlying STDP. The turquoise line
shows the depression threshold, and
the orange line shows the potentiation
threshold. At denotes the temporal gap
between presynaptic and postsynaptic
spikes. The shaded regions show

the time spent above each threshold.
Reproduced from Graupner and Brunel
(2012).

Unlike the Graupner-Brunel model,
BCM theory only has one threshold
separating LTP (y > 6) from LTD
(v <9).



threshold compared to normally reared rodents. Consistent with this
hypothesis, LTP can be induced with weaker stimulation in dark-
reared rodents (Kirkwood et al., 1996).

Another shortcoming of Eq. 1 is that it assumes a strongly local
form of synaptic plasticity (only depending on presynaptic and post-
synaptic activity), whereas in fact there is considerable evidence that
synaptic plasticity depends on additional variables, notably neuro-
modulators like dopamine, serotonin, and norepinephrine (Kusmierz
et al., 2017). This leads to “three-factor” rules of the following form:

Aw o xyp, (4)

where p is the third factor (e.g., a neuromodulator). We will see be-
low, as well as in the next chapter, how three-factor rules arise from
normative considerations. We will also see how the third factor might
not be a simple scalar signal, as is usually assumed in the case of
neuromodulators, but might instead be vector-valued, conveyed by
feedback projections.

2 Optimization and the credit assignment problem

Our aim now is to lay out, from first principles, what the goal of
synaptic plasticity might be, and how this goal can be achieved al-
gorithmically. Our central claim is that synaptic plasticity optimizes
an objective (also known as the loss or error) function, which scores
how well the network is doing on some task. The core problem for
any optimization system is credit assignment: given a scalar score,
how does the system know which parameter to change, and what
should the parameter be changed to? In practice, many parameters
may need to be changed simultaneously, prohibiting a brute force
trial-and-error approach. As we will see, the brain may implement a
more sophisticated approach based on gradients.

2.1 Objective functions

We will denote the objective function by L, which depends on the
network outputs y and an instructive signal (as explained below).
The network outputs are in turn are dependent on parameters w.
In this chapter, we will take w to be a set of synaptic weights, but
more generally this can include any parameters governing the neural
network. We will use y = ¢ (x) to denote the input-output mapping,
where x denotes the inputs and y denotes the outputs.

Broadly speaking, objective functions fall into three categories:

* Supervised objectives assume that the instructive signal takes the
form of a target (or “label”) vector y*. For example, a commonly
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The material in this section is an ele-
mentary introduction to some central
machine learning concepts. See Shalev-
Shwartz and Ben-David (2014) for a
more in-depth treatment.



used objective is the squared error: L(y,y*) = ¥;(y; — y; )% Super-
vised objectives encompass both discrete (categorical) targets as in
the last chapter, as well as continuous (regression) targets.

¢ Unsupervised objectives evaluate a network based on how well it
matches the input data. A typical example is an autoencoder net-
work that maps the input data to outputs of the same domain (i.e.,
the inputs are the target outputs, y* = x); the objective function in
this case corresponds to a “reconstruction error” such as squared

error, L(y,x) = + Zi(yi — x;)2.

* Reward objectives evaluate a network based on how well it pre-
dicts/improves a scalar reward (or cost). This leads to reinforce-
ment learning algorithms, which will be studied in the next two
chapters.

For the purposes of this chapter, we will remain agnostic about the
form of the objective function. Our goal is to formulate optimization
algorithms that can operate generically on many different kinds of
objective functions.

We assume that the agent is exposed to training data {x,, v, }M_,
sampled from a distribution p(x,y*), and the objective function is
evaluated on this dataset. The agent is thus optimizing a random
variable, the empirical risk:

L(w) = %

S

L(pw(xm), Ym)- (5)

m=1

Optimizing the expectation of this random variable (the risk, E[L(w)])
is typically the ultimate goal, but the agent does not have direct ac-
cess to this expectation.

Because the empirical risk is a noisy estimate of the risk, optimiz-
ing it directly can lead to suboptimal generalization (performance on
new inputs). Thus, it is important to introduce an inductive bias that
prevents the network from “overfitting” the data (i.e., fitting noise in
the data, which degrades generalization to new inputs). This is often
dealt with by optimizing regularized empirical risk functions of the
form E(w) = L(w) + Q(w), where Q(w) is a regularization function.
For example, L2 regularization penalizes the Euclidean norm of the
weights, Q(w) o ||w||? (intuitively, large weights are penalized).
Theoretical analyses of generalization error typically require some in-
ductive bias in order to guarantee bounded generalization error (see
Shalev-Shwartz and Ben-David, 2014).
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Recall from the previous chapter that
the representer theorem assumes a
regularized empirical risk of this form.
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2.2 Gradient descent: the best game in town

There are many ways to optimize an objective function. For example,
one could try randomly perturbing the synaptic weights, evaluating
the objective function, and then accepting or rejecting the perturbed

weights based on whether they improve the objective. This form of This same basic issue (random-walking
in high dimensional space) afflicts

. . . . . some of the Markov chain Monte Carlo
algorithms, such as simulated annealing and genetic algorithms algorithms discussed in Chapter 5.

(indeed, natural selection essentially works this way). While these

perturbation + selection is the basis of many different optimization

algorithms can work in principle, they face several difficulties. In
addition to the difficulty of implementing the selection operation in a
biological circuit, these algorithms are hopelessly inefficient: random
perturbations to a large network are vanishingly unlikely to improve
the objective. They might be good models for evolution, but they’re
probably not good models for learning in the brain (at least in their
simplest forms).

A more efficient approach is to follow the (negative) gradient of
the objective function, which specifies the direction of steepest de-
scent in the parameter space. In its simplest form, the weight update
takes the following form:

Aw « —VE. (6)

In practice, it is often desirable to compute the gradient on a subset
of examples, possibly just one at a time. Repeatedly sampling subsets
and applying the weight update is known as stochastic gradient de-
scent. It still converges to the same weights, but now Aw is a random

variable. From a neuroscience perspective, it makes sense to think Non-streaming algorithms might
appear in the brain through replay, the

. . . reactivation of neural patterns encoding
sequentially and the update is applied after each one. past experiences (Hayes et al., 2021).

There are many variations of stochastic gradient descent, too many The reactivated patterns can be recycled
into gradient updates.

about the “streaming” form of this algorithm, where samples enter

to cover here. The important point is that they have proven to be the
most effective form of learning algorithm in artificial systems, which
is why they are ubiquitous in machine learning applications, and also
why they may be a plausible hypothesis for learning in the brain.

The challenge we address next is how to compute the gradient in a
biologically plausible way. At the end of the chapter, we will discuss
learning beyond gradients.

3 Perturbation methods

A simple way to approximate the gradient is using a variation on the
weight perturbation idea that we dismissed in the previous section.
We again randomly perturb the weights (e.g., with Gaussian noise),
but instead of accepting or rejecting the new weights, we use the
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perturbation to estimate the gradient: This is a form of finite difference approxi-
mation.
1 _ -
VaE = E|(E@) - E(@))(@ - w)], %

where @ ~ N (w,0?) denotes the perturbed weights. We can use
this identity to devise a stochastic approximation algorithm that uses
random perturbations to update the weights:

Aw & —— (E(®) — E(w))(@ — ). ®)

The expected update for this algorithm is equal to the exact gradient
descent update.

This kind of model has interesting neurobiological implications.
Synapses are known to be highly unreliable: an action potential typ-
ically produces neurotransmitter release less than half of the time
(Allen and Stevens, 1994; Branco and Staras, 2009). Why would a
neuron go to the trouble of spiking if the signal frequently fails to be
propagated? One answer (see Seung, 2003) is that stochastic release
provides information about the gradient through perturbation. If we
think of 02 as a proxy for synaptic unreliability, one implication is
that changes in synaptic strength should be bigger for more unre-
liable synapses, consistent with experimental data (Bolshakov and
Siegelbaum, 1995).

While weight perturbation “works” by providing an unbiased esti
mate of the gradient, this estimate can have extremely high variance,
limiting its practical usefulness—learning via weight perturbation
can be orders of magnitude slower than gradient descent (Werfel
et al., 2003). An alternative, node perturbation, follows the same logic,
but perturbs neural activity rather than the weights, taking advan-
tage of the stochastic nature of neural activity (Mazzoni et al., 1991).
Because the dimensionality of this perturbation is smaller (there
are fewer neurons than synapses), it tends to have lower variance.
However, this method is still suffers from high variance compared to
direct computation of the gradient.

4 Backpropagation and its approximations

Suppose we have a chain of computa-

Instead of using finite difference approximations, most engineers di- tions, x — y — z, where x, y, and z
rectly compute the gradient by utilizing the chain rule of calculus. are variables. The chain rule states that

This is particularly apt for deep neural networks, where computa- oy dx

tions are arranged in chains. The same is true for recurrent networks,
which can be “unrolled” into deep networks (as we mentioned in
Chapter 8). The backpropagation algorithm (Rumelhart et al., 1986)
is essentially an application of the chain rule to deep neural networks
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which enables efficient computation of gradients at all layers of the
network. It is the workhorse of modern machine learning.
The key idea is to recursively compute gradients, starting at the

output layer and then passing the gradients down to the next layer. In general the activation function does
not strictly need to have this functional

Let h; = o(u;) denote the activation of neuron j, where o (-) is an
] (‘Z/l / ) / ( ) form, but it simplifies the math a bit.

activation function and y; = }_; wj;h; is the total input to neuron j. To
make things easier to follow, we’ll write the algorithm down in terms
of scalar derivatives rather than gradients:

Eifij = hiej,  ¢j =0 (pj) ;ekwjk )
where ¢’ () is the partial derivative of the activation function with
respect to ;. We can think of the ¢; terms as “error signals” propa-
gating backwards along the chain of computation. For output neu-
rons, the error signals are given by the gradient of the loss with re-
spect to the output activations, ¢; = g—fj. As in other gradient descent

algorithms, the gradient is used to update the weights:

dE
AZUZ']' X — . (10)
A L(y,y")
One way to implement backpropagation (Figure 4) is to construct .
feedback connections (carrying errors) that mirror the feedforward [ e’ ] [ Y ]
connections (carrying activations). The errors modulate a “Hebbian” 2! w>
plasticity rule, which depends on the correlation between a presynap- > z
tic term, h;, and a postsynaptic term, o (u j). In addition, the weight { € : ] { h ]
update depends on a third factor—the error signals. ub wl
A number of problems vex the biological plausibility of backprop- { 1 : ] { Bl ]
agation: £ I
¢ The weight transport problem: the feedback weights need to be T
mirror images of the feedforward weights—i.e., if we denote u;; Figure 4: Backpropagation. Feedfor-

ward projections are shown by solid
black lines; feedback projections are
i, then we require that uj; = w;;. This constraint is not generally shown by dashed lines.

as the feedback weight carrying error signals from unit j to unit

satisfied in the brain (Grossberg, 1987).

* The sign problem: errors need to be signed (both positive and
negative), but neural activity is always non-negative (Lillicrap
et al., 2020). One could try to resolve this problem by introducing
a threshold (e.g., the baseline firing rate) above which activity
is considered positive and below which activity is considered
negative. However, this introduces additional complexities, such as
the need to carefully tune the threshold and communicate its value
to receiving neurons. Another solution could be to use inhibitory
neurons to represent negative errors.
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¢ The magnitude problem: errors can sometimes vary over mul- In machine learning, the magnitude
problem has motivated solutions

. . L . . based on cut-offs (clipping) and soft
networks, producing exploding or vanishing gradients. Yet the fir- constraints (Pascanu et al., 2013).

tiple orders of magnitude, particularly in recurrent or very deep

ing rates of biological neurons typically vary over only about one
order of magnitude.

* The update locking problem: weight updates cannot occur in
real time, because they have to wait until both the forward and
backward passes have been completed (Jaderberg et al., 2017).
This implies that somehow a memory trace of the feedforward
activations must be maintained until the forward pass has been
completed and the backward pass has arrived back at the synapse.

We will not comprehensively address all of these problems, but the
next sections provide an overview of approaches that address some
of them.

4.1 Learning without weight symmetry

Surprisingly, it turns out that weight symmetry is not necessary
for backpropagation to be effective. In fact, backpropagation can
work well even when feedback weights are random. There are two
important insights into this observation:

¢ Sign concordance: matching the magnitudes of the feedforward
and feedback weights doesn’t matter much, but matching the

signs matters much more (Liao et al., 2016). This implies that In particular, the weights will move in
the direction of the gradient as long as

there can be a certain degree of “sloppiness” (i.e., the magnitude
on average Z,‘,j ejejwiiuji > 0.

problem can be “solved” by essentially ignoring it), but somehow
the network must still achieve at least partial sign concordance.

® Feedback alignment: with random feedback weights, backpropa-
gation naturally adjusts the feedforward weights to achieve “soft”
alignment with the feedback weights (Lillicrap et al., 2016). In
essence, the feedforward weights learn to partially compensate for
the asymmetries created by the random feedback weights.

While random feedback is useful, it would be even better if the feed-
back connections were also plastic. This possibility was explored by
Akrout et al. (2019) using a Hebbian rule (Eq. 1) that converges to
symmetric weights. They showed that feedback learning allowed the
network to keep pace with the performance of backpropagation.

4.2 Dendritic segregation of feedforward and feedback signals

All of the approaches we’ve discussed so far assume that there are
separate pathways conveying feedforward and feedback signals, and



that feedback signals only affect the feedforward weights (not the
activity of the feedforward neurons). We will defer discussion of the
second assumption until later. The first assumption is problematic be-
cause there is no evidence that feedback pathways have the intricate
organization required by the algorithms we’ve discussed, namely pre-
cise pairing between specific feedforward and feedback neurons and
their weights. While this is possible in principle, there is no direct
evidence for such organization.

An alternative approach is to utilize the known segregation of in-
puts at the level of dendritic compartments (Guerguiev et al., 2017;
Sacramento et al., 2018; Richards and Lillicrap, 2019), as illustrated
in Figure 5. At a coarse scale, dendrites on pyramidal neurons (the
principal class of excitatory neurons in cortex) can be divided into
“apical” (emanating from the apex of the pyramid-shaped cell body)
and “basal” (emanating from the base of the pyramid). Apical den-
drites primarily receive input from feedback projections, whereas the
basal dendrites primarily receive input from feedforward projections.
Because of their spatial separation, the activation of these different
compartments are electrotonically segregated (i.e., electrical signals
generated in one compartment will not passively spread to the other).
Importantly, the apical dendrites have a region dense with VDCCs,
which can generate “plateau potentials” (a temporally broad voltage
change) when inputs to the apical dendrites coincide with somatic
spiking (Larkum et al., 1999). This in turn produces high-frequency
bursts that are required for plasticity in the basal dendrites (Pike
et al., 1999). The bursts thus play the role of the third factor.

Feedback (FB) ‘
FF
Spike
Feedforward (FF) FF + FB ' |n
M
+ burst

Returning to the backpropagation algorithm, we can identify the
feedforward signals with the inputs to the basal dendrites, and the
error signals with the inputs to the distal apical dendrites. Plasticity
of the feedforward weights is regulated by the error signals through
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Figure 5: Dendritic mechanisms sup-
porting credit assignment. Reproduced
from Richards and Lillicrap (2019).
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the cooperative generation of plateau potentials and burst spiking.

4.3 Target propagation

Instead of conveying gradients, feedback projections might alterna-
tively convey target patterns of activity. To build some intuitions,
let’s assume a layered architecture as shown in Figure 4. Suppose the
feedforward projections are invertible, so that the pattern of activity
at one layer of the network can be inverted to recover the pattern of
inputs that produced it. This means that a target pattern of activ-

ity at the outputs can be propagated backwards to provide targets
for all the earlier layers. Formally, the inverse function is defined as
i1 = gi(hy), where Iy is the reconstructed activity at layer I.

The feedforward weights can then be learned in a local manner to
match each layer’s feedback targets—i.e., to minimize an objective
function L (I, fi;). The inverse functions must also be learned to
minimize reconstruction errors. In essence, this target propagation
algorithm decouples a complex non-local credit assignment problem
into a collection of local problems that can be solved more easily.

As pointed out by Bengio (2014), what we’ve described here is a
form of autoencoder—a network that reconstructs its inputs. In this
case, the autoencoder architecture is utilized to solve a general credit
assignment problem.

In what sense is target propagation an approximation of the back-
propagation algorithm? After all, it departs fundamentally from the
core idea of propagating gradients. Lee et al. (2015) showed, under
some assumptions (including invertibility), that the weight updates
for backpropagation and target propagation typically point in similar
directions. Thus, target propagation is doing something implicitly like
backpropagation, but without propagating gradients.

This algorithm is idealized due to its assumption of invertible
projections. In practice, projections are rarely invertible. Lee et al.
(2015) developed a variant called difference target propagation which
corrects for imperfect inversion (i.e., it enforces local consistency
between feedforward and feedback mappings):

b1 =+ (k) — gi(hy). (11)

This guarantees that as the inversion improves in higher layers, it
also improves in lower layers. Specifically, it satisfies the following

stability condition (by construction): To see this, note that fy_; — hj_; =
. . 81() — g1 ().
hl = l’ll = hl—l = hl—l' (12)

While there is little direct evidence for the update used by difference
target propagation, the idea of propagating target patterns is broadly
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consistent with predictive coding theories reviewed in Chapter 5. All Indeed, predictive coding networks can
be used to approximate backpropaga-

L. . . tion (Whittington and Bogacz, 2017;
convey predictions about feedforward activity, and that plasticity of Song et al., 2020).

of these theories have in common the idea that feedback projections

feedforward weights should reduce the discrepancy (prediction error)
between feedforward activations and feedback predictions.

Target propagation and its variants take a step towards addressing
the sign problem and the magnitude problem. Because only activ-
ity differences matter (i.e., between the feedback and feedforward
patterns), these patterns can be shifted and scaled without funda-
mentally impairing the algorithm’s effectiveness.

4.4 Gradient descent with spiking neurons

So far, we have been assuming that neural activity is rate-based. This
is convenient because firing rates are differentiable as long as the ac-

tivation function o () is differentiable. However, spike-based synaptic Another argument for spike-based
plasticity models is that plasticity

. . . . based on firing rates requires temporal
backpropagation could work with spiking neurons, despite the fact integration, which precludes learning

that their discreteness makes them non-differentiable. There are sev- based on fast changes in neural activity.
eral different approaches to this problem.

plasticity phenomena, such as STDP, compel us to think about how

One approach is to replace the hard spike threshold with a soft
nonlinearity that varies smoothly with input current and approxi-
mates the discrete spike generation process (Lee et al., 2016; Huh and
Sejnowski, 2018). This renders the membrane potential a differen-
tiable function of the input current. Applying gradient descent to this
model leads to a three-factor Hebbian plasticity rule: a product of
presynaptic and postsynaptic firing rates modulated by a third factor
reflecting the gradient of the objective function with respect to the
membrane potential. The main drawback of this approach is that it
dispenses with the discreteness characteristic of real neural activity.

Another approach is based on the concept of surrogate gradients.
The basic idea is to smooth the gradient itself rather than the spike-
generation process, permitting the use of more biologically realistic

spiking neurons. For example, Zenke and Ganguli (2018) approxi- Surprisingly, this approach is robust
to many different choices of surrogate
gradient (Zenke and Vogels, 2021).

mated the gradient as the product of temporally filtered presynaptic
spike trains (a proxy for the neurotransmitter concentration arriving
at the postsynaptic membrane) and a smooth nonlinear function of
the postsynaptic membrane potential, modulated by an error signal
derived from a (possibly random) feedback projection. Once again,
we find a three-factor Hebbian plasticity rule. This algorithm is capa-
ble of learning precisely timed spikes in multilayer networks (Figure
6).

A third approach is based on a fundamentally different assump-
tion about the representational primitives. Instead of using rates or



Error N N N N N Error
Mem

50ms 50ms
Hidden units Hidden units

spike counts to convey signals, one can alternatively use spike times
as the primitives. This has a number of advantages: it can operate
on relatively fast times scales, conveys more information than spikes,
and can support various forms of analog computation (e.g., Hop-
field, 1995). For present purposes, the continuous nature of spike
times affords differentiability and therefore is amenable to gradient
descent. An example of this approach is the work of Mostafa (2017),
who used the timing of the first spike (i.e., a spike latency code) as
the representational primitive.

5 Beyond the synapse

While we have focused on synaptic plasticity, there is considerable
evidence that other forms of plasticity also occur in the brain. One
example is plasticity of cellular excitability (Debanne et al., 2019).
This is “cell-intrinsic” in the sense that what’s changing is the cell’s
overall responsiveness to its integrated inputs rather than to inputs
from a specific synapse (hence it is often referred to as intrinsic plas-
ticity). For example, the same protocol that produces LTP (high-
frequency stimulation of presynaptic axons) increases the probabil-
ity that a postsynaptic EPSP will produce a spike (Chavez-Noriega
et al., 1990). This change in EPSP-spike coupling is distinct from the
synapse specific changes underlying LTP.

The learning rules for intrinsic plasticity might, like synaptic
plasticity, follow optimization principles. One hypothesis is that
the goal of intrinsic plasticity is to maximize information transmis-
sion (Stemmler and Koch, 1999). Recall that the mutual information
can be decomposed into the difference between entropy and cross-
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Figure 6: Gradient descent in a multi-
layer spiking network using surrogate
gradients. The network is trained to
emit a spike at the times indicated by
the dots in the top row. The membrane
potential of the output neuron is shown
in the second row (firing threshold is
indicated by a dashed line). The lower
rows show the membrane potentials

of 4 “hidden” neurons in intermediate
layers, along with the spike times of the
input neurons (Poisson spike trains that
repeated every 500 ms). The left column
shows activity before training; the right
column shows activity after training.
Reproduced from Zenke and Ganguli
(2018).

See Chapter 2 for more on the computa-
tional function of spike timing.
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entropy terms:

Iyl = Hly] — Hlylx], (13)

where again x is the neural input and y is the output. If we make

the simplifying assumption that the neuron is near-deterministic,
then H[y|x] goes to 0. Maximizing information transmission then
reduces to maximizing output entropy, H[y]. For a fixed average
firing rate, output entropy is maximized by an exponential distribu-
tion of firing rates, as observed for example in inferotemporal cortex
(Baddeley et al., 1997). Stemmler and Koch (1999) derived a learning
rule that adapts membrane conductance to maximize output entropy,
which could be implemented by phosphorylation of ion channels or
changes in gene expression of ion subunits.

A fixed average firing rate implies a homeostatic optimization
principle: neurons should adapt their sensitivity to inputs in order
to maintain a firing rate set point. Evidence for firing rate home-
ostasis comes from studies of neural responses in visual cortex after
deprivation of ocular input. After initial reduction in responding,
neural activity rebounds back to baseline (Hengen et al., 2013). Firing
rate homeostasis can help address some of the problems challenging
backpropagation in the brain. It supplies a fixed reference for signed
errors (positive = above the set point, negative = below the set point),
reduces runaway plasticity by preventing the size of Hebbian updates
from getting too large, and similarly reduces exploding/vanishing
gradients by preventing error signals from becoming too small or
large.

More radical proposals have suggested that neurons may learn
and remember more complex forms of information using cell-intrinsic
mechanisms that go beyond changes in excitability (Gallistel, 2017;
Gershman, 2023). For example, modification of polynucleotide se-
quences like RNA could be a learning mechanism, consistent with
(controversial!) evidence that memories can be transferred between
organisms via RNA (Jacobson et al., 1966; Bédécarrats et al., 2018).
This hypothesis might also explain why memories in some species
can survive dramatic synaptic remodeling, such as during metamor-
phosis, hibernation, and even decapitation (Blackiston et al., 2015).

6 Conclusion

In summary, this chapter has argued that synaptic plasticity can be
viewed as approximate gradient descent under biological constraints.
We also considered alternative mechanisms potentially that extend
optimization principles beyond the synapse.
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It’s unlikely that any single learning principle will be sufficient to
explain all forms of learning in the brain. Nonetheless, the reverse
engineering approach introduced in Chapter 1 instructs us to con-
sider what learning principles are optimal or close to optimal—and
that work in practice. Research on machine learning has overwhelm-
ingly favored a relatively small set of learning principles based on
gradient descent, and its efficient implementation in the form of the
backpropagation algorithm. This is why we devoted so much space
in this chapter to discussing biological approximations of backprop-
agation. These approximations enable mutilayered networks to learn
complex tasks, sometimes at levels of performance comparable to
humans.

Most work in this area has applied gradient descent to synaptic
plasticity, in keeping with the widespread belief that synapses are
the site of long-term memory storage underlying biological learn-
ing. This is surely an important part of the story, but probably not
the whole story. Non-synaptic learning mechanisms likely play im-
portant roles, as discussed in the last section. We are still only at the
beginning of understanding these roles well enough to model them.

Study questions

1. Why is gradient descent considered “the best game in town” com-
pared to methods like weight or node perturbation? What trade-offs
exist in terms of biological plausibility?

2. How does the unreliability of neurotransmitter release (synaptic
stochasticity) provide information that can be harnessed for gradi-
ent estimation?

3. Why do findings of memory transfer and persistence following
brain damage challenge synaptic learning models? How might such
findings be reconciled with synaptic learning models?
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