Computational Foundations of Cognitive Neuroscience

Chapter 7: Perceptual decisions

This chapter considers decisions about discrete hidden states based on
perceptual evidence. We first formalize the computational problem,
and then derive algorithms for solving it. The basic algorithmic motif
is evidence accumulation to a decision threshold. We show how this
motif can be implemented in neural circuitry, how it can adaptively op-
timize reward rate, and how it can support downstream computation
of decision confidence.

Recall the perceptual discrimination problem from Chapter 4,
where the hidden state corresponds to one of several discrete states:
s € {1,...,S}. The hidden state generates a perceptual signal (x),
which an agent uses to discriminate the hidden state. For example,
the agent observes a cloud of dots moving either left or right (on av-
erage), and must judge the direction of motion. Because the evidence
provided by the neural encoding of sensory signals is noisy, a single
snapshot will in general not suffice to make a good decision. Rather,
the optimal algorithm is to accumulate evidence across time until it
crosses a decision threshold. While simple, this algorithm has proven
to be a powerful model of perceptual decisions in the brain.

1 Perceptual discrimination problems

We will start with the simplest case: two hidden states, s € {A, B},
sampled with probability p(s) on each trial. The agent observes a
time series of signals x(t), chooses an action a € {A, B}, and receives
reward r = R, if a = s (o otherwise). It will be convenient initially
to think about the decision problem in discrete time, where signals
are sampled at intervals of length ¢; each signal x(t) represents the
information acquired over the interval. We will consider two versions
of the discrimination problem: (1) the interrogation paradigm, where

a fixed response deadline is imposed on the agent; and (2) the free
response paradigm, where the agent chooses when to respond.

Bayes’ rule stipulates how to calculate the evidence favoring each
state at time f after observing sensory history X(t) = {x(¢') : ' < t}.
We write the posterior in log-odds form:

log PE=AIX() | p(X(H)]s
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® P =BIX(M) % pX(ls
where we have used the shorthand s+ and s = B to denote s = +1
and s = —1, respectively. The first term on the right-hand side is the
log likelihood ratio, and the second term is the log prior ratio. When
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the prior probabilities of the two states are equal, the second term
is o. If the sensory signals are independent, the log posterior odds
can be written in recursive form. Let L(¢) denote the log posterior

odds at time ¢. Initializing it to L(0) = log Z ((s;g)) , the log odds is

incremented over a short interval § according to the momentary
evidence supplied by sensory signals:

plx(t)|s = A)
L(t) - L(t—90) =log —F~5F——==. (2)
e COIT
Assuming the agent’s utility is simply the received reward, u(r) = r,

the expected utility of choosing action a at time ¢ is: Note that p(s

s =AlX
p(s = B|X(t)) = o(~

A—

E[u(r)|s,a,L(t)] = {Zzi(zii;:{ EZ z,; o

where o(L) = 1/(1+ e~ 1) is the logistic sigmoid, which transforms

log odds to probability. We can use this expression to define a deci-
sion variable, the log expected utility ratio:

() = tog st =Ll —onn +log 72, @)

which is maximized by choosing

. {A, if U(E) > 0

a = ' (5)
B, ifU(t) <O.

This is the Bayes-optimal policy for the interrogation paradigm,

where the agent is obligated to make a choice at a particular time.

When the reward for a correct response is constant across states, the

second term is o, and the decision variable is directly proportional

to the log posterior odds. In the general case, the decision variable

is just a shifted version of the log posterior odds, where the shift is

determined by the asymmetry of rewards across states. Intuitively,

the agent will be biased towards high-reward states.

In the free response paradigm, the agent can potentially increase
their reward rate by responding more quickly. However, there is a
speed-accuracy trade-off: faster responses will tend to yield less re-
ward because the quality of evidence is lower. One way to approach
this problem is to set decision thresholds U4 and Up, such thata = A
if U(t) > Uyg and a = Bif U(t) < Up. If no threshold has been
crossed, the agent withholds a response. By setting these thresh-
olds, the agent can determine their preference for speed vs. accuracy.
When the threshold separation AU = U, — Ujp is larger, the agent
will take longer to respond and the responses will be more accurate
on average. We will shortly discuss how to set the thresholds opti-
mally.



2 The drift-diffusion model

The previous section introduced a generic class of evidence accumula-
tion models for two-alternative perceptual discrimination problems.
An important special case is where the signal-generating process is
Gaussian:

x(t) ~ N (dps, 0v), (6)

where ji; is the signal strength and v is the signal variance. The mo-
mentary evidence accumulated over J is also Gaussian distributed
(Bogacz et al., 2006; Bitzer et al., 2014):

L(t) — L(t — &) ~ N (685, 5x2), )
with
_ . HA—UB
95 = ]’[Sf (8)
= HA—ME )

Vv
In the continuum limit § — 0, this becomes the drift-diffusion model

(DDM,; Figure 1), which can be written as a stochastic differential
equation:

dL = 0sdt + kdW, (10)

where dW is the differential of the Wiener process. The “drift” cor-
responds to the deterministic component (controlled by the drift rate
0s), and the “diffusion” corresponds to the stochastic component
(controlled by the noise variance ).

We can use these equations to calculate the expected reward,
E[r|s], and the expected decision time, E[T|s]:

E[rls] = Rec(E:) (1)
E(T]s] = o [20(E) - 1] (12)

where
Bo= 200 (13)

is the log odds of a correct response, and ¢ (E;) is the corresponding
probability (i.e., the accuracy). These expressions make the speed-
accuracy trade-off transparent: expected decision time monotonically
increases with expected reward. In the absence of noise (x — 0),

the accuracy saturates to 0(E;) = 1 and the expected decision

time simplifies to the ratio between the threshold and the drift rate:
E[T]s] = %
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Figure 1: The drift-diffusion model.
The black line shows the drift compo-
nent, and the dotted gray line shows
the trajectory of the log odds over time
(the sum of the drift and diffusion com-
ponents). The horizontal lines show the
decision thresholds.

The Wiener process, also known as
Brownian motion, is a stochastic process
with independent Gaussian increments:
W(t) —W(t—8) ~N(0,96).

The empirically measured response
time, RT = Ty + T, is decomposed
into the signal-dependent decision

time T and the signal-independent

“non-decision time” Tj.

If we assume that the problem is
perfectly symmetric, with 64 = —6p,
U, = —Ug, and R4 = Rp, then the
equations become independent of s and
we write them as E[r], E[T], etc.
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The DDM has a special place in the pantheon of decision models
for several reasons, each of which will be discussed further in sub-
sequent sections. First, it has been empirically successful relative to
other models (Ratcliff and Smith, 2004). Second, a number of more
biologically detailed models can be formally reduced to the DDM

under certain assumptions (Bogacz et al., 2006). Third, it is optimal The optimality result is classically
known as Wald’s sequential probability

in the sense that for any desired accuracy (or reward rate), there is ;
ratio test (Wald, 1947).

a setting of the decision thresholds that will achieve the fastest pos-
sible decision time (Bogacz et al., 2006). If the decision time is fixed
(i.e., the threshold is determined exogenously, as in the interrogation
paradigm), the DDM also achieves the highest possible accuracy.

3 Bounded evidence accumulation in the brain

Let’s revisit the sequential inference task (Yang and Shadlen, 2007)
that we described in Chapter 4. On each trial, the subject (a monkey
in this case) is presented with a sequence of abstract shapes x =
(x1,...,xN), and then makes an eye movement to one of two visual
targets (labeled A and B). One of the targets (s) is a correct target,
producing a water reward when the monkey selects it. The monkey
has been trained extensively to learn that each shape x is associated
PXls=A) The probability that the correct

p(x|s=B)
target is red, after observing N stimuli, is given by:

with a log odds w(x) = log

N
p(s = Alx) :a(zwm)). (14)
n=1

As summarized in Chapter 4, Yang and Shadlen (2007) found that
neurons in LIP increased their firing after each shape in proportion to
the corresponding the log odds. This is consistent with these neurons
acting as evidence accumulators. Considerable additional evidence
for this interpretation has come from other perceptual decision tasks,
notably the motion direction discrimination task described above
(Gold and Shadlen, 2007).

We now address how the log odds gets translated into a deci-
sion. The DDM and related models propose that a decision is made
when the accumulated evidence crosses a threshold. Evidence for
this threshold-crossing event has been found using a free response
version of the sequential inference task (Kira et al., 2015). Instead
of observing a fixed number of shapes, monkeys can make a deci-
sion following any number of shapes. Monkeys consistently made
a decision when the evidence exceeded a fixed threshold (Figure 2).
Neurally, decisions coincided with a fixed firing rate of LIP neurons,
consistent with earlier findings using a motion direction discrimina-
tion task (Roitman and Shadlen, 2002).
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LIP activity recorded by Roitman and Shadlen (2002) is shown in
Figure 3. Different motion strength levels (the proportion of coher-
ently moving dots) produced different rates of LIP ramping when
activity is aligned to stimulus onset, suggesting that the ramp slope

reflects the drift rate in the DDM. Motion-sensitive neurons in area

MT, the putative input to the evidence accumulator in LIP for this
task, show stronger activity for higher motion strength, but do not

ramp up. When LIP activity is aligned to the time of decision, the dif-

ferent ramps converge to a fixed firing rate, suggesting a threshold-
crossing event.
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Figure 2: Cumulative evidence when
decisions are made. The two panels
show results for individual monkeys.
Reproduced from Kira et al. (2015).

Figure 3: LIP and MT activity during
evidence accumulation and termina-
tion. “Ty,” (solid lines) denotes trials
where the selected target is in the neu-
ron’s receptive field; “Toyt” (dotted
lines) denotes trials where the selected
target is outside the neuron’s receptive
field. Data from Roitman and Shadlen
(2002) and Britten et al. (1992); figure
reproduced from Gold and Shadlen
(2007).
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requires feedback from a downstream area registering the eye move-
ment decision. Among areas responsible for programming eye move-
ments, the superior colliculus is a good candidate for providing the
feedback signal because it also sends projections to cortical areas,
including LIP. Within the intermediate layer of the superior collicu-
lus, “burst neurons” fire transiently at very high rates immediately
before an eye movement (Sparks, 1978). Lo and Wang (2006) pro-
posed that these cells might report threshold-crossing events in LIP
(and possibly other cortical areas) and then inhibit the cortical in-

puts, effectively terminating evidence accumulation. Consistent with The architecture described here is
overly simplified; there are several

.. . . X . . K intervening brain areas that mediate the
firing rates in LIP, and inactivation of superior colliculus causes a interactions between LIP and superior

this hypothesis, bursts in superior colliculus are triggered by high

delay in decision termination (Stine et al., 2023). The inactivation colliculus.
led to paradoxically better performance, because more evidence was
accumulated prior to a decision.

3.1 Resource constraints on evidence accumulation

In the interrogation paradigm, it is commonly assumed that subjec-
tive decision thresholds don’t matter; decision time is determined
exogenously by the experimenter. One implication of this assumption
is that performance should approach perfect accuracy as the decision
time gets longer, since eventually the accumulated evidence in favor
of the correct decision will overpower the diffusion noise. In fact,
human performance often falls short of perfection—why?

One answer to this puzzle is that evidence cannot be accumulated
without bound by the brain, for the simple reason that neurons can-
not produce arbitrarily high firing rates. At a behavioral level, Ratcliff

1 —51.2%
(2006) has shown that positing “implicit” thresholds provides a good —25.6%
account of accuracy in the interrogation paradigm. The same is true g 09 -
. . g —64%
for monkeys (Figure 4). Furthermore, Kiani et al. (2008) showed that 808
LIP neurons do not continue to increase their activity until the re- %
sponse signal, but instead saturate at a fixed level regardless of the g o7 nfrw\/‘
decision time. * o6
The idea that the log odds is bounded can also explain many de- 05
cision phenomena outside of perceptual discrimination tasks (Zhang ®  timues duration (me)

and Maloney, 2012; Zhang et al., 2020). The general observation is Figure 4: Performance on motion

that subjective log odds are attenuated at the extremes, such that direction discrimination in the inter-
rogation paradigm. Reproduced from

people overestimate the probability of rare events and underestimate Kiani et al, (2008).

the probability of frequent events. In essence, all of these phenom-
ena link back to the fundamental constraints on the dynamic range
of firing, and hence the information coding capacity of neurons, as
discussed in Chapter 3.
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3.2 Leaky, competitive dynamics

The DDM assumes perfect (albeit noisy) integration—it forgets noth-
ing. Real neurons always have leakage, as reviewed in Chapter 2,
because membranes are not perfect insulators. Furthermore, it has
been argued that decision circuits in the brain have recurrent con-
nectivity, such that increasing the activity of neurons favoring one
decision inhibit (either directly or indirectly) neurons favoring a dif-
ferent decision (Wang, 2008). An influential version of this idea is the
leaky competing accumulator (LCA) model (Usher and McClelland,

2001), which models the dynamics of two units, y; and y», according We can think of the units here as
to: populations of neurons. The activity of
’ a unit represents the pooled firing rate
dy1 = [—yy1 — Bg(v2) + paldt +xdW, (15)  ofthepopulation.
dya = [—vy2 — Bg(y1) + paldt + kdWo, (16)

where 7 is the leak rate, § controls the mutual inhibition, g(-) is a
static nonlinearity, y; is the excitatory drive for population i, x is the
noise standard deviation, and W;(t) is a Wiener process.

This model assumes that the two populations mutually inhibit one
another, but it can also approximate a more biologically plausible
“pooled inhibition” model (Wang, 2002) in which the two popu-
lations send excitatory input to a shared population of inhibitory
neurons, which in turn sends inhibition back to the excitatory pop-
ulations. The pooled inhibition model is more biologically plausible
because it obeys Dale’s law: a neuron performs the same chemical
action at all of its synapses. This implies that neurons cannot send
excitatory neurotransmitters to some neurons and inhibitory neu-
rotransmitters to others. In this case, the decision populations send
excitatory signals to downstream targets in the basal ganglia and
subthalamic nucleus, which in turn control motor commands via the
superior colliculus and other regions (depending on the response
modality). This implies that they cannot directly inhibit one another,
though mathematically the mutual and pooled inhibition models can
be reduced to a common form under certain assumptions (Bogacz
et al., 2006).

Both of these models can be further reduced to the DDM. Here
we focus on the mutual inhibition model. As shown by Bogacz et al.
(2006), a linearized form of the model, where g(-) is replaced by the
identity function, captures the important features of the dynamics
if v and B are sufficiently large. This results in a one-dimensional
Ornstein-Uhlenbeck (O-U) process (Busemeyer and Townsend, 1993)
that depends on the relative excitatory drive and the leak-inhibition
difference:

dy = [(p1 — p2) + (B — 7)yldt + xdW. (17)



When leak and inhibition are balanced (8 = 1), the model is equiva-
lent to the DDM, with drift rate 6 = p1 — y». As mentioned above, it
is precisely in this regime that optimal performance is achieved.

What happens when leak and inhibition are not balanced? If leak
is stronger than inhibition (¢ > ), the O-U process converges to an
equilibrium distribution that is Gaussian-distributed with a mean of
6/ (v — B), the fixed point of the dynamics. If inhibition is stronger
than leak (8 > 7), there is no stable equilibrium; the mean and vari-
ance of the process grow exponentially (but note that the process ter-
minates when the threshold is crossed). The leak-dominant regime is
interesting because it offers an alternative explanation for suboptimal
performance in the interrogation paradigm: if the equilibrium mean
is below the decision threshold, then the process relies on noise to
cross the threshold. This means that performance will not be perfect
even for long decision times.

The leak-dominant regime produces “conservative” behavior in
the sense that the dynamics slow down as the activity approaches
the fixed point, which lies close to the correct threshold. In contrast,
the inhibition-dominant regime produces “risky” behavior in the
sense that the dynamics speed up as the activity approaches both the
correct and incorrect thresholds. This produces faster responses, but
also more errors. Busemeyer and Townsend (1993) suggested that
rewards push the imbalance towards inhibition-dominance, whereas
punishments push the imbalance towards leak-dominance.

The leak-inhibition imbalance can also affect the influence of sen-
sory evidence at different points in the accumulation process. When
leak and inhibition are balanced, evidence at all points in the pro-
cess are equally weighted. Some studies have found equal weighing
of evidence across time in rats and humans (Brunton et al., 2013).
When leak is stronger than inhibition, late sensory evidence is more
influential (a recency effect). When inhibition is stronger than leak,
early sensory evidence is more influential (a primacy effect). Studies
in monkeys have documented a primacy effect: brief motion pulses
earlier in the trial have a greater influence on subsequent decisions
(Kiani et al., 2008) and LIP activity (Huk and Shadlen, 2005). Pri-
macy has also been reported in studies of humans (Zylberberg et al.,
2012; Winkel et al., 2014; Wilming et al., 2020). This can be attributed
either to inhibition-dominance or to bounded accumulation. How-
ever, neither of these models can explain why early weighting of
evidence was present already in MT, the input to the evidence ac-
cumulator (Yates et al., 2017). Furthermore, bounded accumulation
cannot explain the results of studies finding a recency effect (Usher
and McClelland, 2001; Tsetsos et al., 2012; Cheadle et al., 2014).

It’s currently unclear how to reconcile these different results. One
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The static nonlinearity g(-) is poten-
tially more important in the inhibition-
dominant regime, because it can stabi-
lize the process.
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possibility is that individual differences are large enough to produce
inconsistent results across studies. For example, the studies by Usher
and McClelland (2001) and Tsetsos et al. (2012) exhibited substantial
heterogeneity across human subjects. The stability of these individual
differences across tasks suggests that the heterogeneity cannot be
attributed simply to measurement noise (Yoo et al., 2025).

Some studies have identified parametric manipulations that sys-

tematically shift evidence weighting between primacy and recency. Monkeys and humans can also shift
their temporal weighting strategically,

. ] . for example when sensory signals are
man subjects were motivated to respond quickly, and a recency effect more informative early vs. late in a trial

when subjects were motivated to respond more slowly. This finding (Levi et al., 2018).

For example, Carland et al. (2016) found a primacy effect when hu-

is consistent with leak-dominance if one additionally assumes that
there is an increasing “urgency” to commit to a decision over the
course of a trial (see below for a formalization of this idea). The in-
tuition is that urgency induces reliance on early evidence, producing
primacy; with less time pressure, reliance on later evidence increases
while the leak causes forgetting of earlier evidence, producing re-
cency.

3.3 Why is evidence accumulation leaky?

If the non-leaky DDM achieves optimal performance, then why does
evidence accumulation in the brain appear to be (at least sometimes)
leaky? One answer is that this is just an unavoidable property of bi-
ology. While this might be true at a single-neuron level, networks of
neurons can resist leak through recurrent connectivity, producing “re-
verberating” activity that outlives the time constant of any individual
neurons (see for example Wang, 2002).

A different kind of answer is that leak is actually useful. To see
why, consider what happens when the hidden state is not fixed over
time but instead switches intermittently. In this case, an optimal
decision circuit should “forget” the evidence it accumulated prior to
a switch (Kilpatrick et al., 2019). In the case where the circuit doesn’t
have direct access to the switch times, it should forget gradually—
precisely what is accomplished by a leaky accumulator. In support
of this interpretation, humans (Glaze et al., 2015) and rats (Piet et al.,
2018) adopt leakier accumulation when the switch rate is higher.

4 Thresholds that optimize reward rate

A natural optimization objective for the free response paradigm is the

reward rate, defined as the ratio of expected reward to expected trial Here we have assumed perfect
symmetry, as described above
@ =A=—6=BUy = Uy,
and R A= RB)
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duration:

E|r

"R+ [Tj FITT (18)
where ITI is the intertrial interval (the time between the response
and the next trial. The problem facing the agent is how to set the
thresholds to optimize reward rate. While there is no closed-form
solution to this problem, we can gain insight into the structure of the
solution by inspecting the reward rate as a function of the threshold
(Figure 5). Generally speaking, reward rate is optimized by choosing
a higher threshold when the evidence is weaker. Intuitively, this is
necessary to avoid making erroneous decisions based on noise.

1 3 0.1 Figure 5: The effect of threshold on
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4.1 Do humans optimize reward rate?

Bogacz et al. (2006) derived a performance characterization that does
not depend on the choice of parameters (drift rate, noise variance)—
what they termed the optimal performance curve:

-1

E[T] 1 1

To+1T1 | Plog G | 1- 2P| (19)

where P, is the error rate (the proportion of trials on which the
wrong decision is made). The quantity on the left-hand-side is the
normalized decision time. The optimal performance curve predicts that
decision times will be fastest when the error rate is very large and
when it is very small. When the evidence is very weak relative to
the noise level, the threshold should be set low because the stimulus
carries little information about the optimal decision, making it more
advantageous to move as quickly as possible to the next trial. When
the evidence is very strong relative to the noise level, the threshold
should again be set low, in this case because the stimulus carries
substantial information about the optimal decision—the decision is
easy.



Bogacz et al. (2010) compared human performance on perceptual
discrimination tasks to the optimal performance curve, finding that
the 30% of subjects achieving the lowest error rates matched the
theoretical optimum quite well (Figure 6). Why were most subjects
suboptimal?

One possibility is that the optimization process is limited by tim-
ing uncertainty. It is well known that the perception of elapsed time
is subject to irreducible noise. In the context of reward rate optimiza-
tion, timing uncertainty means that humans may not have direct ac-
cess to temporal variables such as the ITI, the non-decision time, and
decision time. Zacksenhouse et al. (2010) proposed that some subjects
adopt a maximin strategy, attempting to maximize the worst reward
rate given their level of timing uncertainty. This yields a rescaled
optimal performance curve, with longer decision times compared to
reward rate optimization without timing uncertainty. The maximin
strategy does a good job explaining why most subjects tended to
have surprisingly long decision times.

Consistent with the timing uncertainty theory, Balci et al. (2011)
showed that that individual differences in timing ability (assessed by
an independent test) are correlated with deviations from the optimal
performance curve. This suggests that individuals take into account
their abilities when setting thresholds.

Threshold optimization could be implemented through an iterative
adjustment process, where errors induce increments in the threshold
and correct decisions induce decrements in the threshold (see Simen
et al., 2006, for a more sophisticated version of this idea). Indeed,
humans become increasingly close to the optimal performance curve
with practice (Balci et al., 2011). Iterative adjustment also explains
more fine-grained patterns across trials: after an error, humans tend
to slow down on the next trial, making them more accurate (e.g.,
Rabbitt, 1966; Purcell and Kiani, 2016).

4.2 Collapsing thresholds and urgency gating

The optimality analysis conducted by Bogacz et al. (2006) models the
case where task difficulty and other parameters do not vary across
trials, and thus the agent (with sufficient training) can be expected to
know these parameters. In many experimental tasks (and in real life)
these parameters do in fact vary and are not necessarily known in
advance. Drugowitsch et al. (2012) developed a theoretical framework
for the more general case where the agent has uncertainty about 6,
expressed as a posterior probability distribution p(8|X(t)), where
X(t) represents all of the evidence up to time t. The posterior proba-
bility over alternatives, b(t) = p(s = A|X(t)), can then be obtained
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Figure 6: The optimal performance
curve compared to human perfor-
mance. Data from Bogacz et al. (2010);
figure reproduced from Zacksenhouse
et al. (2010).



by:
b(t) = p(6 > 01X(1)) = [~ p(6|X(£))de. (20)

Assuming a Gaussian prior on the drift rate, 0 ~ N (0, x), the belief
state is a sigmoidal function of the accumulated evidence L(f), with a
slope that depends on elapsed time (this will become important later
when we discuss confidence), and the optimal threshold for reward
rate maximization becomes a function of time:

b(t) =@ <\/%> (21)

Us(t) = \Jt+x7 171 (b(1)), (22)

where ®(-) is the cumulative distribution function of the standard
Gaussian distribution and ®~1(+) is its inverse. We can see that the
threshold collapses over time. The intuition is that on really difficult
trials, it’s better to move on to the next trial rather than try to collect
sufficient evidence for the current trial. The collapsing threshold
forces the agent to make a decision with less evidence.

Fudenberg et al. (2018) analyzed a closely related problem which
allowed them to obtain analytical results. They model an agent maxi-
mizing expected reward penalized by a linear time cost:

" = argmaxE[r — aT|m], (23)
T
where & > 01is a time cost coefficient. They derive an asymptotic
approximation of the optimal threshold for large t and x (Figure 7):

1

Uty ———————————.
() 2a(x~t+x2t)

(24)
According to this expression, the threshold is a hyperbolic function
of time (i.e., declining with rate 1/¢), collapsing more quickly when
signals are noisier (large x). This fits with the intuition that more
difficult trials should induce a lower threshold. Two other features
of this expression are worth noting. First, thresholds are lower when
the time cost is greater (large «), capturing an agent’s disinclination
to deliberate. Second, thresholds are lower when the agent is more
certain a priori that the drift rate is close to the prior mean of o (small
X), again capturing the intuition that more difficult decisions should
induce a lower threshold.

The empirical data supporting collapsing thresholds is mixed.
Based on quantitative model fits to behavioral data, some studies
have found support for collapsing thresholds (Palestro et al., 2018;
Bhui, 2019), and others have not (Hawkins et al., 2015; Voskuilen
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Figure 7: The drift-diffusion model

with collapsing thresholds.
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standard deviation.



CHAPTER 7 13

et al., 2016). In some cases, collapsing thresholds can be incentivized
by emphasizing decision speed, but emphasizing reward rate maxi-
mization appears to be insufficient (Evans et al., 2019).

One reason for these mixed results might be that the optimality
analysis is more subtle than it first appears. Malhotra et al. (2018)
showed that collapsing thresholds are only optimal when some tri-
als are very difficult; if these trials are absent, the optimal thresholds
are constant or can even increase. Moreover, even when collapsing
thresholds are theoretically optimal, there are many decision prob-
lems in which a fixed threshold can achieve a comparable reward rate
(Boehm et al., 2020).

A more fundamental objection to time-varying thresholds is that
they seem to be inconsistent with the neural evidence (reviewed
above) that decisions are made when firing rates putatively repre-
senting accumulated evidence cross a fixed threshold is crossed. One
possible reconciliation is to convert the temporal dynamics of the
threshold into a separate time-varying “urgency” signal Q(t) that
modulates the evidence accumulator L(t), effectively pushing it to
terminate earlier (Ditterich, 2006; Churchland et al., 2008; Standage
et al., 2011; Thura et al., 2012). The urgency signal does not depend

on the evidence itself, only the passage of time. For example, a lin- As with studies of collapsing thresh-
olds, the behavioral evidence for ur-

. . . gency models is also mixed (see True-
m and mg. In some models (e.g., Ditterich, 2006) the urgency signal blood et al., 2020; Smith and Ratcliff,

modulates the accumulator additively, L(t) = Q(t) + L(t), whereas 2021).
in others (e.g., Standage et al., 2011; Thura et al., 2012) it modulates

the accumulator multiplicatively, L(t) = Q(t)L(t). Smith and Ratcliff

(2021) showed that the multiplicative urgency model is (under cer-

ear urgency signal takes the form Q(t) = mg + mt with parameters

tain assumptions) equivalent to a collapsing threshold model. Thus,
multiplicative urgency may be a neurally plausible implementation
of optimal time-varying thresholds which maintains the core ideas of
the DDM (accumulation of a scalar decision variable to a threshold).
The urgency signal is thought to take the form of a temporal ramp,
similar to the representation of elapsed time by some models of in-
terval timing (e.g., Durstewitz, 2004; Simen et al., 2011), and attested
by neural recordings of some time-encoding neurons (e.g., Niki and
Watanabe, 1979; Jazayeri and Shadlen, 2015; Cao et al., 2024). Ur-
gency models require the evidence accumulator to be tuned by this
temporal ramp (either additively or multiplicatively). Thura and
Cisek (2014) identified neurons in motor areas that appear to re-
flect an urgency-modulated evidence accumulator: neural activity
increased in response to sensory evidence, while for any fixed evi-
dence level the activity was higher closer to the time of decision. This
pattern appears most consistent with an additive urgency signal.
Studies of LIP neurons have also identified an evidence-independent



urgency component (Churchland et al., 2008; Hanks et al., 2014). This
component was extracted by averaging the neural time series across
all stimulus categories, revealing a build-up activity across time that
terminates when a decision is made. Hanks et al. (2014) showed that
emphasizing accuracy over speed (by slightly delaying reward de-
livery) reduced the slope of the build-up. Another reflection of a
putative urgency signal is the reduced build-up slope following an
error (Purcell and Kiani, 2016)—a neural analogue of the behavioral
post-error slowing phenomenon described earlier. These findings
support the hypothesis that an urgency signal can adaptively opti-
mize reward rate under different conditions by modulating evidence
accumulation.

5 Confidence

Accumulated evidence can support judgments of confidence, which
serve a variety of functions, including calibrating time/energy in-
vestment, managing risk preferences, and controlling learning rates.
When evidence strength is fixed, the posterior probability that a de-
cision is correct is a sigmoidal function of the accumulated evidence
L(t) at the time of decision (see section 1). The Bayesian confidence
hypothesis states that subjective judgments of confidence reflect the
posterior probability of a correct decision (Aitchison et al., 2015;
Meyniel et al., 2015).

If the Bayesian confidence hypothesis is correct, then the state of
the evidence accumulator at the time of a decision should monoton-
ically predict confidence reports. To study this question in monkeys,
Kiani and Shadlen (2009) developed a post-decision wagering task
in which monkeys were first shown a standard random dot motion
stimulus and then either chose between two motion directions or
were additionally given a “safe” option which effectively allowed
them to opt out of the discrimination task on that trial. Monkeys
should choose the safe option when their confidence is low. Con-
sistent with this interpretation, the probability of choosing the safe
option decreased with stimulus duration and increased with motion
coherence—two factors that should increase confidence. The proba-
bility of choosing the safe option was also associated with firing rates
in LIP that were intermediate between the firing rates associated with
the two motion direction choices, consistent with the hypothesis that
low confidence reflects a level of accumulated evidence that is far
from the two decision thresholds.

Despite its parsimony and simplicity, the Bayesian confidence
hypothesis has been challenged in studies of human perceptual de-
cisions. For example, Adler and Ma (2018) found that human con-
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fidence reports are better described by heuristic models that use
sensory uncertainty suboptimally. These models apply a linear or
quadratic transformation of the sensory signals and uncertainty into
confidence, approximating Bayes-optimal confidence reports but
nonetheless deviating from them quantitatively.

A more fundamental problem for the Bayesian confidence hy-
pothesis, at least in the context of models like the DDV, is that if
decision are always made when a threshold is crossed, then the ac-
cumulated evidence should always have the same value and hence
reported confidence should always be the same. This is contradicted
by the empirical finding that confidence is higher when responses
are faster (Festinger, 1943; Vickers and Packer, 1982). However, it is
important to remember that most experiments use mixed levels of
evidence strength across trials, which means that subjects have uncer-
tainty about evidence strength on each trial. In this case, the posterior
probability that a decision is correct depends on elapsed time, such
that a longer response time indicates lower Bayesian confidence, even
for identical levels of accumulated evidence (Calder-Travis et al.,
2024). Thus, the Bayesian confidence hypothesis can be at least par-
tially rescued by considering the more complex nature of the decision
problem in mixed evidence tasks.

6 Conclusion

The study of two-alternative perceptual decisions has been an ex-
tremely fruitful area of research, fostering the development of highly
accurate quantitative models. Nonetheless, it is important to consider
some limitations and challenges of this setup. Many decision prob-
lems involve additional complexities: time-varying hidden states,
larger action spaces, state-dependent rewards, and so on. Some of
these complexities have been addressed theoretically and experimen-
tally; in the next chapter we will begin to develop a more general
theoretical framework.

Another challenge is that some of the canonical computations dis-
cussed above, such as the role of LIP as an evidence accumulator,
run into stiff empirical contradictions. For example, one study (Katz
et al., 2016) found that inactivation of LIP surprisingly had no ef-
fect on decision making performance. Another study (Latimer et al.,
2015) argued that many LIP neurons do not ramp up gradually with
evidence, but instead exhibit discrete jumps. While the interpreta-
tion of these findings continue to be hotly debated, it should not be
shocking that the simplest evidence accumulation models fail to be
comprehensive accounts of decision making in the brain. Their use-
fulness, as is the case for all simple models, lies in exposing a set of
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computational principles which we can use as the foundation for
more comprehensive accounts.

Study questions

1. Compare how the DDM, leaky competing accumulator model, and
urgency gating model account for the speed-accuracy trade-off.
What are the distinctive computational and neural mechanisms each
emphasizes?

2. Studies report saturation in LIP firing rates. How does this observa-
tion provide a neural basis for “implicit” thresholds, and how might
this connect to resource-rational models?

3. Some studies found that inactivation of LIP (Katz et al., 2016) or
discrete jumps (Latimer et al., 2015) in neural activity contradict the
ramping evidence accumulator view of LIP. How might computa-
tional neuroscientists reconcile these discrepancies?
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