Computational Foundations of Cognitive Neuroscience

Chapter 8: Object categorization

High-level perception transforms the continuous world of sensory data
into discrete categories like people, animals, and vehicles. In the visual
system, evidence suggests that this transformation happens along the
“ventral stream” extending from primary visual cortex to inferotem-
poral cortex. At the end of this transformation, object categories can
be read out from neural population activity by a linear decoder. The
most quantitatively successful models of this transformation are multi-
layered neural networks trained for object categorization. Nonetheless,
there remain gaps between these models and human perception, sug-
gesting that the human brain has access to flexible generative models
of sensory data.

The last chapter focused on two-alternative decisions, but many
naturalistic decision problems involve far more alternatives. In partic-
ular, a central function of high-level perception is categorizing objects
present in sensory data, where the number of object categories is in

the thousands. Object categorization is, however, more than just a What we are calling “object cate-
gorization” is often called “object

multi-alternative generalization of the decision problems studied in onon s OTEn s,
classification” or “object recognition.

the last chapter, because it places greater demands on representation:
category information is “entangled” at the level of low-level sensory
cortex (e.g., V1; see Figure 1), in the sense that it cannot be read out
with a linear decoder of the sort that we used to model the evidence
accumulator in LIP (Pinto et al., 2008).

Early Late Figure 1: Disentangling. Each circle
Y represents an exemplar (e.g., an image),
7 ® o , color represents the category label, and
/ [ ] 7 the axes represent the activity levels
Disentangling e ., of different neurons (here just two are
[ ] ./ — () Re shown for simplicity). Linear separabil-
’ ity means that a line (or, more generally,
a hyperplane in higher dimensions) can
’ be constructed that perfectly separates
the exemplars from each category. Early
sensory representations are not linearly
separable, but late representations (in IT

Specifically, a linear decoder for categorization takes the following cortex) are.
form:

p(s|x) = f | Y wasxa |, (1)
7

where s denotes the object category (the state in this context), x; is
the firing rate of neuron d, wy, the weight connecting neuron d to
output neuron s, and f(-) is an output nonlinearity (e.g., softmax)



that maps the outputs to probabilities. This means that early sensory
representations need to be nonlinearly transformed such that cate-
gory information is “disentangled”—i.e., linearly decodable. This
chapter will focus on how this happens in the visual system, where it
has been most extensively studied.
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1 The ventral visual stream

It is widely believed that disentangling is achieved by a sequence

of representational transformations along the ventral visual stream
(Figure 2), extending from V1 to anterior inferotemporal (IT) cor-

tex (DiCarlo et al., 2012). Several changes are apparent across the
ventral stream. First, representations are initially retinotopically
organized—neurons are tuned to specific retinal locations—and this
retinotopy is eventually lost by the time visual information arrives in
central/anterior IT. The loss of retinotopy is linked to the increase in
receptive field size across the ventral visual stream; fields are suffi-
ciently large in IT that retinotopy is no longer meaningful.

Second, stimulus selectivity changes qualitatively along the ventral
stream, from orientation in V1, texture in V2, curvature in V4, and
finally more semantically abstract categories in IT. These changes
in selectivity are accompanied by increasing tolerance to low-level
variations in scene parameters, such as lighting, size, position, and
viewpoint (Zoccolan et al., 2007; Rust and DiCarlo, 2010). An exam-
ple is shown in Figure 3.

Third, object categories can be linearly decoded from population
activity in IT (but not areas earlier in the ventral stream), achieving
high performance with only a few hundred neurons (Hung et al.,
2005), as shown in Figure 4. Linear decoders of IT activity also quan-
titatively predict stimulus-specific error patterns exhibited by humans
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Even though f(-) is nonlinear, the
decoder is still considered “linear” be-
cause the separating boundary between
categories is linear, as illustrated in
Figure 1.

Figure 2: The ventral visual stream.
(Left) Anatomical organization in the
primate brain. (Right) Each area’s
size is proportional to its cortical
surface area, with the approximate
number of neurons shown in the
corner of each area. The approximate
dimensionality of each representation
(number of projection neurons) is
shown above each area. Approximate
median response latency is shown to
the right of each area. Reproduced from
DiCarlo et al. (2012).
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Figure 3: Tolerance to position varia-
tion in an IT neuron. Reproduced from
DiCarlo et al. (2012), based on data
from Zoccolan et al. (2007).
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(Majaj et al., 2015).

Note that linearity of the decoder is only one way to constrain
linking hypotheses between brain activity and computation. If the
decoder is arbitrary, then one could in principle decode anything
from the earliest sensory areas, rendering any claims about informa-
tion coding in specific areas vacuous. Nonetheless, nonlinear decod-
ing may occur in the brain (e.g., Pagan et al., 2016; Yang et al., 2021),
so we should be cautious about relying too strongly on linearity.
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Identity preserving transformations

Causal evidence that IT is important for object categorization
comes from stimulation, lesion, and inactivation studies. For ex-
ample, stimulating (via localized electrical current) face-selective
neurons in IT biases categorization judgments towards faces (Afraz
et al., 2006), and alters change detection not only for faces but also
for face-like stimuli (Moeller et al., 2017). Lesions and inactivations
of IT produce selective impairments in object categorization (e.g.,
Weiskrantz and Saunders, 1984; Rajalingham and DiCarlo, 2019).

2 Modeling the ventral stream with deep neural networks

Deep convolutional neural networks (DCNNSs; Figure 5) currently
provide the most successful quantitative account of how the ventral
stream achieves disentangling of object category information (see
Kar and DiCarlo, 2024, for a review), though they are not without
problems, as discussed later. Many variations of these networks have
been studied, but here we will focus on some canonical motifs.

A DCNN consists of multiple layers, where each layer consists of
multiple “units” (roughly corresponding to neurons or populations
of neurons) that send outputs to the next layer. Units are perceptron-
like (see Chapter 2), taking a linear combination of inputs and then
passing them through a non-linearity—thus implementing the kind
of linear decoder formalized in Eq. 1. In convolutional layers, all
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oy, Figure 5: Deep convolutional neural
network for object categorization.
= Adapted from Bracci and Op de Beeck
— church (2023).
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units share the same set of synaptic weights but apply these weights
to different inputs (corresponding to subregions of images, in the
case of visual processing). The shared weights thus function as learn-
able “filters” that are convolved with the input—i.e., applied uni-
formly to every part of the input. This is typically followed by some
form of pooling (e.g., taking the max or mean over a subpopulation
of units with similar receptive fields) and normalization (to bring the
outputs into a standard range). Filtering and pooling are typically
strided: the spatial resolution is reduced at each convolutional layer
by retaining only a subset of outputs within each pool. Late layers
(roughly corresponding to parts of IT) are fully connected and lack
convolutional structure, since the spatial structure of receptive fields
is diminished by repeated striding.

Training a DCNN involves adjusting the weights to optimize an
objective function, which measures how well the network classifies
training images. The most effective learning algorithms use some
form of stochastic gradient descent, adjusting weights to follow the
gradient of the objective function evaluated on small batches of la-
beled images. In the next chapter, we will discuss how such an algo-
rithm might be plausibly implemented in a neural circuit.

2.1 Behavioral and neural performance

Despite decades of effort, no object categorization model was able to
match human performance until DCNNs broke through the barrier
with AlexNet (Krizhevsky et al., 2012). In fact, very similar DCNNs
had already been around for several decades at that point (e.g.,. Le-
Cun et al., 1989); other factors played a decisive role in the break-
through. First, the ImageNet database provided a much larger and
more diverse training set compared to previous ones. Second, com-
puting power had increased dramatically since the advent of DCNNS,



particularly through the use of graphics processing units, which en-
abled efficient parallelization of linear algebra.

In addition to matching overall human accuracy, DCNNs trained
on object categorization can also match several more fine-grained
aspects of human vision. As noted earlier, linear decoders of IT were
able to match stimulus-specific confusions (i.e., misclassifications);
the same is true for DCNNs (Rajalingham et al., 2015). Going beyond
object categorization, Jacob et al. (2021) found that trained (and even
sometimes untrained) DCNNs could qualitatively reproduce a range
of phenomena in visual perception. For example, humans (as well
as a number of other species) have greater difficulty discriminating
mirror reflections of an image long the horizontal axis compared
to reflections along the vertical axis (e.g., Sekuler and Houlihan,
1968, Figure 6). DCNNSs likewise exhibited greater similarity in late
(putatively IT) activity patterns for horizontal reflections compared
to vertical reflections. This finding is particularly intriguing because
measurements of IT show the same effect (Rollenhagen and Olson,
2000).

Yamins et al. (2014) undertook a more quantitative analysis of the
match between DCNN internal representations and neural activity.
They fit a linear mapping from the final layer of the DCNN to IT
population activity, and then evaluated this mapping on held-out
data. They found that DCNNs could achieve far better neural pre-
dictivity than any previous model, and that predictivity improved
with categorization accuracy. Moreover, earlier layers provided good
predictivity for upstream regions in the ventral stream (V1 and V).
Thus, to a first approximation, DCNNs appeared to recapitulate the
key transformational steps in the ventral stream.

2.2 Biological plausibility

DCNNSs are often taken to be the paradigmatic example of biological
inspiration in artificial intelligence, which then fed back into neuro-
science. An early precursor to modern DCNNSs, the Neocognitron
(Fukushima, 1980), was explicitly designed to mimic known recep-
tive field properties of visual cortex. However, visual cortex is not

really convolutional in the strict sense: unlike units in a convolutional

layer, receptive fields in V1 are not simply shifted copies of one an-
other (although this is a reasonable first-order approximation). The
variability of receptive field shapes was already noted by Hubel and
Wiesel (1959) in their pioneering physiology work:

Some fields had long narrow central regions with extensive flanking ar-
eas: others had a large central area and concentrated slit-shaped flanks.
In many fields the two flanking regions were asymmetrical, differing in
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Figure 6: Mirror reflections. Neural
representations are compared using
Euclidean distance between activity
vectors. Reproduced from Jacob et al.
(2021).

Jacob et al. also identified a number of
differences between human vision and
DCNNSs, which we will discuss below.

More recent work (Linsley et al., 2023)
showed that the relationship between IT
predictivity and accuracy breaks down
for the best-performing models, due
apparently to a reliance on different
image features.



size and shape; in these a given spot gave unequal responses in sym-
metrically corresponding regions. In some units only two regions could
be found, one excitatory and the other inhibitory, lying side by side.

(pp- 579-580)

A later study reported another violation of shift invariance: receptive
field size increases with eccentricity away from the fovea (Hubel

and Wiesel, 1974). It is possible to construct eccentricity-dependent
deep neural networks (e.g., Chen et al., 2017; Deza and Konkle, 2020),
but the important point is that these diverge from the central idea
underlying convolutional networks.

Another problem with convolution is that it’s not really clear how
it could be implemented—real neurons don’t share weights. Yamins
and DiCarlo (2016) speculated that convolutional structure might
emerge from experience-dependent plasticity even if it’s not built into
the architecture, due to the inherent shift invariance of visual input
(i.e., things tend to look similar regardless of their location relative to
the viewer). There is relatively little evidence that non-convolutional
networks autonomously learn shift-invariant filters (though see In-
grosso and Goldt, 2022, for some specific conditions under which this
works), and in any case we’ve already pointed out that representa-
tions in visual cortex aren’t truly shift-invariant. Pogodin et al. (2021)
studied a model with lateral connections between neurons within a
layer that are updated using local learning rules (see next chapter).
They showed that this model converges to a near-convolutional so-
lution. Other ways to get a similar solution involve augmenting the
training set with additional translations (Ott et al., 2020) or prun-
ing/regularizing low-magnitude weights (Neyshabur, 2020; Pellegrini
and Biroli, 2022).

Most DCNNs used in vision science have been purely feedfor-
ward. However, the primate visual system has extensive feedback
and lateral connections. To some extent, work on object categoriza-
tion has sidestepped this discrepancy by focusing on the “core” task
of categorizing briefly presented and backward-masked stimuli (Di-
Carlo et al., 2012). This is thought to mainly rely on feedforward
processing. Nonetheless, object categorization under naturalistic
conditions will generally involve feedback and lateral processing
(Kreiman and Serre, 2020). Several models have explored the implica-
tions of incorporating these processes (Figure 7).

In a computational study, Spoerer et al. (2017) trained DCNNs
on a digit categorization task under varying levels of clutter. They
compared standard feedforward DCNNs with variants that also in-
cluded lateral connections, feedback connections, or both. Their main
finding was that the model with both lateral and feedback connec-
tions performed best under high levels of clutter. The same model
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Feedback and lateral connections are
sometimes referred to collectively as
recurrent connections.

Feedback

I Feedforward

Lateral

Figure 7: An architecture with recur-
rence.
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could capture bidirectional information flow between ventral stream
regions (Kietzmann et al., 2019). Consistent with the hypothesis that
recurrence is critical for categorizing degraded or occluded objects,
backward masking (ostensibly attenuating feedback processes) signif-
icantly impairs both object categorization performance (Wyatte et al.,
2012; Tang et al., 2018) and decoding of object information (Rajaei

et al., 2019) specifically under occlusion (Figure 8). Further evidence
comes from the finding that especially challenging images can only
be decoded from IT at a behaviorally predictive level after a delay, as
predicted by models with recurrence (Kar et al., 2019). Finally, feed-
back connections can be used to “steer” DCNNs towards particular
goal-directed representations (Konkle and Alvarez, 2023), such as
attending to one object in an image with several objects—similar to
the way in which ventral stream representations are modulated by
object-based attention (O’Craven et al., 1999).

Figure 8: Human object categorization
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We should be careful not to conclude from these studies that recur-
rence is necessary for successful performance (e.g., under occlusion),
because technically a recurrent network can be “unfolded” into an
equivalent feedforward network (see Wichmann and Geirhos, 2023,
for further discussion). Nonetheless, the data support the hypothesis
that recurrence is involved in visual processing, and that it is prob-
ably necessary for a complete account of object categorization in the
brain.

3 Theoretical perspectives

Object categorization has been studied from several other theoretical
perspectives. In this section, we show how DCNNs are connected to
these perspectives.



3.1 Connection to Bayesian inference

A central organizing principle of this book is that the brain solves
many computational problems using Bayesian inference. While on
the surface the DCNNs reviewed above do not appear to be doing
Bayesian inference explicitly, we can show that they are in fact doing
it implicitly. The following derivation follows Xie (2025).

As above, let s denote the object category label for sensory input x.
Categorization can thus be framed as the problem of computing the
posterior p(s|x) « p(x|s)p(s). Rather than solve this problem directly,
we will assume that the sensory input has been encoded into a neural
representation ¢(x), which is then decoded according to a distribu-
tion q(s|¢(x)). We will use g(s|x) = q(s|¢(x)) to denote the complete
mapping from input to labels. Note that q(s|x) is not required to be
a Bayesian posterior; rather, both the neural representation and the
decoder are chosen to optimize an objective function.

To derive the objective function, we start with a loss function
L(g,s, x), which penalizes g for “betting” on the wrong label given
the input x. The loss is minimized when g places all its probability
mass on s. A standard choice is the cross-entropy loss:

L(g,s,x) = —logq(s|x), (@)

where s here refers to the ground truth category label. The goal is
= EJ[L(g,s, x)], also known as the
risk, where the expectation is taken with respect to the joint distribu-

to minimize the expected loss L(q)

tion p(s, x). In practice, an agent does not have access to the expected
loss, but does have access to an empirical approximation (the empir-
ical risk), L(g), based on a set of M training examples, {x,, sy }M_,
sampled from p(s, x):

L(g) ~ L(g Z G, Sm, Xm)- €)
m

The question is what happens to q(s|x) in this setting. Taking the
expectation of L(g) with respect to p(s|x) under the cross-entropy

E[L(q)|x] = E | = }_p(slx)logq(s|x) x]

= DIp(s[x)[lq(s[x)] + H[p(s[x)], @)

where D[p(s|x)||q(s|x)] is the Kullback-Leibler (KL) divergence (see
Chapter 3) and H[p(s|x)] is the entropy. Since the second term does
not depend on ¢(s|x), minimizing the expected cross-entropy loss

loss yields:

is equivalent to minimizing the KL divergence. This minimum is
achieved when p(s|x) = g(s|x). In other words, optimizing a generic
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The analysis of human categorization
as Bayesian inference goes back to Fried
and Holyoak (1984).

The cross-entropy loss is also some-
times known as the log loss.

Minimizing L(g) is known as empirical
risk minimization. In general, it is not
possible to guarantee good performance
without placing some constraints on the
function class from which g is drawn
(Shalev-Shwartz and Ben-David, 2014).

Note that this equivalence requires that
the network has enough representa-
tional capacity and training data such

that p(s|x) = q(s|x).
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classifier in this way is equivalent to implicitly performing Bayesian
inference, in the sense that the classifier will converge to the same
probabilistic outputs as the posterior.

3.2 Connection to exemplar models and kernel methods

At first glance, DCNNSs look very different from the most successful
psychological account of categorization—exemplar models (Medin
and Schaffer, 1978; Nosofsky, 1986; Kruschke, 1992). We will see,
however, that they are closely related.

Exemplar models assume that a new exemplar (in this case, an
image) is categorized by comparing it to other exemplars stored in
memory. For concreteness, we will focus on the model developed by
Kruschke (1992). The probability of assigning exemplar x to category
s is computed by taking a weighted sum of similarities to exemplars
{xn}M_, stored in memory, and then applying a softmax (normal-
ized exponential) transformation to a get a probability distribution:

s|x) o ex k(x,xm)| ,
q ( | ) p [; ,Mms ( m )] (5) Category units
E

ixemplar weights
where k(x, x,,) is a similarity function and {pms} is a set of exemplar [Q O00O0 E) Qg QJ Exemplar units
weights trained to optimize accuracy on the categorization task.
This kind of model can be understood as a 3-layer neural network Tnput units
(Figure 9) where the input layer represents the exemplar, the hidden Figure 9: Neural architecture for an
layer consists of units tuned to specific exemplar memories, and exemplar model.
the output layer represents a distribution over category labels. The A very similar idea has been used to

model the categorization of 3D objects

tuning of each hidden unit is defined by the similarity function. ;
(Poggio and Edelman, 1990).

Exemplar models naturally explain why categorization accuracy
is greater for exemplars repeated with high frequency compared to
low frequency exemplars (Estes, 1986; Nosofsky, 1988). Intuitively,
the summed similarity to the correct category is greater for these ex-
emplars. Exemplar models also naturally explain why categorization
accuracy for 3D objects monotonically declines with the distance be-
tween the viewpoints of an exemplar at training and test (e.g., Tarr,
1995): as distance increases, similarity (and hence the activation of
the corresponding hidden units) declines.

While it appears that exemplar models involve completely differ-
ent computational operations from DCNNs, we can connect them
through the lens of kernel methods (Jékel et al., 2009), where the sim-
ilarity function is interpreted as a “kernel” function. To keep things
simple, we will assume that the DCNN is fixed except for its decoder
q(s|¢(x)), which we will take to be a softmax function (though the
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key ideas extend beyond these assumptions):

q(s[@(x)) o exp [g ﬂdsde(X)] , (6)

where w; is a readout weight vector for category s, chosen to min-

imize a regularized loss function of the form L(w) + Q(w), where

L(w) is the empirical risk (as defined in the previous section) and

the regularizer ()(y) penalizes large weights (more precisely, weight

vectors with a large Euclidean norm). It can then be shown that the This result is known as the representer
optimal decoder g*(s|¢(x)) can be written as a log-linear function of theorem (Scholkopf et al., 2001).

exemplar similarities:

g (sl¢(x)) o exp [2 pmsk(x, xm)] , )

where the similarity function is computed by taking the dot product

of the feature vectors, k(x, x,,) = ¢(x) - ¢(x,,). We have deliberately The exemplar weights {5 } depend on
both the optimized readout weights and

overloaded the notation for exemplar weights to highlight the cor- e op .
the similarity function.

respondence between the two models: the optimal decoder for the
DCNN has the same functional form as exemplar model described
above.

An important aspect of this correspondence is that it changes
the neural interpretation: rather than making the biologically ques-
tionable assumption that individual neurons are tuned to specific
exemplars (which would require an unboundedly large number of
neurons), we can adopt the more biologically defensible assumption
that exemplars are labeled by the kind of feature-based transforma-
tion thought to happen in the ventral stream, with the assurance that
these views are (under some conditions) equivalent.

4 Challenges for deep neural networks

Despite their success as a model of object categorization in the ven-
tral stream, DCNNs have been challenged on a number of fronts. See Bowers et al. (2023) for a more
Here we briefly review several points of divergence between brains comprehensive overview.

and current DCNNs.

4.1 Shape and relation sensitivity

Humans primarily rely on shape rather than other features like color
or texture to categorize objects. Studies have shown that line draw-
ings (which lack color and texture) are recognized as quickly as color
photographs (Biederman and Ju, 1988), whereas small structural
changes to shape can have large effects on categorization (Biederman,
1987). For example, Biederman showed that deleting parts of a line
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drawing that are highly diagnostic of 3D structure could dramatically
reduce categorization accuracy.

A particularly striking example of shape-sensitivity comes from a
“style-transfer” task in which humans and DCNNs categorized im-
ages in which objects of one category were imprinted with textures
from another category (Geirhos et al., 2019). Humans tend to ignore
the transferred texture, whereas DCNNSs are highly sensitive to tex-
ture (Figure 10). For example, cats rendered with elephant skin are
labeled as elephants. Similar findings were reported by Baker et al.
(2018). These findings are consistent with the finding that humans
learn novel object categories primarily based on shape, even when
non-shape features (e.g., color, position, size) are more diagnostic of
the category, whereas DCNN’s learn primarily based on non-shape
features (Malhotra et al., 2022).

Figure 10: Texture bias in DCNNs. The
numbers below each image show the
top 3 DCNN outputs. Reproduced from
Geirhos et al. (2019).

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri

82%  Dblack swan 3.3% Siamese cat 9.6%  black swan

DCNN:Ss are relatively more sensitive to local shape, which can
produce other striking divergences from humans. Baker et al. (2018)
showed that jittering contours has little effect on human categoriza-
tion performance, but can dramatically change DCNN performance.
In contrast, scrambling global shape dramatically reduces human
performance but has relatively little effect on DCNN performance.
An example is shown in Figure 11.

Original Local shape disruption Global shape disruption Figure 11: Sensitivity to global vs.
local shape in a DCNN. Adapted from
Baker et al. (2018).

Top label: ~ Camel Poodle Camel

Human categorization is also highly sensitive to spatial relations



between parts: humans are much more likely to confuse object cat-
egories that share relational structure compared to those that have
high pixel overlap without shared relational structure (Stankiewicz
and Hummel, 1996). In contrast, DCNNs are not differentially sensi-
tive to relational structure, even when trained on a distribution where
relational structure is highly diagnostic of category membership
(Malhotra et al., 2023).

4.2 Adversarial images

A remarkable discovery about DCNNSs is that they are highly sus-
ceptible to adversarial attacks: an image can be distorted in such a way
that it is has no effect on human category judgments (and is often
imperceptible), but dramatically changes the category judgments of a
DCNN (Szegedy et al., 2013). Some examples are shown in Figure 12.
These images are constructed by starting with an image and its stan-
dard label (which a DCNN correctly identifies), and then searching
for small pixel-level perturbations of the image such that the DCNN
switches its category judgment to be strongly in favor of a different
(wrong) label.

It has been claimed that humans are not susceptible to adversarial

attacks (Wichmann and Geirhos, 2023), suggesting a fundamental dif-
ference between human and DCNN object categorization. Wichmann
and Geirhos argue that the dependence of human object catego-
rization on shape rather than texture means that small pixel-level
perturbations will never be able to significantly alter human category
judgments, since these perturbations have relatively little effect on
shape. A similar argument can be made about relational structure.

5 The richness of object perception

Object perception is more than just categorization: we naturally per-
ceive a wide range of material, physical, and spatial information.
For example, we can easily report whether an object is soft, fluffy,
smooth, elastic, heavy, fragile, large, far away, green, shiny... The list
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Figure 12: Examples of adversarial
images. Reproduced from Wichmann
and Geirhos (2023).
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goes on and on. A complete model of object perception must be able
to flexibly output all the same features that humans are able to re-
port. No such model exists yet, but a few steps in this direction have
been taken.

Although the DCNNs discussed in this chapter were trained to
do categorization, this doesn’t mean that they only do categorization.
DiCarlo and Cox (2007) suggested that IT represents objects on a
“flattened” manifold, as shown in Figure 13. Representations of ob-
jects from different categories are linearly separable (as dictated by
the disentanglement hypothesis), but they also vary smoothly along
a low-dimensional manifold, such that IT responses are weakly pre-
dictive of object pose (and other properties). Separability is ensured
by flattening the manifold along the direction of the separating hy-
perplane. In other words, flattening means that category labels are
separable while preserving smooth variation along pose or lighting
dimensions.

Why should the ventral stream learn flattened manifolds? The
fact that the encoding of category-orthogonal information in DC-
NN increases over the course of training (Hong et al., 2016) suggests
(somewhat paradoxically) that it must be useful for categorization.
Theoretical arguments show why: the sample complexity of category
learning (i.e., how many exemplars are needed to reach a target ac-
curacy level) is lower for high-dimensional manifolds (Sorscher et al.,
2022). This means that there is pressure from the training objective
to prevent the manifold from completely collapsing all category-
orthogonal dimensions.

To test this hypothesis in the ventral stream, Hong et al. (2016)
trained decoders for a wide range of object properties. They found
that IT carried more information about many of these properties
compared to earlier regions in the ventral stream (e.g., V4; Figure
14). Randomly selected subpopulations of around 700 neurons could
achieve human-level accuracy on the property inference tasks. Like
IT neurons, the deeper layers of a DCNN trained on object catego-
rization could also be used to decode object properties. Thus, richer
object representations may in part be an emergent property of train-
ing DCNNSs to do object categorization.

Can arbitrarily rich object properties be read out from the ventral
stream, and can this readout be explained by DCNNs? The answer to
the first question remains to be fully worked out, but an affirmative
answer is doubtful. It has been argued that the ventral stream is best
understood as representing local image features, whereas the dor-
sal stream (extending along parietal cortex) represents global shape
(Ayzenberg and Behrmann, 2022; Vaziri-Pashkam, 2024). Much like
DCNNSs, neurons in IT are susceptible to analogous adversarial at-
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Figure 13: Flattened manifold hypothe-
sis for IT representations. Reproduced
from DiCarlo and Cox (2007).

An analysis of the relationship between
neural geometry and generalization will
be taken up in Chapter 15.
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tacks that imperceptibly perturb pixel values without altering global
shape (Guo et al., 2022). Thus, DCNNs might be a good description
of the ventral stream, but it is precisely for this reason that they are
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an incomplete model of object perception.

It’s also unlikely that DCNNSs trained on object categorization can
support inferences about arbitrary category-orthogonal properties.
For example, Pramod et al. (2022) showed physical stability cannot be
reliably decoded from DCNN activity, mirroring the observation that
physical stability could be decoded from dorsal stream areas but not
from ventral stream areas. Again, this suggests that DCNNs are only
part of the story about how the brain computes object properties.

Can we be more precise about what’s missing? One idea is a divi-
sion of labor between “graphics” in the ventral stream and “physics”
in the dorsal stream (Balaban and Ullman, 2025). According to this
dichotomy, the ventral stream is responsible for extracting image
features, which are then used as data for reasoning about the un-

derlying physical scene generating images. To evaluate a physical This is a particular way of formalizing
the mantra that “vision is inverse

. . . graphics” (Kersten, 1997). A better
pected image features, which it can then compare with bottom-up formulation might be something like

signals along the ventral stream. This revises the classical view of the “vision is inverse graphics and forward
physics.”

hypothesis, the dorsal stream can “render” the hypothesis into ex-

dorsal stream as a “where” pathway (computing spatial information
about objects); evidence for dorsal stream involvement in represen-
tation of stability and mass suggests that spatial representation (also
important for physics) is only one component of its function.

6 Conclusion

An incredible convergence of artificial and natural intelligence is

the invention of neural networks that both (i) achieve human-level
object categorization performance, and (ii) quantitatively matching
neural activity along the ventral stream. Nevertheless, these networks
cannot explain all the relevant data on object perception, in large part
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because they are only really doing one part of object perception—
extracting image features useful for categorization. This is likely

a good description of the ventral stream, but other brain systems
(e.g., a putative physics engine in the dorsal stream) are necessary to
explain how we are able to extract rich inferences about the physical
world from the impoverished 2D information arriving at the retina.

Study questions

1. Why is linear separability important for some models of object
categorization, and what are the consequences if this assumption
fails?

2. In what ways are deep convolutional neural networks biologically
plausible, and in what ways do they diverge from biology?

3. How would you design alternative neural network models that
better capture human sensitivity to shape and relational structure?
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