Computational Foundations of Cognitive Neuroscience

Chapter 5: Approximate inference

Exact inference is typically intractable. Can the brain get close to the
right answer? This chapter discusses two classes of approximation.
Sampling approximations harness randomness, achieving asymptotic
correctness in the limit of many samples. Sampling offers one func-
tional explanation for the ubiquity of noise in the brain. Variational
approximations replace complex posteriors with simpler parametric
forms, converting inference into a more tractable optimization prob-
lem (minimizing free energy). Under some assumptions, a variational
approximation can be implemented using a hierarchical architecture
in which feedback signals convey predictions and feedforward signals
convey prediction errors.

To get a sense of what makes inference hard, consider the follow-
ing everyday problem. You get up at night and look for the light
switch in the dark. Your room is filled with dimly illuminated con-
tours, and your brain’s job is to identify contours that look like light
switches. We can think of a contour as a collection of adjacent edges
that vary smoothly over space in a one-dimensional pattern. Thus,
the inference problem is potentially high-dimensional: the brain
has to infer the edge orientation at each point in space (the orien-
tation field). In principle, this problem could be parallelized if we
assume that each orientation is independent, but this violates the
key assumption that the edges covary with their neighbors. There is
no escaping the exponentially large number of possible orientation
fields.

Recall our problem: we want to compute the posterior p(s|x) over
hidden state s given data x. As stipulated by Bayes’ rule,

p(xls)p(s) (1)

Pl = & s p )

In the contour detection example, x is an image and s is the orienta-
tion at each location in the image (we will shortly formalize this in a
more biologically plausible way). Typically, the easy part is evaluat-
ing the numerator of Bayes’ rule for any particular value of s, since
we are assuming access to a computationally tractable joint distri-
bution, p(x,s) = p(x|s)p(s). The hard part is the denominator (the
marginal likelihood), which involves summing (or integrating, in the
case of continuous variables) over all possible states. When states
are multi-dimensional, we run into the curse of dimensionality (Bell-
man, 1957): there is an exponentially large number of states, making
marginalization through exhaustive enumeration intractable. For ex-

Space here should be understood as
retinotopic space, a 2D map where each
position corresponds to a location on
the retina.

Keep in mind that each sample s* is a
multidimensional variable.
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ample, if there are M possible orientations and N locations, then the
number of possible orientation fields is M".

Many other problems have a similar nature due to the coupling of
many variables—solving crossword puzzles and segmenting events,
to name a few. Nonetheless, there is a glimmer of hope due to the
underlying structure of these problems. It is precisely the coupling
that constrains inference. Algorithms that make efficient use of this
structure can render inference tractable—albeit approximate.

In this chapter, we delve into two classes of approximation: sam-
pling (also known as Monte Carlo) and variational algorithms. It's no
coincidence that these are widely used in machine learning, statistics,
and physics. They are the most effective engineering tools we have
for tackling difficult inference problems. Intriguingly, nature may
have hit upon similar solutions.

1 Sampling approximations

The idea behind sampling is to replace exhaustive enumeration of
the hidden states with a set of K samples, {sl,. .., SK}, drawn from

p(s]x ): For continuous variables, replace
I[s* = s] with the Dirac delta function,
1 K r 5(sk —s).
p(s|x) ~ e Zl[[s =3, (2)
k=1
where I[-] = 1 if its argument is true, and o otherwise. Eq. 2 says that This is essentially the same idea as a

histogram in data analysis.

the probability of state s is approximately equal to the proportion
of samples with that value. As K gets larger, the approximation gets
increasingly accurate.

The rub is that generating samples from the posterior is non-
trivial. One general strategy is to generate samples from a dynamical
system that can be proven to converge to the posterior. When the
dynamical system is characterized by a transition probability T(s'|s)
that doesn’t depend on any previous samples, it is called a Markov For a general introduction to MCMC
chain, and the sampling algorithm is a form of Markov chain Monte algorithms, see MacKay (2003).

Carlo (MCMCQ).

1.1 Markov chain Monte Carlo

How do we guarantee that a particular Markov chain converges to
the posterior? A sufficient (but not necessary) condition is known as
detailed balance:

T(sls)  p(s']x)
TGl9) - pGla) G)

We can construct a versatile family of MCMC algorithms using the

following construction. First, we factor the transition probability into
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a proposal distribution G(s'|s) and an acceptance distribution A(s'|s):
T(s']s) = G(s'|s, x) A(5']s)- @
Plugging this into Eq. 3, we get:

A(s'ls) _ p(s'[x)G(sls', x) 5)
Asls) — p(s|x)G(s'ls, )

Finally, we need to specify an acceptance distribution that satisfies
this equation. The classical Metropolis-Hastings algorithm uses
(s'|x)G(s]s’, x)

A(s'|s) = min |1, P

p(s|x)G(s'|s, x) | (6)

We're still left with the problem that the acceptance distribution de-
pends on the unknown posterior. However, notice that the posterior
only enters as a ratio between p(s’|x) and p(s|x). Using Bayes’ rule,
we can write this ratio as:

p(s'lx) _ p(xls")p(s) )

p(slx)  plxls)p(s)

This is much easier to evaluate, because (as stated above) typically we

can tractably compute the likelihood p(x|s) and prior p(s) for a given
sample.

1.2 Gibbs sampling

An important special case of the Metropolis-Hastings algorithm is
Gibbs sampling, where the proposal distribution is the distribution
over part of the state space conditional on the rest of the state space.
It’s easiest to think about this in the case where partition of the state
space corresponds to single “sites” (state features). In the contour
detection example, this means sampling a new orientation at location
n conditional on the inferred orientations at all the other locations
(denoted s,,). Let s;, denote a copy of s with only site n modified.
The proposal distribution can then be formalized as follows:

G(s'ls,x) = }_p(m)p(suls/n. X), ®)

where p(n) is the probability of a modification at site n. At each
iteration, a single site is selected from p(n) and then the modification
is sampled from p(s},|s,,, x). The Gibbs proposal is always accepted
(to see this, plug the proposal distribution into Eq. 6).

We now bring these ideas back to neural computation, using the
contour detection problem as an example. We can formalize the con-
tour detection problem in the following way. Let s,, € [0,27] denote
the orientation at location 7. The state vector s is the orientation field.



In natural images, edges at nearby locations tend to have similar ori-
entations (Sigman et al., 2001). We therefore impose a smoothness
prior on the orientation field:

n -m

p(s) < exp [ZZH,W cos(s, — sm)l , (9)

where Hy;;, > 0 if locations n and m are neighbors (o otherwise).

We combine this prior with sensory data x = (xq,...,xp), the spike
counts of Poisson neurons with tuning curves { f;(s) }. We will as-
sume spatially localized cosine tuning functions (introduced in Chap-
ter 3):

fa(sn) = exp Ll/ cos(sp — 52;1)] , (10)

where s} is the preferred orientation for neuron d at location n (note
that neuron d does not respond to inputs at other locations), and v

is the tuning width. Plugging this into the Poisson likelihood (see
Chapter 4), we get:

p(x|s) e exp [ Y xg Zcos — sy, 1 , (11)

where (as in the last chapter) we have made use of the assumption
that Y4 f4(s) is a constant (satisfied if the tuning functions are shifted
copies of one another and tile the state space).

Putting the pieces together, the posterior is given by:

p(s|x) o< p(x|s)p(s)

o exp [11/ ;xd Y cos(sn —5j,) + Y Y Humcos(s, — sm)] )
(12)

We can apply Gibbs sampling by iterating over locations and choos-
ing new orientations conditional on the orientations at the other
locations:

p(suls/n, x) < exp [ Y xgcos(sy —sh,) + Y Hum cos(sy — sm)] ,
m
(13)

where d sums over all input neurons tuned to location n. If (as in the
last chapter) we discretize the orientations into {3;}, we can calculate
the normalizing constant of this distribution and tractably sample
from it. We can see that this is just another example of the softmax
equation from the last chapter.
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Sensitivity to smooth contours in
human perception is exemplified by
the Gestalt Law of good continuation
(Wertheimer, 1938), which states that
the visual system tends to prefer
smooth over non-smooth contours.
This preference has been characterized
quantitatively by psychophysical
experiments (Field et al., 1993).
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We can now see more clearly how to map this onto a neural cir-
cuit. Let z;(t) € {0,1} denote the spike train of input neuron d.
Output neurons are indexed both by location (1) and orientation (j).
Each output neuron integrates input spikes linearly, along with “lat-
eral” contributions from other output neurons whose spike trains are

presented by {y,,;(t)}:
(1) = Y 2a(t) cos(sn — 5,) + Y- o cos(sn — sm)y(£), (10
d m

where again d sums over input neurons tuned to location n. As in
the last chapter, we model the membrane potential yn]-(t) as a perfect
integrator, Cji,j(t) = I,(t), that is exponentiated to produce the
intensity function (expected firing rate of a Poisson process). Finally,
we assume that the neuron receives feedback inhibition reflecting
the total activity of neurons tuned to the same location but different
orientations. This yields a softmax intensity function:

exp|ptnj(t)]

Pnj(t) = ¥ explitny (O] (15)

From the MCMC perspective, we can view this circuit as implement- See Buesing et al. (2011) and Pecevski
et al. (2011) for a description of spiking
. . . neuron circuits that implement a form
so that the spikes of the output neurons can be viewed as posterior of Gibbs sampling for a more general

samples. class of probabilistic models.

ing a stochastic dynamical system that converges to the posterior,

1.3 Langevin sampling

While Gibbs sampling is a powerful algorithm, it has the drawback
that convergence to the posterior is often slow due to the fact that
moves through the state space are small. What we’d ideally like is to
quickly move towards high probability states. Langevin sampling,
another MCMC algorithm, achieves this using gradients. The core of
Langevin sampling is the following dynamical system:

ds = Vslog p(s(t)|x) dt + V20 dW(t), (16)

where s(t) denotes the state sampled at time f, and W(t) is a Wiener
process, which produces independent, Gaussian-distributed incre-
ments; the standard deviation parameter ¢ scales the increments. In
other words, samples of the state are generated in continuous time
by following the posterior gradient corrupted by white noise. It can
be shown that these dynamics converge to a stationary distribution,
p(s|x). Thus, we can generate posterior samples by following a noisy
gradient.

Continuing our example from the previous section, x represents
the spike counts from an input population of Poisson neurons. Under
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this assumption, the gradient is given by:
xaVsfa(s) | Vsp(s)
Vslogp(s|x) = + . (17)
S L7Re 0
We can map this equation onto a neural circuit by using the same
probabilistic assumptions as in the previous section, and positing
an output neuron for location n with perfect integration and noisy
membrane potential dynamics (see Chapter 2):
Citn = L (t) + V20 dW(t). (18)
Continuing the contour detection example, the input current is given
by: The constant disappears under the
gradient dynamics.
Zd(t) d 1 d
In(t) = —fa(s) + —=—p(s
71( ) ;fd(s) asnfd( ) P(S) asnp( )
1
=— zg(t)sin(sy —sj,) — Y HumYm(t) sin(s, — sm) + const.
d m
(19)
Notice that we are now interpreting the membrane potential values Also notice that we are no longer

discretizing the orientation space,
instead treating it as a continuous
2016). variable.

How, then, should we interpret spikes? The probability of gen-

(rather than the spikes) as the posterior samples (see Orban et al.,

erating a spike within some infinitesimally small window of time
(the instantaneous spike probability) is the probability of the mem-
brane potential crossing the spiking threshold 6. From a sampling
perspective, it’s the proportion of samples above the threshold, an
approximation of the posterior probability that s, > 6. This kind of
representation is useful for detection tasks. If the task is to respond
whenever s, > 6, then a response circuit need only listen to the ac-
tivity of neurons with thresholds near 6. If the decision criterion is
changed, then the response circuit can listen to a different set of neu-
rons. Alternatively, if the task is to report the probability that s, lies
within some interval [a, b], then a response circuit can compute the
difference between neurons with thresholds near b and a.

We can also use the same representation to estimate the posterior
mean. For non-negative variables (s, > 0), the tail integral formula
states that:

Efsn|x] = /O°° p(sn > 6]x)de. (20)

If we have output neurons with a fine enough range of thresholds,
then we can approximate the expectation by simply counting the
number of output neurons generating a spike within some short
interval of time.

6
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1.4 Neural evidence for sampling

Many models view neural noise (whatever its locus and origin) as

a “fact of life” which must be mitigated for the purposes of com-
putation. Sampling models offer a fundamentally different point of
view—noise is a feature, not a bug (Maass, 2014). Hoyer and Hyvéri-
nen (2002) were the first to suggest that neural variability might
reflect posterior sampling, but their arguments were not strongly
supported by data available at the time. Since then, new data have
offered more direct tests of their hypothesis.

When testing such a general hypothesis, it’s important to start
with predictions that generalize across many different versions of
the hypothesis (e.g., Gibbs, Langevin, etc.). Here are three general
predictions (see Orbéan et al., 2016, for more details).

First, “spontaneous” neural activity prior to stimulus onset should
reflect samples from the prior, whereas stimulus-evoked activity
should reflect samples from the posterior. Generally, the posterior
will be narrower (lower variance) than the prior. Under the sampling
hypothesis, neural variability should increase monotonically with
posterior variance. Intuitively, this is because when variance is high
the samples must explore a broader range of states. This implies
that stimulus onset should “quench” neural variability, as observed
experimentally (Churchland et al., 2010).

A second general prediction is that experimentally increasing
uncertainty (e.g., by reducing stimulus contrast) should produce a
corresponding increase in neural variability. Consistent with this
prediction, neural variability in primary visual cortex (V1) is higher
for low contrast stimuli (Orbén et al., 2016).

A third general prediction is that stimulus-evoked activity, when
averaged across trials, should resemble spontaneous activity. This
follows from the fact that the expected posterior is just the prior:

E[p(s|x)] = )_ p(x)p(s|x) = p(s). (21)

Critically, this is only true if the stimulus distribution p(x) reflects

the “natural statistics” of stimuli in the real world, assuming that the

brain’s prior, p(s), is adapted to these statistics. In other words, p(x)

and p(s) must be related through p(x) = Y5 p(s)p(x|s). It's possible

to break this relationship by presenting artificial stimuli like noise

patterns or gratings. Orbdn et al. (2016) confirmed this prediction See also Berkes et al. (2011).
for V1 by showing that the distribution of spontaneous activity was

much more similar to the distribution of average stimulus-evoked

activity for natural images compared to artificial images.



1.5 Behavioral evidence for sampling

The sampling hypothesis also makes predictions about behavior. As
with the neural data, we focus on predictions that generalize across
different versions of the hypothesis.

As pointed out by Hoyer and Hyvarinen (2002), perceptual multi-
stability seems like a hallmark of sampling. Perceptual multistability
arises when the brain switches repeatedly (and usually stochasti-
cally) between different interpretations of the same visual input. For
example, ambiguous images like the Necker cube and the face-vase
illusion (Figure 1) can be interpreted in different ways by the same
observer over a short interval of time. Another example is binocular
rivalry: when different images are presented to each eye, typically
only one image is perceived at a time, with stochastic switches be-
tween the dominant image.

Gershman et al. (2012) used the sampling hypothesis to account
for a number of subtle phenomena in binocular rivalry. One phe-
nomenon is that switches are not always all-or-none; in particular,
large images in binocular rivalry experiments produce “piecemeal”
switches, where one part of the image switches before other parts
(O’Shea et al., 1997). This makes sense if sampling is operating at the
level of image parts (whatever those might be). For larger images,
the dependencies between different parts become weaker, allowing
piecemeal switches. The piecemeal nature of multistability is also
revealed by the observation that for certain stimuli switching mani-
fests as a traveling wave (Wilson et al., 2001). For example, if the two
images in a binocular rivalry experiment are radial and concentric
gratings, a transient increase in image contrast at one location on
the non-dominant grating will produce a wave-like switching pat-
tern, similar to lighting a fuse and watching it progressively ignite
adjacent regions (Figure 2). The wave pattern can be quantified by
asking observers to report when they perceived a switch at particular
locations on the grating. The propagation is slower for concentric
gratings, consistent with a smoothness prior that favors collinear
edge orientations (as discussed above). The propagation can also be
slowed down by introducing gaps in the grating. All of these results
agree with a model in which the dynamics of sampling is governed
by the stimulus structure.

Another subtle aspect of binocular rivalry is that sometimes the
images fuse rather than rival. Several factors determine whether
fusion or rivalry occurs. Fusion is more likely when both images
are low contrast (Burke et al., 1999) and when they are similar (e.g.,
two gratings with slightly different orientations; Knapen et al., 2007).
Under the sampling hypothesis, fusion arises when the two posterior
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Figure 1: Ambiguous images. (Left)
The Necker cube. (Right) The face-vase
illusion. For both images, the interpre-
tation will switch spontaneously if you
look at it for long enough.

Using brain imaging, Lee et al. (2005)
showed that wave propagation during
binocular rivalry is measurable in
primary visual cortex.
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Left eye nght eye Percept Figure 2: Traveling waves in binocular

rivalry. (Top) Binocular stimulus and
percept (from Lee et al., 2005). The low
contrast stimulus appeared to spread
around the annulus after being ignited
by a contrast change at the red location.
The blue location shows an example
probe location. (Bottom) Estimated
propagation time (from Wilson et al.,
2001) and simulations (from Gershman
et al,, 2012).
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modes are not well-separated, either because their variances are large
(low contrast) or because their modes are near one another (high
similarity). In this case, sampling doesn’t bounce as much between
the two modes, but instead spends more time in the high density
area between them.

Outside of visual perception, the sampling hypothesis has been
used to explain a wide range of cognitive phenomena. For example, See Sanborn and Chater (2016) for a
when people are asked to estimate an unknown quantity (e.g., “In review of the sampling hypothesis

. . : . applied to human cognition.

what year was Beethoven born?”) after being primed with an irrele-
vant quantity (e.g., the last 4 digits of their social security number),
they tend to anchor their estimates on the irrelevant quantity, ad-

justing insufficiently away from it (Tversky and Kahneman, 1974). The number of samples may be adap-
tive. As shown by Lieder et al. (2018b),

. N . . people do more adjustment when the
MCMC algorithm that is initialized at the irrelevant quantity and costs of time are low and the costs of

This “anchoring and adjustment” heuristic arises naturally from an

then generates only a small number of samples (Dasgupta et al., 2017; errors are large.
Lieder et al., 2018a).

Another cognitive phenomenon explained by sampling is the
unpacking effect. When people are asked to judge the probability of
dying from a natural cause (the packed condition), their average an-
swer was 0.58, but when asked to separately judge the probability
of dying from heart disease, cancer, or some other natural cause (the
unpacked condition), the summed probabilities equaled 0.73 (Tversky
and Koehler, 1994). Mathematically, these should be the same, since
the marginal probability of dying from a natural cause is the sum of
the conditional probabilities of dying from particular natural causes.
According to the sampling hypothesis, unpacking to typical exam-



ples like heart disease and cancer ensure that these contribute to the
sample set and thus to probability judgments. In contrast, people are
left to generate all the samples on their own in the packed condition,
and therefore can potentially miss some if they are generating a small
number of samples. In contrast, unpacking to atypical examples (e.g.,
pneumonia, diabetes) leads to marginal probabilities that are lower
than in the packed condition (Sloman et al., 2004). According to the
sampling hypothesis, this happens because the sampler gets stranded
in a lower-probability region of the state space and has trouble recov-
ering from this with limited samples. These effects are amplified by
time pressure and cognitive load (Dasgupta et al., 2017), consistent
with a reduction in the number of samples.

2 Variational approximations

MCMC algorithms are asymptotically correct: if you run them long
enough, you'll approximate the posterior to an arbitrary degree of
precision. However, you might need to run them a long time if the
problem is complex. An alternative approach is to use an approxi-
mation algorithm that produces an answer more quickly, but doesn’t
enjoy asymptotic correctness. Variational approximations offer a
general framework for doing this.

2.1 Free energy minimization

The basic idea is to turn inference into a constrained optimization
problem. The goal is to find an approximate posterior 4 € Q that
gets closest to the posterior, where Q is a constrained family of prob-
ability distributions. This family should be chosen in such a way that
both finding and evaluating g is relatively fast. More precisely, the
optimization problem is defined as:

q" = argmin Dq(s|x)|[p(s|x)], (22)

qeQ

where D[q(s|x)||p(s|x)] is the Kullback-Leibler (KL) divergence be-
tween the approximate and exact posteriors:

Dla(sl)llp(six)] = Latlo) og 45 (23)

The KL divergence is always non-negative, and equals o when
g(slx) = p(s|).

The basic problem with Eq. 22 is that the KL divergence can’t be
optimized directly, since it is a functional of the posterior—precisely
the thing we are trying to approximate. There is an alternative way

CHAPTER 5

Recall from Chapter 4 that we used
the same KL divergence to define an
objective function for resource-rational
belief updating.

10
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of formulating this optimization problem, which turns out to be

equivalent:
q" = argmin Fq(s|x)], (24)
qgeQ
where F[q(s|x)] is the variational free energy: The terminology here derives from
( | ) applications in physics.
q(s|x
Flg(s|x)] = s|x) log ——=. (25)
lash0l = Lalsl) log - 2" 5
This is related to the original optimization problem via the following
equation:
log p(x) = Dlg(s|x)[Ip(s|x)] = Fla(s[x)], (26)
where log p(x) is the evidence (the log marginal likelihood). The Because the KL divergence is non-

negative, —F[q(s|x)] is a lower bound

. . on the evidence, which is why it is
the KL divergence to also decrease by the same amount. Thus, min- sometimes known as the evidence lower

equality implies that decreasing free energy by some amount forces

imizing free energy is thus equivalent to minimizing KL divergence, bound.
in the sense that the optimal approximate posterior is the same.
The idea that the brain minimizes free energy—the free energy prin-
ciple—has spawned a large literature investigating many different
dimensions of this idea. It has even been proposed as a ‘unified brain See Parr et al. (2022) for a comprehen-
theory’ (Friston, 2010) because it subsumes and generalizes several sive survey.
other general principles (see Chapter 3). Our purpose here is nar-
rower: to understand how free energy minimization can be leveraged

for tractable approximate inference.

2.2 The Laplace and mean-field approximations

We need to restrict the approximation family Q in some way that
makes inference more tractable. One technique (applicable to models
with continuous states) is to restrict Q to the set of Gaussian posteri-
ors: q(s|x) = N(s;8,%), where the mean and covariance are known as
variational parameters. It’s important to keep in mind that these are
not latent variables that the brain is inferring, but rather part of the
brain’s computational machinery for approximate inference. In par-
ticular, the optimization problem is to find the variational parameters
that minimize free energy.

Restricting to a Gaussian is not on its own sufficient, because one
still can’t compute the free energy—the integral over s is intractable
in the general case, due to nonlinearities in the joint distribution
p(x,s). We can, however, obtain a tractable integral if we linearize
log p(x,s) with a second-order Taylor series expansion around $:

log p(x,s) =~ logp(x,8) + (s — §)TVS log p(x,8) — %(s — §)TA(S —9),
(27)
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where A = —V;V;logp(x,$) is the Hessian (matrix of 2nd deriva-
tives) of the negative log likelihood evaluated at 3. This is known
as the Laplace approximation, which can then be used to analytically

approximate the free energy: This result can be derived using a
standard formula for the Gaussian
integral of a quadratic form, combined

o 1 1
}—[q(s|x)] ~ —log p(x, S) - ETr [AZ] + 2 log |Z| + const. (28) with the entropy of a multivariate

Gaussian.
where Tr[-] is the trace operator, and | - | is the matrix determinant.
Setting the gradient of the free energy to o and solving for the varia-
tional parameters gives:

§ = argmax p(x,s) = argmax p(s|x) (29)
S S

Y=A"L (30)

In other words, the optimal mean is the posterior mode, and the
optimal covariance is the inverse Hessian.

Computing the inverse Hessian is non-trivial, and it’s not clear
how this could be implemented neurally. A typical move is to adopt
a mean-field approximation, where the approximate posterior factorizes:

q(s|x) = [ [ qn(sulx). (31)

When combined with the Laplace approximation, the factorization
leads to a diagonal covariance: ¥ = diag(1/Aq,...,1/Ay), where
Ap = —aa—szz log p(x,$,). This is the mean-field Laplace approximation.
The posterior mode can be found using gradient ascent. This is
essentially a deterministic version of Langevin sampling (no mem-
brane potential noise). As in our analysis of Langevin sampling, we
interpret the input current as the gradient of the log posterior, the
membrane potential as an integrator of this gradient, and the spiking
activity as samples from the “tail” distribution p(s, > 6|x). Under
the Laplace approximation, this distribution is given by:

plsn > 0lx) ~ q(sn > 01) =@ (VAu6a=9)), (2

where ®(-) is the cumulative distribution function of the standard
Gaussian distribution, and A, is the posterior precision. The tail
probability is a sigmoidal function of 3, with an inflection point at 0
(the point at which the probability crosses 0.5). The posterior preci-
sion controls the slope of the sigmoid: greater precision results in a
steeper slope.

How can a neuron compute the precision? One way is to use
the interpretation of the input current for neuron n as I,,(t) =
% log p(s(t),x). This implies that the precision is the negative partial
derivative of the input current with respect to s,,. Using our contour



detection example, we can differentiate Eq. 19 around the posterior
mode to obtain:

An(t) = % sz(t) cos(8, — 5:1;1) + ZHnmym(t) cos(8y —sm), (33)
d m

where we have expressed the precision as a time-dependent function
to make clear that it is being dynamically computed by the postsy-
naptic neuron. Intuitively, precision is largest when the posterior
mode is close to the preferred stimuli of the input neurons (high
likelihood) and when it is smooth (high prior). Precision is a linear
function of the input and lateral spikes; thus, it could be plausibly
computed by linear synaptic integration. Because both the input cur-
rent and the precision are linear functions of the presynaptic spikes,
an intriguing possibility is that these variables are represented sep-
arately in different parts of the dendritic tree. For example, “distal”
dendritic input (far from the cell body) tends to have relatively weak
direct effects on firing rate compared to “proximal” dendritic input
(near the cell body), but the distal inputs can modulate gain (Larkum
et al., 2004)—the role of precision suggested by Eq. 32. Thus, it is
plausible that I, (t) represents inputs to proximal dendrites, while
An(t) represents the inputs to distal dendrites.

2.3 Predictive coding

If we assume a Gaussian noise model and prior, it becomes possible
to parametrize the variational posterior in a different way. Specifi-
cally, let us assume the following generative model:

5~ N(§,Q) (34)
xg ~ N (fals), w). (35)

The posterior mode can be updated by following the gradient of the
joint log likelihood:

As « Vslogp(x,s) = w} [xq = fa(s)]Vsfa(s) —Q(E—35).  (36)
d

This formulation invites us to think about a predictive coding archi-
tecture in which “prediction” neurons y(t) reporting the inferred
state, §, receive input from “error” neurons reporting the difference
between observed and expected signals. There are two kinds of error
neurons. The “bottom-up” (or “feedforward”) error neurons report
the difference between sensory signals z(t) and the expected firing
rate under the inferred state, f(8). The “top-down” (or “feedback”)
error neurons report the difference between the inferred state and the
expected state under the prior distribution, 5.
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The Gaussian noise model is closely
related to the Poisson noise model,
since the Poisson distribution becomes
increasingly Gaussian as the firing rate
increases.

Predictive coding concepts have a
long history in neuroscience. One of
the earliest versions of this idea was
proposed for the retina by Srinivasan
et al. (1982). A more general version
of this hypothesis for the entire visual
system was proposed by Rao and
Ballard (1999), and subsequently
developed as a general principle for
cortical computation by Friston (2005)
within the framework of free energy
minimization.



In this section, we assume that all neurons are perfect integrators
of synaptic inputs, and that the firing rate is linear in the membrane
potential. We will work directly with these firing rates (ignoring
spikes). The dynamics for the prediction neuron population activity
y(t) can be written compactly in vector form:

= Lh(vire) - g(ha, (37)

w

where h(t) and g(t) are the firing rates of bottom-up and top-down
error coding neurons, respectively, with the following dynamics:

y(t) —5—g(tH)Q (38)
=z(t) — f4(8) — wh(t). (39)

The fixed points of these dynamics are:

8
h

y(oo) =3 (40)

g(e0) =Q71(5-3) (41)
1 R

h(eo) = ~(x = f(5)). (42)

Thus, the posterior mode can be found by running the dynamics of
this system and then observing the activity of the prediction neurons
at steady state.

We can iterate this architecture hierarchically (Figure 3), where the
top-down signals receive inputs from higher-level neurons encod-
ing expectations at the next level of the generative model (Rao and
Ballard, 1999). This fits with the general idea that the brain learns
generative models at multiple levels of abstraction, where each level
defines a prior distribution on the level below (Lee and Mumford,
2003; Friston, 2008). The hierarchical architecture is thought to be im-
plemented in the laminar (layered) structure of cortex (Bastos et al.,
2012), where neurons in layers 2/3 convey feedforward signals (er-
rors) to higher levels of the hierarchy, while neurons in layers 5/6
convey feedback signals (predictions) from higher to lower levels.

Prediction Prediction
l 1 4 ]
S—— T S 3
l 1 1 L)
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Closely related ideas have been studied
in cognitive science (e.g., Kemp et al.,
2007).

Figure 3: Hierarchical predictive
coding architecture.
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2.4 Evidence for predictive coding in the brain

A classical view of the brain, and of cortex in particular, posits a feed-
forward hierarchy of feature detectors (Rosenblatt, 1958; Fukushima,
1980; Marr, 1982). Each layer of detectors identifies more complex or
abstract features based on the activity of the feature detectors in the
layer below. For example, some models view retinal ganglion cells

as light spot detectors, V1 neurons as oriented edge detectors, which
feed into V2 contour detectors, which in turn feed into shape detec-
tors in the lateral occipital cortex. While there’s much to recommend
such a view, it also seems to be missing something important. A few
examples will illustrate this point.

Many kinds of neurons characterized as feature detectors have
receptive fields with excitatory centers and inhibitory surrounds.
What this means is that the neurons respond maximally when their
preferred stimulus is presented but are inhibited by similar stimuli.
For example, retinal ganglion cells are excited by spots of light pre-
sented at particular retinotopic locations; this response increases with
the size of the spot, but starts to decrease when the spot gets to a
certain size (Kuffler, 1953). Similarly, many neurons in V1 respond
maximally to lines of a particular orientation, length, and location;
if the line gets long enough, the response decreases—a phenomenon
known as endstopping (Hubel and Wiesel, 1965). The interpretation of
center-surround receptive field structure has been the subject of ex-
tensive theoretical speculation, but generally it has been challenging
to come up with an interpretation that is general enough to encom-
pass all the instances in which such tuning manifests (including
motion and shape processing areas, among others).

Level 1 ) Figure 4: Endstopping. (Top) Receptive
Receptive Field Bar Stimulus fie%ds fgr “level 11/)/P(Vf,) andp"level E”
(V2) neurons. (Bottom) Activation

! ! as a function of bar length, with and
7 without feedback. Adapted from Rao

Level 2 and Ballard (1999). The physiological
Receptive Field data come from Sandell and Schiller
Model neuron Cortical neuron (1982).
100 o, 100
dé 90 Cel g, L 90
g- 80 Without feedback 80 o R °
3 70 70 Layer 6 inactivated
“ 60 60
E so 50
=
E 4 40
® 30 30
€ 2 With feedback 20
X w0 10 Layer 6 intact
0 0
2 4 6 8 10 12 14 16 18 20 1 2 3 4 5 6 7 8

Bar length (pixels) Bar length (deg)
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Predictive coding offers a normative account (Srinivasan et al.,
1982; Rao and Ballard, 1999), interpreting neurons with center-
surround receptive fields as error neurons, g(t). The intuition is
that error neurons will only respond to a stimulus when it can’t be
predicted by the activity of the prediction neurons. A small oriented
edge is relatively unpredictable from the perspective of prediction
neurons in V1, since there is no larger-scale spatial structure. How-
ever, a longer edge indicates a contour that extends beyond the recep-
tive field of V1 prediction neurons, activating prediction neurons in
higher visual areas (such as V2) that detect contours (Figure 4). The
prediction neurons send suppressive feedback to V1 error neurons,
thereby producing endstopping. Consistent with this hypothesis, in-
activation of V2 strongly reduces endstopping (Sandell and Schiller,
1982; Nassi et al., 2013).

Suppressive effects of predictions on cortical activation have been
observed in many experiments. The visual responses of V1 neurons
in layers 2/3 (the feedforward pathway thought to convey errors)
increase when novel images are presented, and these novelty re-
sponses decrease as the images are repeatedly presented (Homann
et al., 2022). Similarly, visual responses of V1 neurons in layers 2/3
increase when an animal encounters unexpected disruptions in vi-
sual flow during locomotion (Keller et al., 2012). Higher-level visual
areas become more active in response to images with coherent shape
structure (compared to images with randomly assembled edges),
and this is accompanied by decreases in the responses of lower-level
regions (Figure 5). When predictive responses are identified in V1,
these tend to originate in the deep layers thought to convey feedback
from higher-level regions (Kok et al., 2016; Aitken et al., 2020).

Random 2D 3D Figure 5: Effects of visual structure

16

on neural activity. A high-level visual

LOC) responds more to images with
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3 Conclusion

The brain has multiple biologically plausible options for approximate
inference. These are not mutually exclusive. One possibility is that
different algorithms are used by different parts of the brain, based on
their complementary strengths and weaknesses for different tasks.
For tasks requiring fast sensory processing, it may make sense to
rely on primarily feedforward algorithms, whereas for tasks requir-
ing context-sensitivity, it may make sense to rely on algorithms with
recurrent dynamics and feedback. Another possibility is that these al-
gorithms are integrated; for example, there are ways to use sampling
methods in the service of variational inference and predictive coding
(Oliviers et al., 2024). This may help solve the outstanding problem of
how uncertainty is represented in predictive coding schemes.

The fact that evidence exists for all of these possibilities suggests
that the complete picture is likely complex, not reducible to any
single simple algorithm.

Study questions

1. Contrast Gibbs sampling and Langevin sampling in terms of com-
putational effectiveness and biological plausibility.

2. What are the complementary strengths and weaknesses of sampling
vs. variational approximations? How might the brain decide which
to deploy in a given context?

3. The free energy principle has been proposed as a unified brain the-
ory. Do you find that claim justified, or does the evidence suggest a
patchwork of different strategies?
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