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Chapter 5: Approximate inference

Exact inference is typically intractable. Can the brain get close to the
right answer? This chapter discusses two classes of approximation.
Sampling approximations harness randomness, achieving asymptotic
correctness in the limit of many samples. Sampling offers one func-
tional explanation for the ubiquity of noise in the brain. Variational
approximations replace complex posteriors with simpler parametric
forms, converting inference into a more tractable optimization prob-
lem (minimizing free energy). Under some assumptions, a variational
approximation can be implemented using a hierarchical architecture
in which feedback signals convey predictions and feedforward signals
convey prediction errors.

To get a sense of what makes inference hard, consider the follow-
ing everyday problem. You get up at night and look for the light
switch in the dark. Your room is filled with dimly illuminated con-
tours, and your brain’s job is to identify contours that look like light
switches. We can think of a contour as a collection of adjacent edges Space here should be understood as

retinotopic space, a 2D map where each
position corresponds to a location on
the retina.

that vary smoothly over space in a one-dimensional pattern. Thus,
the inference problem is potentially high-dimensional: the brain
has to infer the edge orientation at each point in space (the orien-
tation field). In principle, this problem could be parallelized if we
assume that each orientation is independent, but this violates the
key assumption that the edges covary with their neighbors. There is
no escaping the exponentially large number of possible orientation
fields.

Recall our problem: we want to compute the posterior p(s|x) over
hidden state s given data x. As stipulated by Bayes’ rule,

p(s|x) = p(x|s)p(s)
∑s′ p(x|s′)p(s′)

(1)

In the contour detection example, x is an image and s is the orienta-
tion at each location in the image (we will shortly formalize this in a
more biologically plausible way). Typically, the easy part is evaluat- Keep in mind that each sample sk is a

multidimensional variable.ing the numerator of Bayes’ rule for any particular value of s, since
we are assuming access to a computationally tractable joint distri-
bution, p(x, s) = p(x|s)p(s). The hard part is the denominator (the
marginal likelihood), which involves summing (or integrating, in the
case of continuous variables) over all possible states. When states
are multi-dimensional, we run into the curse of dimensionality (Bell-
man, 1957): there is an exponentially large number of states, making
marginalization through exhaustive enumeration intractable. For ex-
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ample, if there are M possible orientations and N locations, then the
number of possible orientation fields is MN .

Many other problems have a similar nature due to the coupling of
many variables—solving crossword puzzles and segmenting events,
to name a few. Nonetheless, there is a glimmer of hope due to the
underlying structure of these problems. It is precisely the coupling
that constrains inference. Algorithms that make efficient use of this
structure can render inference tractable—albeit approximate.

In this chapter, we delve into two classes of approximation: sam-
pling (also known as Monte Carlo) and variational algorithms. It’s no
coincidence that these are widely used in machine learning, statistics,
and physics. They are the most effective engineering tools we have
for tackling difficult inference problems. Intriguingly, nature may
have hit upon similar solutions.

1 Sampling approximations

The idea behind sampling is to replace exhaustive enumeration of
the hidden states with a set of K samples, {s1, . . . , sK}, drawn from
p(s|x): For continuous variables, replace

I[sk = s] with the Dirac delta function,
δ(sk − s).

p(s|x) ≈ 1
K

K

∑
k=1

I[sk = s], (2)

where I[·] = 1 if its argument is true, and 0 otherwise. Eq. 2 says that This is essentially the same idea as a
histogram in data analysis.the probability of state s is approximately equal to the proportion

of samples with that value. As K gets larger, the approximation gets
increasingly accurate.

The rub is that generating samples from the posterior is non-
trivial. One general strategy is to generate samples from a dynamical
system that can be proven to converge to the posterior. When the
dynamical system is characterized by a transition probability T(s′|s)
that doesn’t depend on any previous samples, it is called a Markov For a general introduction to MCMC

algorithms, see MacKay (2003).chain, and the sampling algorithm is a form of Markov chain Monte
Carlo (MCMC).

1.1 Markov chain Monte Carlo

How do we guarantee that a particular Markov chain converges to
the posterior? A sufficient (but not necessary) condition is known as
detailed balance:

T(s′|s)
T(s|s′) =

p(s′|x)
p(s|x) . (3)

We can construct a versatile family of MCMC algorithms using the
following construction. First, we factor the transition probability into
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a proposal distribution G(s′|s) and an acceptance distribution A(s′|s):

T(s′|s) = G(s′|s, x)A(s′|s). (4)

Plugging this into Eq. 3, we get:

A(s′|s)
A(s|s′) =

p(s′|x)G(s|s′, x)
p(s|x)G(s′|s, x)

. (5)

Finally, we need to specify an acceptance distribution that satisfies
this equation. The classical Metropolis-Hastings algorithm uses

A(s′|s) = min
[

1,
p(s′|x)G(s|s′, x)
p(s|x)G(s′|s, x)

]
. (6)

We’re still left with the problem that the acceptance distribution de-
pends on the unknown posterior. However, notice that the posterior
only enters as a ratio between p(s′|x) and p(s|x). Using Bayes’ rule,
we can write this ratio as:

p(s′|x)
p(s|x) =

p(x|s′)p(s′)
p(x|s)p(s)

. (7)

This is much easier to evaluate, because (as stated above) typically we
can tractably compute the likelihood p(x|s) and prior p(s) for a given
sample.

1.2 Gibbs sampling

An important special case of the Metropolis-Hastings algorithm is
Gibbs sampling, where the proposal distribution is the distribution
over part of the state space conditional on the rest of the state space.
It’s easiest to think about this in the case where partition of the state
space corresponds to single “sites” (state features). In the contour
detection example, this means sampling a new orientation at location
n conditional on the inferred orientations at all the other locations
(denoted s/n). Let s′n denote a copy of s with only site n modified.
The proposal distribution can then be formalized as follows:

G(s′|s, x) = ∑
n

p(n)p(s′n|s/n, x), (8)

where p(n) is the probability of a modification at site n. At each
iteration, a single site is selected from p(n) and then the modification
is sampled from p(s′n|s/n, x). The Gibbs proposal is always accepted
(to see this, plug the proposal distribution into Eq. 6).

We now bring these ideas back to neural computation, using the
contour detection problem as an example. We can formalize the con-
tour detection problem in the following way. Let sn ∈ [0, 2π] denote
the orientation at location n. The state vector s is the orientation field.



chapter 5 4

In natural images, edges at nearby locations tend to have similar ori-
entations (Sigman et al., 2001). We therefore impose a smoothness Sensitivity to smooth contours in

human perception is exemplified by
the Gestalt Law of good continuation
(Wertheimer, 1938), which states that
the visual system tends to prefer
smooth over non-smooth contours.
This preference has been characterized
quantitatively by psychophysical
experiments (Field et al., 1993).

prior on the orientation field:

p(s) ∝ exp

[
∑
n

∑
m

Hnm cos(sn − sm)

]
, (9)

where Hnm > 0 if locations n and m are neighbors (0 otherwise).
We combine this prior with sensory data x = (x1, . . . , xD), the spike
counts of Poisson neurons with tuning curves { fd(s)}. We will as-
sume spatially localized cosine tuning functions (introduced in Chap-
ter 3):

fd(sn) = exp
[

1
ν

cos(sn − s∗dn)

]
, (10)

where s∗dn is the preferred orientation for neuron d at location n (note
that neuron d does not respond to inputs at other locations), and ν

is the tuning width. Plugging this into the Poisson likelihood (see
Chapter 4), we get:

p(x|s) ∝ exp

[
1
ν ∑

d
xd ∑

n
cos(sn − s∗dn)

]
, (11)

where (as in the last chapter) we have made use of the assumption
that ∑d fd(s) is a constant (satisfied if the tuning functions are shifted
copies of one another and tile the state space).

Putting the pieces together, the posterior is given by:

p(s|x) ∝ p(x|s)p(s)

∝ exp

[
1
ν ∑

d
xd ∑

n
cos(sn − s∗dn) + ∑

n
∑
m

Hnm cos(sn − sm)

]
.

(12)

We can apply Gibbs sampling by iterating over locations and choos-
ing new orientations conditional on the orientations at the other
locations:

p(sn|s/n, x) ∝ exp

[
1
ν ∑

d
xd cos(sn − s∗dn) + ∑

m
Hnm cos(sn − sm)

]
,

(13)

where d sums over all input neurons tuned to location n. If (as in the
last chapter) we discretize the orientations into {s̃j}, we can calculate
the normalizing constant of this distribution and tractably sample
from it. We can see that this is just another example of the softmax
equation from the last chapter.
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We can now see more clearly how to map this onto a neural cir-
cuit. Let zd(t) ∈ {0, 1} denote the spike train of input neuron d.
Output neurons are indexed both by location (n) and orientation (j).
Each output neuron integrates input spikes linearly, along with “lat-
eral” contributions from other output neurons whose spike trains are
presented by {ymj(t)}:

Inj(t) =
1
ν ∑

d
zd(t) cos(sn − s∗dn) + ∑

m
Hnm cos(sn − sm)ymj(t), (14)

where again d sums over input neurons tuned to location n. As in
the last chapter, we model the membrane potential µnj(t) as a perfect
integrator, Cµ̇nj(t) = Inj(t), that is exponentiated to produce the
intensity function (expected firing rate of a Poisson process). Finally,
we assume that the neuron receives feedback inhibition reflecting
the total activity of neurons tuned to the same location but different
orientations. This yields a softmax intensity function:

ρnj(t) =
exp[µnj(t)]

∑j′ exp[µnj′(t)]
. (15)

From the MCMC perspective, we can view this circuit as implement- See Buesing et al. (2011) and Pecevski
et al. (2011) for a description of spiking
neuron circuits that implement a form
of Gibbs sampling for a more general
class of probabilistic models.

ing a stochastic dynamical system that converges to the posterior,
so that the spikes of the output neurons can be viewed as posterior
samples.

1.3 Langevin sampling

While Gibbs sampling is a powerful algorithm, it has the drawback
that convergence to the posterior is often slow due to the fact that
moves through the state space are small. What we’d ideally like is to
quickly move towards high probability states. Langevin sampling,
another MCMC algorithm, achieves this using gradients. The core of
Langevin sampling is the following dynamical system:

ds = ∇s log p(s(t)|x) dt +
√

2σ dW(t), (16)

where s(t) denotes the state sampled at time t, and W(t) is a Wiener
process, which produces independent, Gaussian-distributed incre-
ments; the standard deviation parameter σ scales the increments. In
other words, samples of the state are generated in continuous time
by following the posterior gradient corrupted by white noise. It can
be shown that these dynamics converge to a stationary distribution,
p(s|x). Thus, we can generate posterior samples by following a noisy
gradient.

Continuing our example from the previous section, x represents
the spike counts from an input population of Poisson neurons. Under
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this assumption, the gradient is given by:

∇s log p(s|x) = ∑
d

xd∇s fd(s)
fd(s)

+
∇s p(s)

p(s)
. (17)

We can map this equation onto a neural circuit by using the same
probabilistic assumptions as in the previous section, and positing
an output neuron for location n with perfect integration and noisy
membrane potential dynamics (see Chapter 2):

Cµ̇n = In(t) +
√

2σ dW(t). (18)

Continuing the contour detection example, the input current is given
by: The constant disappears under the

gradient dynamics.

In(t) = ∑
d

zd(t)
fd(s)

∂

∂sn
fd(s) +

1
p(s)

∂

∂sn
p(s)

= −1
ν ∑

d
zd(t) sin(sn − s∗dn)− ∑

m
Hnmym(t) sin(sn − sm) + const.

(19)

Notice that we are now interpreting the membrane potential values Also notice that we are no longer
discretizing the orientation space,
instead treating it as a continuous
variable.

(rather than the spikes) as the posterior samples (see Orbán et al.,
2016).

How, then, should we interpret spikes? The probability of gen-
erating a spike within some infinitesimally small window of time
(the instantaneous spike probability) is the probability of the mem-
brane potential crossing the spiking threshold θ. From a sampling
perspective, it’s the proportion of samples above the threshold, an
approximation of the posterior probability that sn > θ. This kind of
representation is useful for detection tasks. If the task is to respond
whenever sn > θ, then a response circuit need only listen to the ac-
tivity of neurons with thresholds near θ. If the decision criterion is
changed, then the response circuit can listen to a different set of neu-
rons. Alternatively, if the task is to report the probability that sn lies
within some interval [a, b], then a response circuit can compute the
difference between neurons with thresholds near b and a.

We can also use the same representation to estimate the posterior
mean. For non-negative variables (sn ≥ 0), the tail integral formula
states that:

E[sn|x] =
∫ ∞

0
p(sn > θ|x)dθ. (20)

If we have output neurons with a fine enough range of thresholds,
then we can approximate the expectation by simply counting the
number of output neurons generating a spike within some short
interval of time.
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1.4 Neural evidence for sampling

Many models view neural noise (whatever its locus and origin) as
a “fact of life” which must be mitigated for the purposes of com-
putation. Sampling models offer a fundamentally different point of
view—noise is a feature, not a bug (Maass, 2014). Hoyer and Hyväri-
nen (2002) were the first to suggest that neural variability might
reflect posterior sampling, but their arguments were not strongly
supported by data available at the time. Since then, new data have
offered more direct tests of their hypothesis.

When testing such a general hypothesis, it’s important to start
with predictions that generalize across many different versions of
the hypothesis (e.g., Gibbs, Langevin, etc.). Here are three general
predictions (see Orbán et al., 2016, for more details).

First, “spontaneous” neural activity prior to stimulus onset should
reflect samples from the prior, whereas stimulus-evoked activity
should reflect samples from the posterior. Generally, the posterior
will be narrower (lower variance) than the prior. Under the sampling
hypothesis, neural variability should increase monotonically with
posterior variance. Intuitively, this is because when variance is high
the samples must explore a broader range of states. This implies
that stimulus onset should “quench” neural variability, as observed
experimentally (Churchland et al., 2010).

A second general prediction is that experimentally increasing
uncertainty (e.g., by reducing stimulus contrast) should produce a
corresponding increase in neural variability. Consistent with this
prediction, neural variability in primary visual cortex (V1) is higher
for low contrast stimuli (Orbán et al., 2016).

A third general prediction is that stimulus-evoked activity, when
averaged across trials, should resemble spontaneous activity. This
follows from the fact that the expected posterior is just the prior:

E[p(s|x)] = ∑
x

p(x)p(s|x) = p(s). (21)

Critically, this is only true if the stimulus distribution p(x) reflects
the “natural statistics” of stimuli in the real world, assuming that the
brain’s prior, p(s), is adapted to these statistics. In other words, p(x)
and p(s) must be related through p(x) = ∑s p(s)p(x|s). It’s possible
to break this relationship by presenting artificial stimuli like noise
patterns or gratings. Orbán et al. (2016) confirmed this prediction See also Berkes et al. (2011).

for V1 by showing that the distribution of spontaneous activity was
much more similar to the distribution of average stimulus-evoked
activity for natural images compared to artificial images.
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1.5 Behavioral evidence for sampling

The sampling hypothesis also makes predictions about behavior. As
with the neural data, we focus on predictions that generalize across
different versions of the hypothesis.

As pointed out by Hoyer and Hyvärinen (2002), perceptual multi-
stability seems like a hallmark of sampling. Perceptual multistability
arises when the brain switches repeatedly (and usually stochasti-
cally) between different interpretations of the same visual input. For
example, ambiguous images like the Necker cube and the face-vase
illusion (Figure 1) can be interpreted in different ways by the same
observer over a short interval of time. Another example is binocular
rivalry: when different images are presented to each eye, typically
only one image is perceived at a time, with stochastic switches be-
tween the dominant image.

Figure 1: Ambiguous images. (Left)
The Necker cube. (Right) The face-vase
illusion. For both images, the interpre-
tation will switch spontaneously if you
look at it for long enough.

Gershman et al. (2012) used the sampling hypothesis to account
for a number of subtle phenomena in binocular rivalry. One phe-
nomenon is that switches are not always all-or-none; in particular,
large images in binocular rivalry experiments produce “piecemeal”
switches, where one part of the image switches before other parts
(O’Shea et al., 1997). This makes sense if sampling is operating at the
level of image parts (whatever those might be). For larger images,
the dependencies between different parts become weaker, allowing
piecemeal switches. The piecemeal nature of multistability is also
revealed by the observation that for certain stimuli switching mani-
fests as a traveling wave (Wilson et al., 2001). For example, if the two
images in a binocular rivalry experiment are radial and concentric
gratings, a transient increase in image contrast at one location on
the non-dominant grating will produce a wave-like switching pat-
tern, similar to lighting a fuse and watching it progressively ignite
adjacent regions (Figure 2). The wave pattern can be quantified by Using brain imaging, Lee et al. (2005)

showed that wave propagation during
binocular rivalry is measurable in
primary visual cortex.

asking observers to report when they perceived a switch at particular
locations on the grating. The propagation is slower for concentric
gratings, consistent with a smoothness prior that favors collinear
edge orientations (as discussed above). The propagation can also be
slowed down by introducing gaps in the grating. All of these results
agree with a model in which the dynamics of sampling is governed
by the stimulus structure.

Another subtle aspect of binocular rivalry is that sometimes the
images fuse rather than rival. Several factors determine whether
fusion or rivalry occurs. Fusion is more likely when both images
are low contrast (Burke et al., 1999) and when they are similar (e.g.,
two gratings with slightly different orientations; Knapen et al., 2007).
Under the sampling hypothesis, fusion arises when the two posterior
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Figure 3: Traveling waves. (A) Annular stimuli used by Lee et al. (2005)
(left and center panels) and the subject percept reported by observers (right
panel), in which the low-contrast stimulus was seen to spread around the annu-
lus, starting at the top. Figure reprinted with permission from Lee et al. (2005).
(B) Propagation time as a function of distance around the annulus, replotted
from Wilson et al. (2001). Filled circles represent radial gratings, and open
circles represent concentric gratings. A transient increase in contrast of the sup-
pressed stimulus induces a perceptual switch at the location of contrast change.
The propagation time for a switch at a probe location increases with distance
(around the annulus) from the switch origin. (C) Simulated propagation time
(measured by the time to switch percept following a switch at varying distances
around the annulus). (D) Average simulated propagation time between nodes
separated by a gap compared to nodes without a gap.

subjects to evaluate the “global percept.” Wilson et al. (2001) used annular
stimuli (see Figure 3A) and probed a particular patch along the annulus.
They showed that the time at which the suppressed stimulus in the test patch
becomes dominant is a function of the distance (around the circumference
of the annulus) between the test patch and the patch where a dominance
switch was induced by transiently increasing the contrast of the suppressed
stimulus (see Figure 3B). This dependence of switch time on distance sug-
gested to Wilson et al. that stimulus dominance was propagating around the
annulus. Wilson et al. made two additional observations about the nature

Figure 2: Traveling waves in binocular
rivalry. (Top) Binocular stimulus and
percept (from Lee et al., 2005). The low
contrast stimulus appeared to spread
around the annulus after being ignited
by a contrast change at the red location.
The blue location shows an example
probe location. (Bottom) Estimated
propagation time (from Wilson et al.,
2001) and simulations (from Gershman
et al., 2012).

modes are not well-separated, either because their variances are large
(low contrast) or because their modes are near one another (high
similarity). In this case, sampling doesn’t bounce as much between
the two modes, but instead spends more time in the high density
area between them.

Outside of visual perception, the sampling hypothesis has been
used to explain a wide range of cognitive phenomena. For example, See Sanborn and Chater (2016) for a

review of the sampling hypothesis
applied to human cognition.

when people are asked to estimate an unknown quantity (e.g., “In
what year was Beethoven born?”) after being primed with an irrele-
vant quantity (e.g., the last 4 digits of their social security number),
they tend to anchor their estimates on the irrelevant quantity, ad-
justing insufficiently away from it (Tversky and Kahneman, 1974). The number of samples may be adap-

tive. As shown by Lieder et al. (2018b),
people do more adjustment when the
costs of time are low and the costs of
errors are large.

This “anchoring and adjustment” heuristic arises naturally from an
MCMC algorithm that is initialized at the irrelevant quantity and
then generates only a small number of samples (Dasgupta et al., 2017;
Lieder et al., 2018a).

Another cognitive phenomenon explained by sampling is the
unpacking effect. When people are asked to judge the probability of
dying from a natural cause (the packed condition), their average an-
swer was 0.58, but when asked to separately judge the probability
of dying from heart disease, cancer, or some other natural cause (the
unpacked condition), the summed probabilities equaled 0.73 (Tversky
and Koehler, 1994). Mathematically, these should be the same, since
the marginal probability of dying from a natural cause is the sum of
the conditional probabilities of dying from particular natural causes.
According to the sampling hypothesis, unpacking to typical exam-
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ples like heart disease and cancer ensure that these contribute to the
sample set and thus to probability judgments. In contrast, people are
left to generate all the samples on their own in the packed condition,
and therefore can potentially miss some if they are generating a small
number of samples. In contrast, unpacking to atypical examples (e.g.,
pneumonia, diabetes) leads to marginal probabilities that are lower
than in the packed condition (Sloman et al., 2004). According to the
sampling hypothesis, this happens because the sampler gets stranded
in a lower-probability region of the state space and has trouble recov-
ering from this with limited samples. These effects are amplified by
time pressure and cognitive load (Dasgupta et al., 2017), consistent
with a reduction in the number of samples.

2 Variational approximations

MCMC algorithms are asymptotically correct: if you run them long
enough, you’ll approximate the posterior to an arbitrary degree of
precision. However, you might need to run them a long time if the
problem is complex. An alternative approach is to use an approxi-
mation algorithm that produces an answer more quickly, but doesn’t
enjoy asymptotic correctness. Variational approximations offer a
general framework for doing this.

2.1 Free energy minimization

The basic idea is to turn inference into a constrained optimization
problem. The goal is to find an approximate posterior q ∈ Q that
gets closest to the posterior, where Q is a constrained family of prob-
ability distributions. This family should be chosen in such a way that
both finding and evaluating q is relatively fast. More precisely, the
optimization problem is defined as:

q∗ = argmin
q∈Q

D[q(s|x)||p(s|x)], (22)

where D[q(s|x)||p(s|x)] is the Kullback-Leibler (KL) divergence be-
tween the approximate and exact posteriors: Recall from Chapter 4 that we used

the same KL divergence to define an
objective function for resource-rational
belief updating.D[q(s|x)||p(s|x)] = ∑

s
q(s|x) log

q(s|x)
p(s|x) . (23)

The KL divergence is always non-negative, and equals 0 when
q(s|x) = p(s|x).

The basic problem with Eq. 22 is that the KL divergence can’t be
optimized directly, since it is a functional of the posterior—precisely
the thing we are trying to approximate. There is an alternative way
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of formulating this optimization problem, which turns out to be
equivalent:

q∗ = argmin
q∈Q

F [q(s|x)], (24)

where F [q(s|x)] is the variational free energy: The terminology here derives from
applications in physics.

F [q(s|x)] = ∑
s

q(s|x) log
q(s|x)
p(x, s)

. (25)

This is related to the original optimization problem via the following
equation:

log p(x) = D[q(s|x)||p(s|x)]−F [q(s|x)], (26)

where log p(x) is the evidence (the log marginal likelihood). The Because the KL divergence is non-
negative, −F [q(s|x)] is a lower bound
on the evidence, which is why it is
sometimes known as the evidence lower
bound.

equality implies that decreasing free energy by some amount forces
the KL divergence to also decrease by the same amount. Thus, min-
imizing free energy is thus equivalent to minimizing KL divergence,
in the sense that the optimal approximate posterior is the same.

The idea that the brain minimizes free energy—the free energy prin-
ciple—has spawned a large literature investigating many different
dimensions of this idea. It has even been proposed as a ‘unified brain See Parr et al. (2022) for a comprehen-

sive survey.theory’ (Friston, 2010) because it subsumes and generalizes several
other general principles (see Chapter 3). Our purpose here is nar-
rower: to understand how free energy minimization can be leveraged
for tractable approximate inference.

2.2 The Laplace and mean-field approximations

We need to restrict the approximation family Q in some way that
makes inference more tractable. One technique (applicable to models
with continuous states) is to restrict Q to the set of Gaussian posteri-
ors: q(s|x) = N (s; ŝ, Σ), where the mean and covariance are known as
variational parameters. It’s important to keep in mind that these are
not latent variables that the brain is inferring, but rather part of the
brain’s computational machinery for approximate inference. In par-
ticular, the optimization problem is to find the variational parameters
that minimize free energy.

Restricting to a Gaussian is not on its own sufficient, because one
still can’t compute the free energy—the integral over s is intractable
in the general case, due to nonlinearities in the joint distribution
p(x, s). We can, however, obtain a tractable integral if we linearize
log p(x, s) with a second-order Taylor series expansion around ŝ:

log p(x, s) ≈ log p(x, ŝ) + (s − ŝ)⊤∇s log p(x, ŝ)− 1
2
(s − ŝ)⊤Λ(s − ŝ),

(27)
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where Λ = −∇s∇s log p(x, ŝ) is the Hessian (matrix of 2nd deriva-
tives) of the negative log likelihood evaluated at ŝ. This is known
as the Laplace approximation, which can then be used to analytically
approximate the free energy: This result can be derived using a

standard formula for the Gaussian
integral of a quadratic form, combined
with the entropy of a multivariate
Gaussian.

F [q(s|x)] ≈ − log p(x, ŝ)− 1
2

Tr[ΛΣ] +
1
2

log |Σ|+ const. (28)

where Tr[·] is the trace operator, and | · | is the matrix determinant.
Setting the gradient of the free energy to 0 and solving for the varia-
tional parameters gives:

ŝ = argmax
s

p(x, s) = argmax
s

p(s|x) (29)

Σ = Λ−1. (30)

In other words, the optimal mean is the posterior mode, and the
optimal covariance is the inverse Hessian.

Computing the inverse Hessian is non-trivial, and it’s not clear
how this could be implemented neurally. A typical move is to adopt
a mean-field approximation, where the approximate posterior factorizes:

q(s|x) = ∏
n

qn(sn|x). (31)

When combined with the Laplace approximation, the factorization
leads to a diagonal covariance: Σ = diag(1/λ1, . . . , 1/λN), where
λn = − ∂2

∂s2 log p(x, ŝn). This is the mean-field Laplace approximation.
The posterior mode can be found using gradient ascent. This is

essentially a deterministic version of Langevin sampling (no mem-
brane potential noise). As in our analysis of Langevin sampling, we
interpret the input current as the gradient of the log posterior, the
membrane potential as an integrator of this gradient, and the spiking
activity as samples from the “tail” distribution p(sn > θ|x). Under
the Laplace approximation, this distribution is given by:

p(sn > θ|x) ≈ q(sn > θ|x) = Φ
(√

λn(ŝn − θ)
)

, (32)

where Φ(·) is the cumulative distribution function of the standard
Gaussian distribution, and λn is the posterior precision. The tail
probability is a sigmoidal function of ŝ, with an inflection point at θ

(the point at which the probability crosses 0.5). The posterior preci-
sion controls the slope of the sigmoid: greater precision results in a
steeper slope.

How can a neuron compute the precision? One way is to use
the interpretation of the input current for neuron n as In(t) =

∂
∂sn

log p(s(t), x). This implies that the precision is the negative partial
derivative of the input current with respect to sn. Using our contour
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detection example, we can differentiate Eq. 19 around the posterior
mode to obtain:

λn(t) =
1
ν ∑

d
zd(t) cos(ŝn − s∗dn) + ∑

m
Hnmym(t) cos(ŝn − sm), (33)

where we have expressed the precision as a time-dependent function
to make clear that it is being dynamically computed by the postsy-
naptic neuron. Intuitively, precision is largest when the posterior
mode is close to the preferred stimuli of the input neurons (high
likelihood) and when it is smooth (high prior). Precision is a linear
function of the input and lateral spikes; thus, it could be plausibly
computed by linear synaptic integration. Because both the input cur-
rent and the precision are linear functions of the presynaptic spikes,
an intriguing possibility is that these variables are represented sep-
arately in different parts of the dendritic tree. For example, “distal”
dendritic input (far from the cell body) tends to have relatively weak
direct effects on firing rate compared to “proximal” dendritic input
(near the cell body), but the distal inputs can modulate gain (Larkum
et al., 2004)—the role of precision suggested by Eq. 32. Thus, it is
plausible that In(t) represents inputs to proximal dendrites, while
λn(t) represents the inputs to distal dendrites.

2.3 Predictive coding

If we assume a Gaussian noise model and prior, it becomes possible
to parametrize the variational posterior in a different way. Specifi-
cally, let us assume the following generative model: The Gaussian noise model is closely

related to the Poisson noise model,
since the Poisson distribution becomes
increasingly Gaussian as the firing rate
increases.

s ∼ N (s̄, Ω) (34)

xd ∼ N ( fd(s), ω). (35)

The posterior mode can be updated by following the gradient of the
joint log likelihood:

∆ŝ ∝ ∇s log p(x, s) = ω ∑
d
[xd − fd(s)]∇s fd(s)− Ω(ŝ − s̄). (36)

This formulation invites us to think about a predictive coding archi- Predictive coding concepts have a
long history in neuroscience. One of
the earliest versions of this idea was
proposed for the retina by Srinivasan
et al. (1982). A more general version
of this hypothesis for the entire visual
system was proposed by Rao and
Ballard (1999), and subsequently
developed as a general principle for
cortical computation by Friston (2005)
within the framework of free energy
minimization.

tecture in which “prediction” neurons y(t) reporting the inferred
state, ŝ, receive input from “error” neurons reporting the difference
between observed and expected signals. There are two kinds of error
neurons. The “bottom-up” (or “feedforward”) error neurons report
the difference between sensory signals z(t) and the expected firing
rate under the inferred state, f (ŝ). The “top-down” (or “feedback”)
error neurons report the difference between the inferred state and the
expected state under the prior distribution, s̄.
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In this section, we assume that all neurons are perfect integrators
of synaptic inputs, and that the firing rate is linear in the membrane
potential. We will work directly with these firing rates (ignoring
spikes). The dynamics for the prediction neuron population activity
y(t) can be written compactly in vector form:

ẏ =
1
ω

h(t)∇ŝ f (ŝ)− g(t)Ω−1, (37)

where h(t) and g(t) are the firing rates of bottom-up and top-down
error coding neurons, respectively, with the following dynamics:

ġ = y(t)− s̄ − g(t)Ω (38)

ḣ = z(t)− fd(ŝ)− ωh(t). (39)

The fixed points of these dynamics are:

y(∞) = ŝ (40)

g(∞) = Ω−1(ŝ − s̄) (41)

h(∞) =
1
ω
(x − f (ŝ)). (42)

Thus, the posterior mode can be found by running the dynamics of
this system and then observing the activity of the prediction neurons
at steady state.

We can iterate this architecture hierarchically (Figure 3), where the
top-down signals receive inputs from higher-level neurons encod-
ing expectations at the next level of the generative model (Rao and
Ballard, 1999). This fits with the general idea that the brain learns Closely related ideas have been studied

in cognitive science (e.g., Kemp et al.,
2007).

generative models at multiple levels of abstraction, where each level
defines a prior distribution on the level below (Lee and Mumford,
2003; Friston, 2008). The hierarchical architecture is thought to be im-
plemented in the laminar (layered) structure of cortex (Bastos et al.,
2012), where neurons in layers 2/3 convey feedforward signals (er-
rors) to higher levels of the hierarchy, while neurons in layers 5/6

convey feedback signals (predictions) from higher to lower levels.
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Figure 3: Hierarchical predictive
coding architecture.
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2.4 Evidence for predictive coding in the brain

A classical view of the brain, and of cortex in particular, posits a feed-
forward hierarchy of feature detectors (Rosenblatt, 1958; Fukushima,
1980; Marr, 1982). Each layer of detectors identifies more complex or
abstract features based on the activity of the feature detectors in the
layer below. For example, some models view retinal ganglion cells
as light spot detectors, V1 neurons as oriented edge detectors, which
feed into V2 contour detectors, which in turn feed into shape detec-
tors in the lateral occipital cortex. While there’s much to recommend
such a view, it also seems to be missing something important. A few
examples will illustrate this point.

Many kinds of neurons characterized as feature detectors have
receptive fields with excitatory centers and inhibitory surrounds.
What this means is that the neurons respond maximally when their
preferred stimulus is presented but are inhibited by similar stimuli.
For example, retinal ganglion cells are excited by spots of light pre-
sented at particular retinotopic locations; this response increases with
the size of the spot, but starts to decrease when the spot gets to a
certain size (Kuffler, 1953). Similarly, many neurons in V1 respond
maximally to lines of a particular orientation, length, and location;
if the line gets long enough, the response decreases—a phenomenon
known as endstopping (Hubel and Wiesel, 1965). The interpretation of
center-surround receptive field structure has been the subject of ex-
tensive theoretical speculation, but generally it has been challenging
to come up with an interpretation that is general enough to encom-
pass all the instances in which such tuning manifests (including
motion and shape processing areas, among others).
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(Fig. 6c) to random texture stimuli used in a study of contextu-
al modulation in alert macaque V1 (ref. 33). The tonic phase of
the model neuron response reveals a large positive difference
(93.5%) developing over time for the orientation-contrast tex-
ture as compared to the homogeneous texture. This modulation
in response resembles the type of contextual modulation observed
in V1 neurons (compare with Fig. 2 of ref. 33).

Discussion
Our simulation results suggest that certain extra-classical RF
effects could be an emergent property of the cortex using an effi-
cient hierarchical and predictive strategy for encoding natural
images. In this model, cortical neurons showing extra-classical
effects are interpreted as error-detecting neurons that signal the
difference between an input and its prediction from a higher visu-
al area. In particular, the layer 2/3 neurons that send axons to the
higher visual area are posited to be likely candidates for this func-
tion. In the model, predictions are made based on progressively
larger spatial contexts as one ascends the visual hierarchy. As a
result, when the stimulus properties in a neuron’s receptive field
match the stimulus properties in the surrounding region, little
response is evoked from the error-detecting neurons because the
‘surround’ can predict the ‘center.’ On the other hand, when the
stimulus occurs in isolation, such a prediction fails, eliciting a
relatively large response. This behavior can be viewed as a refine-
ment of the types of predictive coding observed at the retina17–19

and the LGN20,21 involving spatiotemporal prediction based on
weighted averages of spatially/temporally local pixels and sub-
traction of this prediction from current pixel values.

The model predicts that layer 2/3 neurons will respond most
vigorously to stimuli whose statistics differ in certain drastic ways
from natural image statistics (as in, for example, Fig. 6). This
raises the interesting possibility of discovering novel extra-classical
RF effects by explicitly constructing stimuli that deviate from
natural image statistics. In addition, termination of cortical feed-

back should disinhibit the responses of layer 2/3 neurons that are
suppressed by extra-classical stimuli under normal conditions.
In anesthetized monkeys, inactivation of higher-order visual cor-
tical areas disinhibits responses to surround stimuli in lower-area
neurons37 (see also Hupé, J. M. et al., Soc. Neurosci. Abstr. 23,
1031, 1997 and James, A. C. et al., Soc. Neurosci. Abstr. 21, 904,
1995), consistent with the predictive coding model. In the cat,
removal of feedback from visual cortical areas 17 and 18 to the
LGN strongly reduces the degree of end-inhibition in LGN cells38.
Also, extra-classical RF effects in layer 2/3 neurons in alert mon-
key V1 often manifest themselves only 80–100 milliseconds after
stimulus onset, suggesting that feedback from higher areas may be
involved in mediating these effects33.

The simulation results show that extra-classical RF effects can
occur in the predictive coding model under either Gaussian
(Figs 3 and 5) or sparse kurtotic (Fig. 6) prior distributions for
the network activities. The issue of prior distributions has been
much discussed12,31,32, with kurtotic distributions being favored
because they can produce localized receptive fields and sparse
codes. Our results suggest that the effects can be obtained under
both sparse and non-sparse prior distributions, as long as one
interprets the effects as being caused due to residual errors in pre-
diction based on an internal model of natural image statistics.

The predictive coding model does not rule out the possibility
that certain extra-classical contextual effects may result from
recurrent lateral inhibition mediated by long-range horizontal
connections within the same visual area39. In fact, the equation
for the dynamics of the network can be rewritten such that some
of the effects of feedback are replaced by recurrent lateral inter-
actions (Methods, Equation 8; refs 32, 40). In addition, the repet-
itive subtraction of neighboring neuronal activities (Equation 8)
may produce a net effect similar to divisive normalization41, an
operation that reproduces certain extra-classical effects in sim-
ulations (Simoncelli, E. P., results presented at the 1998 Center
for Visual Science Symposium, Rochester, New York, 1998).

articles

Fig. 5. Predictive feedback and endstopping. (a) Effect of
inactivating feedback from level 2 in the model. Plotted on
the left are the length tuning curves for a ‘layer 2/3’ error-
detecting model neuron at level 1 with and without feed-
back from level 2 (solid and dotted line respectively).
Tuning curves for a layer 2/3 complex cell in cat striate cor-
tex (V1) (redrawn from Fig. 3 in ref. 3) are shown on the
right for comparison. Disabling top-down feedback elimi-
nated endstopping in the model neuron in a manner quali-
tatively similar to that observed in the cortical neuron after
inactivation of layer 6 (dotted line). Elimination of feedback
from V2 dramatically affects neural responses in layer 6 of
V1 in the squirrel monkey34. (b) Histograms summarizing
the distribution of length tuning in all 32 model layer 2/3
neurons in the central level 1 module with feedback (left)
and without feedback (right) from level 2. Endstopping was
quantified as the percentage difference between peak
response and average plateau response for lengths greater
than 18 pixels. Model neurons were classified into ten cate-
gories according to their degree of endstopping. Disabling
feedback connections eliminated endstopping (defined as
greater than 50% inhibition) in 82% of the model layer 2/3
neurons.
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diction mechanisms. Without this contextual information in the
surrounding region, the higher level cannot accurately predict
the bar in the center. The short bar thus elicits a relatively large
response from the error-detecting neurons as compared to the
longer bar.

This argument suggests that the autocorrelation along a dom-
inant orientation in a local region in natural images extends over
reasonably large distances. We tested this hypothesis on a set of
natural images (Fig. 4a). Random locations were selected in these
images, and the local oriented energy was computed by summing
the squared outputs of quadrature pairs of filters. The orienta-
tion that maximized this energy measure was selected as the dom-
inant orientation. Correlations in the dominant orientation
direction and in the opposite direction in the natural image were
then calculated along three different orientation directions (ver-
tical, horizontal and diagonal) for several thousand random
image locations (Fig. 4b). The average correlations along the
dominant directions, especially the vertical and horizontal direc-
tions, remain relatively high for distances of up to plus or minus
50 pixels as compared to the correlations in the opposite direc-
tion. As a control, we repeated the experiment for three differ-
ent natural image sizes (968 × 968, 484 × 484 and 242 × 242
pixels). In all three cases, higher correlations were observed in
the dominant direction as compared to the opposite direction.
(Results for a random white-noise image are shown in Fig. 4c.)

To compare model neuron responses to neurophysiological
data, we computed the tuning curves of model error-detecting
neurons to bars of increasing length (Fig. 3c). The prediction

from level 2 falls short of the actual level-1 responses for shorter
bar lengths but gradually matches the actual response as the
length of the bar is increased. This determines the model length-
tuning curves, which closely resemble the tuning curves of layer
2/3 neurons in cat striate cortex (Fig. 5a). The model tuning curve
is a parameter-free prediction of the data in the sense that it is
determined by the statistics of the input natural images rather
than by the physiological data. Thus, the close similarity between
the model and physiological tuning curves is noteworthy. In the
model, the average length of the bar eliciting maximal response
was found to be approximately 4.5 pixels, the absolute RF sizes
being approximately 5 × 10 pixels. For comparison, ref. 3 reports
RF sizes of 1° × 1.75° and 0.5° × 1.5° for two visual cortical neu-
rons. These were maximally responsive to bars of length 1° and
0.5°, respectively.

PREDICTIVE FEEDBACK AND EXTRA-CLASSICAL RF EFFECTS
The removal of feedback from level 2 to level 1 in the model
caused previously endstopped neurons to continue to respond
to bars of increasing lengths (Fig. 5a), supporting the hypothesis
that predictive feedback is important in mediating endstopping
in the level-1 model neurons. To quantify this result, we com-
puted the distribution of endstopping (Fig. 5b) in all 32 model
layer 2/3 (error-detecting) neurons in the central level-1 module
(see Fig. 1c) with and without feedback from level 2. The degree
of endstopping was quantified as the percentage difference
between peak response and average plateau response for lengths
greater than 18 pixels: (peak – plateau)/peak × 100. Model neu-

articles

Fig. 3. Endstopping in the model net-
work. (a) Responses of the 32 error-
detecting model neurons in the central
level-1 module to a dark bar. (Positive val-
ues are upward bars; negative values are
downward bars.) Although not modeled
here, positive and negative values may be
coded by separate neurons in the cortex.
(b) Reduction in the level-1 residual
errors due to increase in top-down pre-
diction accuracy as the bar extends
beyond the classical RF (solid box), up to
the size of the level-2 RF (dashed box).
This reduced prediction error manifests
itself as endstopping in the error-detect-
ing model neurons. (c) Length-tuning
curves for two error-detecting model
neurons at level 1 with even-symmetric
(left) and odd-symmetric (right) RF pro-
files. Both model neurons show the
decrease in response characteristic of
endstopping as the bar extends beyond
the classical RF. The dashed line repre-
sents the corresponding response r at
level 1, and the dotted line represents the
predictive feedback rtd from level 2.
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diction mechanisms. Without this contextual information in the
surrounding region, the higher level cannot accurately predict
the bar in the center. The short bar thus elicits a relatively large
response from the error-detecting neurons as compared to the
longer bar.

This argument suggests that the autocorrelation along a dom-
inant orientation in a local region in natural images extends over
reasonably large distances. We tested this hypothesis on a set of
natural images (Fig. 4a). Random locations were selected in these
images, and the local oriented energy was computed by summing
the squared outputs of quadrature pairs of filters. The orienta-
tion that maximized this energy measure was selected as the dom-
inant orientation. Correlations in the dominant orientation
direction and in the opposite direction in the natural image were
then calculated along three different orientation directions (ver-
tical, horizontal and diagonal) for several thousand random
image locations (Fig. 4b). The average correlations along the
dominant directions, especially the vertical and horizontal direc-
tions, remain relatively high for distances of up to plus or minus
50 pixels as compared to the correlations in the opposite direc-
tion. As a control, we repeated the experiment for three differ-
ent natural image sizes (968 × 968, 484 × 484 and 242 × 242
pixels). In all three cases, higher correlations were observed in
the dominant direction as compared to the opposite direction.
(Results for a random white-noise image are shown in Fig. 4c.)

To compare model neuron responses to neurophysiological
data, we computed the tuning curves of model error-detecting
neurons to bars of increasing length (Fig. 3c). The prediction

from level 2 falls short of the actual level-1 responses for shorter
bar lengths but gradually matches the actual response as the
length of the bar is increased. This determines the model length-
tuning curves, which closely resemble the tuning curves of layer
2/3 neurons in cat striate cortex (Fig. 5a). The model tuning curve
is a parameter-free prediction of the data in the sense that it is
determined by the statistics of the input natural images rather
than by the physiological data. Thus, the close similarity between
the model and physiological tuning curves is noteworthy. In the
model, the average length of the bar eliciting maximal response
was found to be approximately 4.5 pixels, the absolute RF sizes
being approximately 5 × 10 pixels. For comparison, ref. 3 reports
RF sizes of 1° × 1.75° and 0.5° × 1.5° for two visual cortical neu-
rons. These were maximally responsive to bars of length 1° and
0.5°, respectively.

PREDICTIVE FEEDBACK AND EXTRA-CLASSICAL RF EFFECTS
The removal of feedback from level 2 to level 1 in the model
caused previously endstopped neurons to continue to respond
to bars of increasing lengths (Fig. 5a), supporting the hypothesis
that predictive feedback is important in mediating endstopping
in the level-1 model neurons. To quantify this result, we com-
puted the distribution of endstopping (Fig. 5b) in all 32 model
layer 2/3 (error-detecting) neurons in the central level-1 module
(see Fig. 1c) with and without feedback from level 2. The degree
of endstopping was quantified as the percentage difference
between peak response and average plateau response for lengths
greater than 18 pixels: (peak – plateau)/peak × 100. Model neu-
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Fig. 3. Endstopping in the model net-
work. (a) Responses of the 32 error-
detecting model neurons in the central
level-1 module to a dark bar. (Positive val-
ues are upward bars; negative values are
downward bars.) Although not modeled
here, positive and negative values may be
coded by separate neurons in the cortex.
(b) Reduction in the level-1 residual
errors due to increase in top-down pre-
diction accuracy as the bar extends
beyond the classical RF (solid box), up to
the size of the level-2 RF (dashed box).
This reduced prediction error manifests
itself as endstopping in the error-detect-
ing model neurons. (c) Length-tuning
curves for two error-detecting model
neurons at level 1 with even-symmetric
(left) and odd-symmetric (right) RF pro-
files. Both model neurons show the
decrease in response characteristic of
endstopping as the bar extends beyond
the classical RF. The dashed line repre-
sents the corresponding response r at
level 1, and the dotted line represents the
predictive feedback rtd from level 2.
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Figure 4: Endstopping. (Top) Receptive
fields for “level 1” (V1) and “level 2”
(V2) neurons. (Bottom) Activation
as a function of bar length, with and
without feedback. Adapted from Rao
and Ballard (1999). The physiological
data come from Sandell and Schiller
(1982).
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Predictive coding offers a normative account (Srinivasan et al.,
1982; Rao and Ballard, 1999), interpreting neurons with center-
surround receptive fields as error neurons, g(t). The intuition is
that error neurons will only respond to a stimulus when it can’t be
predicted by the activity of the prediction neurons. A small oriented
edge is relatively unpredictable from the perspective of prediction
neurons in V1, since there is no larger-scale spatial structure. How-
ever, a longer edge indicates a contour that extends beyond the recep-
tive field of V1 prediction neurons, activating prediction neurons in
higher visual areas (such as V2) that detect contours (Figure 4). The
prediction neurons send suppressive feedback to V1 error neurons,
thereby producing endstopping. Consistent with this hypothesis, in-
activation of V2 strongly reduces endstopping (Sandell and Schiller,
1982; Nassi et al., 2013).

Suppressive effects of predictions on cortical activation have been
observed in many experiments. The visual responses of V1 neurons
in layers 2/3 (the feedforward pathway thought to convey errors)
increase when novel images are presented, and these novelty re-
sponses decrease as the images are repeatedly presented (Homann
et al., 2022). Similarly, visual responses of V1 neurons in layers 2/3

increase when an animal encounters unexpected disruptions in vi-
sual flow during locomotion (Keller et al., 2012). Higher-level visual
areas become more active in response to images with coherent shape
structure (compared to images with randomly assembled edges),
and this is accompanied by decreases in the responses of lower-level
regions (Figure 5). When predictive responses are identified in V1,
these tend to originate in the deep layers thought to convey feedback
from higher-level regions (Kok et al., 2016; Aitken et al., 2020).

Figure 5: Effects of visual structure
on neural activity. A high-level visual
region (the lateral occipital complex,
LOC) responds more to images with
3D structure compared to images with
2D and random structure. A low-level
visual region (V1) has the opposite
profile. Neural activity is measured
here in humans using functional MRI.
Adapted from Murray et al. (2002).
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3 Conclusion

The brain has multiple biologically plausible options for approximate
inference. These are not mutually exclusive. One possibility is that
different algorithms are used by different parts of the brain, based on
their complementary strengths and weaknesses for different tasks.
For tasks requiring fast sensory processing, it may make sense to
rely on primarily feedforward algorithms, whereas for tasks requir-
ing context-sensitivity, it may make sense to rely on algorithms with
recurrent dynamics and feedback. Another possibility is that these al-
gorithms are integrated; for example, there are ways to use sampling
methods in the service of variational inference and predictive coding
(Oliviers et al., 2024). This may help solve the outstanding problem of
how uncertainty is represented in predictive coding schemes.

The fact that evidence exists for all of these possibilities suggests
that the complete picture is likely complex, not reducible to any
single simple algorithm.

Study questions

1. Contrast Gibbs sampling and Langevin sampling in terms of com-
putational effectiveness and biological plausibility.

2. What are the complementary strengths and weaknesses of sampling
vs. variational approximations? How might the brain decide which
to deploy in a given context?

3. The free energy principle has been proposed as a unified brain the-
ory. Do you find that claim justified, or does the evidence suggest a
patchwork of different strategies?

References

Aitken, F., Menelaou, G., Warrington, O., Koolschijn, R. S., Corbin,
N., Callaghan, M. F., and Kok, P. (2020). Prior expectations evoke
stimulus-specific activity in the deep layers of the primary visual
cortex. PLoS Biology, 18:e3001023.

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P.,
and Friston, K. J. (2012). Canonical microcircuits for predictive
coding. Neuron, 76:695–711.

Bellman, R. E. (1957). Dynamic Programming. Princeton University
Press.



chapter 5 18

Berkes, P., Orbán, G., Lengyel, M., and Fiser, J. (2011). Spontaneous
cortical activity reveals hallmarks of an optimal internal model of
the environment. Science, 331:83–87.

Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dy-
namics as sampling: a model for stochastic computation in recur-
rent networks of spiking neurons. PLoS Computational Biology,
7:e1002211.

Burke, D., Alais, D., and Wenderoth, P. (1999). Determinants of fusion
of dichoptically presented orthogonal gratings. Perception, 28:73–88.

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Co-
hen, M. R., Corrado, G. S., Newsome, W. T., Clark, A. M., Hosseini,
P., Scott, B. B., et al. (2010). Stimulus onset quenches neural vari-
ability: a widespread cortical phenomenon. Nature Neuroscience,
13:369–378.

Dasgupta, I., Schulz, E., and Gershman, S. J. (2017). Where do hy-
potheses come from? Cognitive Psychology, 96:1–25.

Field, D. J., Hayes, A., and Hess, R. F. (1993). Contour integration by
the human visual system: evidence for a local “association field”.
Vision Research, 33:173–193.

Friston, K. (2005). A theory of cortical responses. Philosophical transac-
tions of the Royal Society B: Biological sciences, 360:815–836.

Friston, K. (2008). Hierarchical models in the brain. PLoS Computa-
tional Biology, 4:e1000211.

Friston, K. (2010). The free-energy principle: a unified brain theory?
Nature Reviews Neuroscience, 11:127–138.

Fukushima, K. (1980). Neocognitron: A self-organizing neural net-
work model for a mechanism of pattern recognition unaffected by
shift in position. Biological Cybernetics, 36:193–202.

Gershman, S. J., Vul, E., and Tenenbaum, J. B. (2012). Multistability
and perceptual inference. Neural Computation, 24:1–24.

Homann, J., Koay, S. A., Chen, K. S., Tank, D. W., and Berry, M. J.
(2022). Novel stimuli evoke excess activity in the mouse pri-
mary visual cortex. Proceedings of the National Academy of Sciences,
119:e2108882119.

Hoyer, P. and Hyvärinen, A. (2002). Interpreting neural response
variability as Monte Carlo sampling of the posterior. Advances in
Neural Information Processing Systems, 15.



chapter 5 19

Hubel, D. H. and Wiesel, T. N. (1965). Receptive fields and functional
architecture in two nonstriate visual areas (18 and 19) of the cat.
Journal of Neurophysiology, 28:229–289.

Keller, G. B., Bonhoeffer, T., and Hübener, M. (2012). Sensorimotor
mismatch signals in primary visual cortex of the behaving mouse.
Neuron, 74:809–815.

Kemp, C., Perfors, A., and Tenenbaum, J. B. (2007). Learning overhy-
potheses with hierarchical Bayesian models. Developmental Science,
10:307–321.

Knapen, T., Kanai, R., Brascamp, J., van Boxtel, J., and van Ee, R.
(2007). Distance in feature space determines exclusivity in visual
rivalry. Vision Research, 47:3269–3275.

Kok, P., Bains, L. J., Van Mourik, T., Norris, D. G., and de Lange, F. P.
(2016). Selective activation of the deep layers of the human primary
visual cortex by top-down feedback. Current Biology, 26:371–376.

Kuffler, S. W. (1953). Discharge patterns and functional organization
of mammalian retina. Journal of Neurophysiology, 16:37–68.

Larkum, M. E., Senn, W., and Lüscher, H.-R. (2004). Top-down den-
dritic input increases the gain of layer 5 pyramidal neurons. Cere-
bral Cortex, 14:1059–1070.

Lee, S.-H., Blake, R., and Heeger, D. J. (2005). Traveling waves of
activity in primary visual cortex during binocular rivalry. Nature
Neuroscience, 8:22–23.

Lee, T. S. and Mumford, D. (2003). Hierarchical Bayesian inference in
the visual cortex. Journal of the Optical Society of America A, 20:1434–
1448.

Lieder, F., Griffiths, T. L., M. Huys, Q. J., and Goodman, N. D.
(2018a). The anchoring bias reflects rational use of cognitive re-
sources. Psychonomic Bulletin & Review, 25:322–349.

Lieder, F., Griffiths, T. L., M. Huys, Q. J., and Goodman, N. D.
(2018b). Empirical evidence for resource-rational anchoring and
adjustment. Psychonomic Bulletin & Review, 25:775–784.

Maass, W. (2014). Noise as a resource for computation and learning
in networks of spiking neurons. Proceedings of the IEEE, 102:860–
880.

MacKay, D. J. (2003). Information Theory, Inference and Learning Algo-
rithms. Cambridge University Press.



chapter 5 20

Marr, D. (1982). Vision: A Computational Approach. Freeman.

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., and Woods,
D. L. (2002). Shape perception reduces activity in human pri-
mary visual cortex. Proceedings of the National Academy of Sciences,
99:15164–15169.

Nassi, J. J., Lomber, S. G., and Born, R. T. (2013). Corticocortical
feedback contributes to surround suppression in V1 of the alert
primate. Journal of Neuroscience, 33:8504–8517.

Oliviers, G., Bogacz, R., and Meulemans, A. (2024). Learning proba-
bility distributions of sensory inputs with Monte Carlo predictive
coding. PLOS Computational Biology, 20:e1012532.

Orbán, G., Berkes, P., Fiser, J., and Lengyel, M. (2016). Neural vari-
ability and sampling-based probabilistic representations in the
visual cortex. Neuron, 92:530–543.

O’Shea, R. P., Sims, A. J., and Govan, D. G. (1997). The effect of
spatial frequency and field size on the spread of exclusive visibility
in binocular rivalry. Vision Research, 37:175–183.

Parr, T., Pezzulo, G., and Friston, K. J. (2022). Active Inference: The Free
Energy Principle in Mind, Brain, and Behavior. MIT Press.

Pecevski, D., Buesing, L., and Maass, W. (2011). Probabilistic infer-
ence in general graphical models through sampling in stochas-
tic networks of spiking neurons. PLoS Computational Biology,
7:e1002294.

Rao, R. P. and Ballard, D. H. (1999). Predictive coding in the visual
cortex: a functional interpretation of some extra-classical receptive-
field effects. Nature Neuroscience, 2:79–87.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological Review,
65:386–408.

Sanborn, A. N. and Chater, N. (2016). Bayesian brains without proba-
bilities. Trends in Cognitive Sciences, 20:883–893.

Sandell, J. and Schiller, P. (1982). Effect of cooling area 18 on striate
cortex cells in the squirrel monkey. Journal of Neurophysiology,
48:38–48.

Sigman, M., Cecchi, G. A., Gilbert, C. D., and Magnasco, M. O. (2001).
On a common circle: natural scenes and Gestalt rules. Proceedings
of the National Academy of Sciences, 98:1935–1940.



chapter 5 21

Sloman, S., Rottenstreich, Y., Wisniewski, E., Hadjichristidis, C., and
Fox, C. R. (2004). Typical versus atypical unpacking and super-
additive probability judgment. Journal of Experimental Psychology:
Learning, memory, and cognition, 30:573–582.

Srinivasan, M. V., Laughlin, S. B., and Dubs, A. (1982). Predictive
coding: a fresh view of inhibition in the retina. Proceedings of the
Royal Society of London. Series B. Biological Sciences, 216:427–459.

Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty:
Heuristics and biases: Biases in judgments reveal some heuristics
of thinking under uncertainty. Science, 185:1124–1131.

Tversky, A. and Koehler, D. J. (1994). Support theory: A nonexten-
sional representation of subjective probability. Psychological Review,
101:547–567.

Wertheimer, M. (1938). Laws of organization in perceptual forms.
In Ellis, W., editor, A Sourcebook of Gestalt Psychology, pages 71–88.
Harcourt, Brace.

Wilson, H. R., Blake, R., and Lee, S.-H. (2001). Dynamics of travelling
waves in visual perception. Nature, 412:907–910.


	Sampling approximations
	Variational approximations
	Conclusion

