Computational Foundations of Cognitive Neuroscience

Chapter 6: Attention

The world is filled with stimuli, but only some of them are important
at any given time. The brain focuses on important stimuli through at-
tentional mechanisms. This chapter considers two mechanisms. One
reflects expectations based on prior probabilities: stimuli that are ex-
pected will tend to receive higher posterior probability, rendering them
more detectable. A second mechanism reflects resource allocation: at-
tentional cues direct limited resources to important stimuli, amplifying
information from those signals.

Attention is the enhanced processing of certain signals, typi-
cally (but not always) at the expense of other signals. It can be in-
duced “top-down” (e.g., by preparatory cues, volitional orienting)
or “bottom-up” (e.g., capture of attention by salient or unexpected
stimuli). Much of what we know about attention concerns sensory
(particularly visual) signals, and thus this chapter will focus on visual
attention, but we note here that attention is a more general phe-
nomenon that can be applied internally to cognitive processes such as
memory, imagery, and self-directed thought (Chun et al., 2011).

1 Attention as prior probability

The most straightforward way to think about attention in a Bayesian
framework is through the prior: if some events have higher prior
probability, they will be more easily detected.

1.1 Cued attention

To make this concrete, we will use the classic Posner cueing task
(Posner, 1980), illustrated in Figure 1. On each trial, a central cue
appears, either a fixation cross or an arrow pointing left/right. Subse-
quently a target appears either on the left or the right, and the subject
is asked to press a key as quickly as possible when they’ve detected
the target. The trial types differ only in the position uncertainty im-
plied by the cue. Targets appear on the left or the right with equal
frequency following the fixation cross; thus position uncertainty is
50%. Targets appear in the direction indicated by the arrow with
probability 80%. This produces both valid trials (when the target ap-
peared in the expected location) and invalid trials (when the target
appeared in the unexpected location). The main behavioral finding

is that response time is longest on invalid trials and shortest on valid
trials (the difference between these two response times is known as



the validity effect). Intuitively, the cue orients attention to the expected
spatial location.
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An important aspect of the Posner task is that subjects are asked
to maintain central fixation throughout the trial; eye position is con-
tinuously monitored, and trials are rejected if fixation is broken. This
means that the orienting of attention is “covert” in the sense that the
sensory signals are largely unchanged. Only the internal direction of
attention is altered by the cues.

We can now start to develop a model of performance in the Posner
task. The hidden state is binary, s € {Left, Right}, and is encoded by
neural activity x at the time of the target appearance. As in earlier
chapters, we will assume that the spike count of neuron d is Poisson-
distributed with rate f;(s). Recall from Chapter 4 how evidence
accumulation can be implemented by a readout neuron whose input
current I(t) linear weights spikes from the encoding population:

I(t) =) waza(t), (1)
d
where z;(t) = 1 if neuron d spikes at time ¢ (0 otherwise), and the
synaptic strength is given by:
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The input current is integrated by the membrane potential y(t):

Cp=1I(t),  p(0)=pn’, 3)

where C is the membrane capacitance and u° is the potential at the
time of cue presentation (t = 0). For present purposes, 1 is the
critical variable, because that’s what encodes the prior:

0_ p(Left|Cue)
=lo p(Right|Cue)” @
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Figure 1: The Posner cueing task. Data
replotted from Posner (1980).

Importantly, the prior is cue-dependent.
The cue itself is encoded by a separate
population of neurons that send input
to the readout neuron.
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With this setup, the membrane potential at time ¢ represents the

posterior log odds. We can link the model to behavior by assuming See Chapter 7 for more on the decision-
that a detection response is made whenever the firing rate of the theoretic aspects of threshold-crossing.
readout neuron crosses one of two thresholds representing the two

spatial locations.

The model can explain the main behavioral finding: the arrow
cue drives the membrane potential up or down depending on its di-
rection, which in turn speeds the crossing of the decision threshold
when the target appears in the expected location. When it appears in
the unexpected location, the evidence needs to move in the opposite
direction, making response time longer—this formalizes the con-
cept of “reorienting” that Posner and others have invoked to explain
responses on invalid trials.

Monkeys can be taught to use symbolic predictive cues (Bowman
et al., 1993), but their attention can also be directed by a peripheral
cue flashed on one side of the screen. Neurons in parietal cortex
exhibit elevated responding to targets that appear on the same side
as the cue (Robinson et al., 1995), consistent with additional drive
provided by the spatial prior. The physiology is also consistent with
the observation that parietal lesions disrupt attentional orienting
(Posner et al., 1984).

1.2 Acetylcholine and cued attention

A large literature implicates the neuromodulator acetylcholine in
attention (Hasselmo and Sarter, 2011). Here we focus on the role of
acetylcholine in cued attention, which received an influential theo-
retical treatment by Yu and Dayan (2005). Their account posited that
acetylcholine reports expected uncertainty about target stimuli con-
ditional on cues. Thus, acetylcholine should control the size of the
validity effect: greater uncertainty about the cued target location will
increase response times on valid trials and decrease response times
on invalid trials.

In support of this model, Yu and Dayan cite work by Phillips et al.
(2000), which manipulated acetylcholine levels pharmacologically

in rodents performing the Posner task. Nicotine (an acetylcholine An agonist is a molecule that mimics
the action of another molecule. An

. o g ] antagonist has the opposite effect,
choline antagonist) increased it. However, this study appears to be blocking action of the molecule.

agonist) decreased the validity effect, while scopolamine (an acetyl-

an outlier, because several other studies found the opposite effects:
increased validity effect with nicotine, and decreased validity effect
with scopolamine (Davidson et al., 1999) or another acetylcholine
antagonist, mecamylamine (Stewart et al., 2001). The important take-
away is that acetylcholine is clearly involved in cued attention, but
perhaps not in the specific way posited by Yu and Dayan. The bulk



of data are compatible with a model in which acetylcholine reports
expected certainty.

One way to formalize this role in terms of the model described
above would be to posit that acetylcholine reports u°. Thus, sup-
pressing acetylcholine should have the effect of abolishing cue-
dependent attentional modulation of the readout neuron. Consistent
with this hypothesis, Davidson and Marrocco (2000) showed that
attentional modulation of parietal cells during performance of the
Posner task is suppressed in a dose-dependent manner by scopo-
lamine.

Hasselmo and Sarter (2011) describe a possible biophysical mech-
anism for acetylcholine’s attentional effects. When a neuron is suf-
ficiently depolarized (by cue-evoked glutamate currents), calcium
channels are opened, resulting in the activation of a calcium-sensitive
nonspecific cation current, which causes further depolarization, fur-
ther calcium influx, and so on—a self-sustaining loop producing
persistent spiking. As a consequence, subsequent stimuli will be
more effective at activating neurons with elevated activity.

1.3  Effects on tuning

Spatial priors can also be used to orient attention towards particu-
lar features. For example, McAdams and Maunsell (1999) studied
orientation-tuned neurons in visual area V4 while monkeys per-
formed a delayed match-to-sample task (Figure 2). On each trial,
monkeys were presented with sample stimuli (a colored stimulus
and an oriented grating). After a delay, they were presented with
test stimuli (another colored stimulus and oriented grating) and
instructed to judge whether one of the test stimuli matched the corre-
sponding sample stimulus. Because each V4 neuron is also spatially
tuned, and the gratings were always presented within the receptive
field of the neuron, the experimenters could classify each grating as
either “attended” (on orientation judgment trials) or “unattended”
(on color judgment trials). The key finding was that attention multi-
plicatively enhanced the orientation tuning function.

One way to model this phenomenon is to assume that the prior
is higher in the attended location (Dayan and Zemel, 1999). In the
extreme case (zero prior probability outside the attended location),
the resulting posterior takes the form of a “spotlight” that selectively
amplifies information in a specific location. Rao (2005) developed a
model of the delayed match-to-sample task in which the V4 neurons
were modeled as reporting the posterior probability over orientation
(s1) given lower-level visual inputs (x), marginalizing over location
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A cation is a positively charged ion
(e.g., sodium, calcium). A nonspecific
cation current is a membrane current
that does not depend on a particular
ion.
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(s2):
p(s1lx) =) p(silsa, x)p(s2]x), (5)

where for simplicity we have again assumed a discrete set of spatial
locations, s, € {Left, Right}. Because p(sz|x) increases with p(s;), the
posterior over orientation is modulated multiplicatively by the prior
over location.

The same model can explain competitive attentional phenomena.
When multiple stimuli are presented in the spatial receptive field of
a V4 neuron, activity is suppressed (Reynolds et al., 1999). Figure 3
shows an example from recordings of a neuron tuned to vertical ori-
entation when a nearby horizontal bar is simultaneously presented.
The model explains this suppression due to uncertainty about orien-
tation. When a monkey is trained to attend to the location where the
horizontal bar is presented, activity is restored—a pattern recapitu-
lated by the model due to the elevated prior probability assigned to
the location.

1.4 Connection to normalization

The normalization model of attention (Reynolds and Heeger, 2009)
has been used to compactly explain a very wide range of findings,
and for this reason is one of the most influential modern accounts of
attentional effects (particularly in visual cortex). Here we show that it
is closely connected to the Bayesian account described above.
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Figure 2: Delayed match-to-sample
task. Responses are normalized to
the peak firing rate in the attended
condition. Dashed oval illustrates the
receptive field of a V4 neuron. Re-
plotted from McAdams and Maunsell
(1999).
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The normalization model describes the firing rate of a neuron as
a function of stimulus feature (sq, typically orientation) and location
(s2), which we write as s = (51 , Sz): For simplicity we ignore the spiking
nonlinearity in the normalization
A(s)E(s) equation.

f(S) = ’ (6)

S+v

where v is a gain control parameter, E(s) is the stimulus drive, A(s)
is the attention field, and S is the suppressive drive derived from
pooling the excitatory drive E(s)A(s) over a wider range of s (the
suppressive field).

We can map this onto the Bayesian model if we think of the like-
lihood p(x|s) as encoding the stimulus drive, the prior p(s) as en-
coding the attention field, and the marginal likelihood p(x) =
Y p(x|s)p(s) as encoding the suppressive drive (pooled excitatory
drive). Bayes’ rule then implements a form of normalization with
v=20:

p(xls)p(s)

D (%) (7)

p(slx) =

We can leverage this connection to elucidate how the Bayesian model
explains some of the phenomena that originally motivated the nor-
malization model.

Reynolds and Heeger (2009) noted a discrepancy between the
results of several studies. When stimulus contrast is manipulated,
it is possible to visualize the effect of attention on the relationship
between stimulus contrast and firing rate (the contrast response
function). For neurons in visual areas (e.g., V3), firing rate gener-
ally increases with stimulus contrast (Figure 4). Some studies (e.g.,
Reynolds et al., 2000) have observed a multiplicative modulation of
the contrast response function by attention—a bigger boost in fir-
ing for higher-contrast attended stimuli (though this boost saturates
at very high contrasts). Other studies (e.g., Williford and Maunsell,
2006) have observed a shift in the contrast response function for at-



tended stimuli—roughly the same boost in firing for all contrast lev-

els. To explain this discrepancy, Reynolds and Heeger (2009) pointed

out that Williford and Maunsell (2006) used larger stimuli and task

demands that required more focal spatial attention (guiding precise

saccades to a target location), whereas Reynolds et al. (2000) used

smaller stimuli without demanding precise spatial attention. Putting

all this together, Reynolds and Heeger proposed that multiplicative

modulation arises when the attention field is small relative to the

stimulus, whereas a shift arises when the attention field is large rela-

tive to the stimulus.

Adapted from Reynolds,
Pastemak & Desimone (2000)
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To show how this explanation can be derived from the normaliza-

tion model, Reynolds and Heeger assumed that stimulus drive is a

linear function of contrast g(s): E(s) = ag(s). They also assumed

that the attentional field is approximately uniform with strength . In

the case where the attention field is large relative to the stimulus, the

attention field is approximately constant as a function of s and the

contrast response function takes the following form:

o~ _218(s)
US

®)

This equation makes clear that attention multiplicatively interacts

with contrast, as in Reynolds et al. (2000). In the case where the at-

CHAPTER 6 7

Figure 4: Attentional modulation of
contrast response in V4. (Top) Small
stimuli (Reynolds et al., 2000); (Bottom)
Large stimuli (Williford and Maun-
sell, 2006). The left column shows a
schematic of the experimental stimulus
and the hypothetical attentional field.
The middle column shows firing rate
as a function of stimulus contrast. The
right column shows model simulations.
Adapted Reynolds and Heeger (2009).
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tention field is small relative to the stimulus, the attention field is
approximately a focal point at the stimulus location, and the contrast
response function takes the following form:

~ ayg(s)

f(s)"‘ ’)/g(S)-f—(Ug(S)-f—V, (9)
where w € [0,1] scales the suppressive drive from the region sur-
rounding the focal point; w increases with stimulus size. This equa-
tion predicts attention modulation across the range of contrasts
(though not perfectly uniform across the range). To see this, note
that when g(s) < v,

£(s) ~ 2280, (10)

which is increasing in . When g(s) > v,

~ N
f(S) ~ ')’"‘w, (11)
which is now independent of g(s) but nonetheless increasing in .
Reynolds and Heeger showed that this regime can give rise to an
attentional shift in the contrast response function similar to what was
observed experimentally by Williford and Maunsell (2006).

The Bayesian model provides a normative interpretation of these
ideas. Posterior probability increases with contrast due to its action
on the likelihood (expressing the stimulus drive). Posterior proba-
bility also increase with attention due to its action on the prior, as
discussed above. The marginal likelihood expresses the suppressive
drive, increasing with stimulus size due to the fact that more stimu-
lus locations enter into the normalizing constant. As shown in Figure
5, a Bayesian model formalizing this interpretation (Chikkerur et al.,
2010) can capture the diverse attentional effects observed experimen-

tally.
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The normalization model can also explain why attention some-
times sharpens stimulus tuning (Spitzer et al., 1988; Martinez-Trujillo
and Treue, 2004). Note that this contrasts with the result from McAdams
and Maunsell (1999), where the entire tuning curve is shifted up-
ward. A key factor responsible for this discrepancy is the vari-
able over which attention is specified in different studies. In the
McAdams and Maunsell study, attention was specified spatially (i.e.,
whether the stimulus was inside or outside the neuron’s spatial re-
ceptive field). In the Martinez-Trujillo and Treue study, attention
was specified based on the stimulus feature (motion direction in this
case). This corresponds, in the normalization model, to amplifying
the attention field near the attended feature value, with the effect that
tuning is sharpened at those feature values (Figure 6). In Bayesian
terms, this reflects the increase in prior probability for particular fea-
ture values; the qualitatively different effects on tuning functions in
the two experimental paradigms are reduced to differences in spatial
vs. feature-based priors.
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2 Attention as noise reduction

While prior probability can explain some aspects of attention, it’s
unlikely to be a complete account (see Whiteley and Sahani, 2012).
The basic issue is that not all attentional phenomena make sense as
changes in the prior. When multiple stimuli are presented simulta-
neously and the subject has been trained to respond to only one of
them, we can speak of attention to the response-relevant stimulus,
but that stimulus does not necessarily have higher probability in
terms of its location or feature value. What's needed is a different
conceptualization of attentional effects that captures allocation of
limited /costly cognitive resources.
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Figure 6: Attention can sharpen tuning
functions. (Left) Experimental setup
from Martinez-Trujillo and Treue (2004).
One stimulus was always shown in

the receptive field of the recorded
neuron (black circle), while attention
was directed either to the fixation

point (blue dashed circle) or to the
contralateral stimulus (red dashed
circle). The two stimuli were always
moving in the same direction. (Middle)
Tuning functions of a motion-selective
MT neuron. (Right) Simulations of the
normalization model. Reproduced from
Reynolds and Heeger (2009).

There is a long history of ideas about
capacity limits, resource allocation, and
attention. See for example the book by
Kahneman (1973).



2.1 Optimizing signal precision

We will analyze a setup in which the agent receives a set of N inde-
pendent Gaussian signals with mean s and precision (inverse vari-
ance) A, summarized by an aggregate signal x ~ N (s,1/(NA)). The
stimulus is drawn from a prior s ~ N (5,1/Ag). This is just a version
of the Gaussian magnitude estimation problem that we already en-
countered in Chapter 4. Recall that the posterior mean $ is a convex
combination of the prior mean and the signal:

§=wx+ (1—w)s, (12)

where
N (13)
~ Ao+ NA 3

is the signal sensitivity. The new twist is that we will now allow the
agent to adjust the signal precision—the allocation of attention is a
kind of cognitive action which the agent can optimize (Gershman and
Burke, 2023).

To accommodate a wide variety of tasks with different utility
functions, we generalize the setup in Chapter 4, assuming that the
utility is a monotonically decreasing and differentiable function of
the squared error € = (s — §)2. This allows us to approximate it with
a Taylor series:

u(e) ~ u(0) — p(s = )% (14)
where u(0) is the maximum achievable utility. and

p=—u"(0)>0 (15)

is the attentional incentive, which determines the degree to which
utility is contingent on error. Intuitively, agents should be more moti-
vated to pay attention when this contingency is stronger.

The expected utility is given by:

(1) = E[u(e)|A] ~ u(0) — %ﬂo (16)

Thus, the agent achieves higher utility when: (i) the attentional in-
centive is smaller (i.e., the agent doesn’t need to pay attention to earn
utility); (ii) the signal precision is larger; (iii) the prior precision is
larger; and (iv) the sample size is larger.

Next, we need to specify the cost of attention. Recall from Chapter
4 how we used the KL divergence between the (approximate) pos-
terior and the prior as a cost function, which penalizes large belief
updates. We noted that when inference is exact, the expected cost
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We will refer to N as the sample size,
inspired by earlier psychophysical
models (Swets et al., 1959; Bonnel and
Miller, 1994).
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corresponds to the mutual information between the hidden state and
the signal. For the Gaussian generative model, the expected cost can
be expressed in closed form:

1 NA
c(A)=zlog 1+ —|. 1
(1) = yog (145 (17)
We are now ready to state the optimization problem: In the economics literature, this kind
of optimization problem is known
A = argmax 12()\) _ KC()\) (18) as rational inattention (Sims, 2003). It
A ! was originally developed to explain
why agents under-react to market
where x > 0 is an attentional cost parameter that captures the agent’s movements, based on the idea that

. . . . . . . inf tion i itivel tly.
limited capacity. The solution to this problem is an attentional policy THOTMARON 15 COpMEVEly costy

that outputs the optimal signal precision:
A" =max(0, (28/x — Ag)/N). (19)

The optimal signal precision grows with the attentional incentive and
shrinks with the attentional cost. In addition, it is smaller for higher
prior precision, due to the fact that the agent doesn’t need to pay
attention to the signal as much when they are more confident prior to
observing the signal. Finally, all of these factors are attenuated with a
larger sample size; the same amount of information can be obtained
with less attention by observing for longer.

Plugging the optimal signal precision back into the expected utility
yields:

(%) ~ u(0) — g (20)
Unsurprisingly, expected utility is lower when the expected cost is
higher. We can also plug the optimal signal precision into the expres-
sion for the sensitivity:

A
w'=1- ZL,[;C' (21)

The agent will be more responsive to signals when: (i) the prior pre-
cision is lower; (ii) the attentional cost is lower; and (iii) the atten-
tional incentive is higher.

2.2 Detection tasks

In a standard detection task, a subject is presented with a signal x
and needs to judge whether a stimulus was present or absent. We
will assume that the “stimulus present” () distribution corresponds
to p(x|h1) = N'(x;s,0?), and the “stimulus absent” (hg) distribution
corresponds to p(x|hy) = N(x;0,02). In other words, stimulus ab-
sence generates a noisy signal centered at o with a precision matched
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to stimulus presence. One can reasonably question these assump-
tions, but we’ll stick with them for now since they facilitate analytical
calculations.

To solve the detection task optimally, an agent should choose /;
p(x|h)

e exceeds a decision threshold B. The

when the log-odds log

log-odds is given by:

p(xlh) _ sx &

08 p(x|hg) o2 202 (22)

Setting this equal to B and solving for x yields a threshold xp on the
signal:

Xp= 5+ —-. (23)

To isolate the role of signal precision in this computation, it is useful
to define a discriminability index, d = s/c. This quantity can de-
rived from the hit rate H (proportion of stimulus-present trials that
were correctly identified) and the false alarm rate FA (proportion of
stimulus-absent trials that were misidentified):

d =® 1(H) - o (FA), (24)

where ®~1(-) is the inverse Gaussian cumulative distribution func-
tion. This equation allows experimenters to empirically estimate the
discriminability index and compare it across conditions. Addition-
ally, experimenters can estimate the threshold using the following
relation:

!/

_ -1
B_E_CD (H). (25)

The threshold captures any bias a subject might have that is indepen-
dent of the signal.

These measures of discriminability and decision threshold are im-
portant to separate because there is a long history of debate about
which processes are affected by attention in detection tasks. A typical
manipulation of attention in such tasks is to cue a particular loca-
tion prior to a signal appearing there. One possibility is that the cue
biases responses towards detection (by lowering the decision thresh-
old) without improving discriminability; this would have the effect
of increasing both the hit and false alarm rates. Another possibility is
that the cue improves discriminability (by increasing signal precision)
without changing bias; this would have the effect of increasing the hit
rate while reducing the false alarm rate. It’s also possible that both or
neither changes occur.

Despite decades of experimental work, these questions were not
decisively answered due to a host of methodological subtleties (see
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The classical body of theory on detec-
tion tasks is known as signal detection
theory (Green and Swets, 1966). This
section derives parts of this theory from
first principles.

In the usage here, discriminability refers
to a behaviorally quantifiable measure,
whereas sensitivity and precision refer to
cognitive variables that may contribute
to changes in discriminability. Note
that some treatments of signal detection
theory use “sensitivity” to refer to what
we are calling here discriminability.

In detection tasks, the decision thresh-
old is also known as the criterion or
bias.



Carrasco, 2006). Some studies have reported changes in discrim-
inability (e.g., Downing, 1988; Carrasco et al., 2000); some have re-
ported changes in the decision threshold (e.g., Miiller and Findlay,
1987; Palmer et al., 1993); and some have reported changes in both
(e.g., Hawkins et al., 1990). One experimental factor that appears to
be critical is whether stimuli are backward-masked—a seemingly
innocuous procedural detail, whereby a mask (e.g., a checkerboard
pattern) is briefly presented in the stimulus location immediately
after stimulus offset. Backward masks are thought to interrupt feed-
forward visual processing, allowing experimenters to precisely con-
trol the duration of early sensory representations. Reviewing the
detection literature, Smith and Ratcliff (2009) concluded that most
studies reporting a change in discriminability used backward masks.
A direct comparison of the same detection task with and without
backward masking was undertaken by Smith et al. (2004), providing
a clear demonstration that changes in discriminability only appeared
with backward masks (Figure 7).
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22 2
2
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Smith and Ratcliff suggested that the limited flow of information
into visual memory due to backward masking plays a pivotal role in
attentional effects. They developed a rather complex formal model
of how this might work (based on evidence accumulation concepts
reviewed in the next chapter). Here we will use the optimal signal
precision model to arrive at a similar conclusion.

One way to model backward masking is by reducing the sample
size parameter N, which constrains the amount of sensory informa-
tion available to further processing. As noted earlier, this has the
effect of attenuating all the other factors governing optimal signal
precision. Consequently, changes in attentional incentive (e.g., by
offering a larger reward for correct responses) or attentional cost
(e.g., by directing limited attentional resources to a particular spatial
location) have weaker effects on performance, consistent with the
empirical literature and the work of Smith et al. (2004).
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Figure 7: Changes in discriminability
depend on backward masking. (Left)
Experimental paradigm. A stimulus
(vertically or horizontally oriented Ga-
bor patch) is probabilistically presented
at a cued or uncued location, followed
by a backward mask. Subjects were
instructed to judge stimulus orientation
(a proxy for detection), though other
tasks yield similar results. (Right) The
discriminability as a function of stimu-
lus contrast for correctly cued stimuli
(triangles) and incorrectly cued stimuli
(squares). Adapted from Smith et al.
(2004).
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2.3 Neural correlates of discriminability and decision threshold mod-
ulation

As pointed out by Luo and Maunsell (2015), many neurophysiologi-
cal studies of attention conflate effects of attention on discriminability
and decision threshold. Consequently, it is challenging to interpret
the neural activity in terms of the underlying computational param-
eters. To remedy this, Luo and Maunsell developed a new variant
of the detection task for monkeys which disentangled these com-
ponents. In some sessions, they lowered the decision threshold at
particular locations by increasing rewards for hits relative to correct
rejections (responding “absent” when the stimulus is absent). This
had the effect of increasing both the hit rate and the false alarm rate
at those locations. In other sessions, they lowered discriminability
at particular locations by increasing the reward for both hits and
correct rejections, which had the effect of increasing the hit rate and
decreasing the false alarm rate.

We've already seen how V4 is a particularly common site of at-
tentional modulation in visual tasks. Accordingly, Luo and Maunsell
recorded from neurons in this area during the two sessions types.
Their key finding was that firing rates were modulated by changes in
discriminability but not by changes in the decision threshold. They
also found that neural variability in V4 was decreased when dis-
criminability increased. This is consistent with an increase in signal
precision.

Attentional effects on the decision threshold may occur in the su-
perior colliculus. Recall from Chapter 4 our discussion of evidence
that this region encodes a probabilistic map of visual target loca-
tions, which is used to guide eye movements. Shifts in activity of this
region may bias eye movements towards particular locations. Con-
sistent with this idea, studies that stimulate or inactivate the superior
colliculus induce changes in the decision threshold without affecting
discriminability (Sridharan et al., 2017). We will have more to say
about the contribution of superior colliculus to perceptual decisions
in the next chapter.

2.4 Dopamine and signal precision

Several lines of evidence suggest that signal precision is controlled
by the neuromodulator dopamine (Friston et al., 2012; Mikhael

et al., 2021). Pharmacologically elevating dopamine generally in-
creases sensitivity to stimuli. For example, elevating dopamine using
methylphenidate increases sensitivity in a motion discrimination task
(Beste et al., 2018). Patients with Parkinson’s disease (which dramati-
cally depletes dopamine) exhibit attenuated sensitivity to mechanical
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stimulation that was ameliorated in proportion to their dopamine
medication dose (Wolpe et al., 2018). These findings are consistent
with the finding that injection of dopamine into prefrontal areas in-
creases the magnitude and selectivity of responses in visual cortex
(Noudoost and Moore, 2011). Dopamine’s effects on signal precision
may thus be mediated by prefrontal areas that provide the directive
signals for attentional enhancement in sensory areas.

This hypothesized role primarily relates to slow timescale (tonic)
fluctuations in dopamine levels, distinct from the role of faster
timescale (phasic) fluctuations which we will discuss further in Chap-
ter 10. A prominent theory posits that tonic dopamine encodes the
average reward rate in the environment (Niv et al., 2007). This theory
was motivated by the observation that pharmacological manipula-
tions of dopamine affect response vigor: higher reward rates (and
hence higher dopamine) should enhance willingness to work for re-
ward. We can connect the signal precision account to this idea by
observing that optimal signal precision will in general be higher
when the average reward is higher.

3 Conclusion

Attention is not a unitary construct—it consists of several compo-
nents that affect behavior and neural activity in different ways.
Nonetheless, we can explain many aspects of attention modulation
within a unified framework. The key concepts are shifts in prior
probabilities (e.g., due to spatial cues), shifts in discriminability (e.g.,
due to optimization of signal precision), and shifts in decision thresh-
old (e.g., by rewarding hits more than correct rejections). These at-
tentional shifts are linked to distinct neural correlates. However, it
remains unclear how these correlates interact to produce the relevant
psychophysical changes.

Study questions

1. Why does attention sometimes multiplicatively enhance tuning
curves and sometimes sharpen them?

2. Which empirical phenomena are better explained in terms of prior
probability vs. noise reduction?

3. Compare and contrast the computational roles of acetylcholine and
dopamine in attention.
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