Computational Foundations of Cognitive Neuroscience

Chapter 3: Principles of perceptual representa-
tion

If neural computation is the manipulation of representations, what are
those representations? This chapter focuses on perceptual representa-
tions constructed by brain areas close to the sensory periphery. Rather
than tabulating an exhaustive list of representations attested by brain
activity, we organize them into a small set of general principles (effi-
ciency, sparsity, prediction) which can be formulated as optimization
problems. The relationships between different principles hint at the
possibility of a unifying theory, although there are also some funda-
mental tensions between them.

Everything starts with representation: computations in the brain
do not have access to the world itself, only to representations of the
world. Consequently, there is evolutionary pressure on the brain to
construct representations that are useful for computation. What kinds
of representations are useful for what kinds of computations? The
approach of this chapter is to define a set of optimality principles
based on different computational goals. Each principle implies cer-
tain properties about the neural representations that we can measure
experimentally.

For the purposes of this chapter, we will take ‘neural representa-
tion’ to mean the set of tuning functions { f;(s)} for a population of
neurons, where d indexes neurons and s is a stimulus. A practical
reason for focusing on tuning functions is that this is by far the most
abundant source of published data. However, this is not the only way
to think about representation. For example, neurons could potentially
represent information through spike times (see Chapter 2). We will
not cover alternative representational formats in this chapter, but we
will touch upon them at other points in the book.

Another caveat is that this chapter will not focus on how represen-
tations are learned or used, deferring these topics to later chapters.
The primary goal is to establish a connection between abstract opti-
mality principles and neurophysiological data.

1 Representations optimized for fitness

Like all biological structures, brains have evolved through a process
of natural selection. In every generation, some individuals reproduce
more than others, thereby propagating their genotype (and the phe-
notype encoded by the genotype) to the next generation. Here we
will just talk about phenotypes to keep things simple. In particular,

Recall from Chapter 2 that a tuning
function maps states (s) to expected
firing rates. In this chapter, we some-
times refer to s as the stimulus, in
accordance with standard terminology
in perceptual neuroscience.

A genotype is an individual’s complete
genetic material, and a phenotype is
the complete set of observable char-
acteristics of the individual, specified
by a (possibly stochastic) genotype-to-
phenotype mapping.



we will take the phenotype to be the vector-valued tuning function f
that maps states (or stimuli) to expected firing rates.

The fitness ¢(f) of a phenotype f is a real-valued scalar summa-
rizing the reproductive advantage conferred upon an organism by
having that phenotype. We can formalize this as the growth rate of the
phenotype frequency over time (assuming deterministic dynamics for
simplicity):

p() = T10gN(Y), )

where N(f) is the number of individuals in a population with phe-
notype f. The above definition leads to dynamics of the following
form:

P(f) = P(f)ly(f) - ¢l @)

where P(f) = N(f)/N is the proportion of the population (with
size N) that has phenotype f, and ¢ is the average fitness of the
population. This equation tells us that a phenotype will spread in
the population when its fitness is superior to the average fitness; the
speed of this spread depends on the proportion of the population
that already has that phenotype.

A particular phenotype distribution P is a rest point if, once reached,
it does not change over time. It is evolutionarily stable if any small per-
turbation decreases fitness (i.e., no ‘mutant’ can successfully invade
the population). An important result in the theory of evolutionary
dynamics is that if P is evolutionarily stable then it is also a rest point
(Taylor and Jonker, 1978); the converse is not true in general.

In principle, we could run the evolutionary dynamics forward
and see what kind of representations emerge. However, in practice
the lack of closed-form solutions makes it difficult to draw general
conclusions about neural representations. In the following sections,
we instead use other proxies for fitness which are more analytically
tractable.

2 Representations optimized for efficient coding

One way to increase fitness is to encode more information about
sensory signals in the neural representation. This comes with an en-
ergetic cost, because increasing the fidelity of neural transmission or
adding more neurons requires the provision of additional metabolic
resources. These trade-off are formalized in the principle of efficient
coding: neural representations are optimized to communicate infor-
mation subject to a set of resource constraints.

What are the resource constraints? First, neurons have minimum
and maximum firing rates. Second, spike counts are discrete, which
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As an example, suppose s = 1 corre-
sponded to the presence of a predator,
and s = 0 corresponded to its ab-
sence. A high-fitness tuning function
1 would map these different states
to distinct patterns of neural activity,
fT(1) # f1(2). In contrast, a low-
fitness tuning function f~ would have
low discriminability, f~ (1) =~ f~(2).

This is known as the replicator equation
(Schuster and Sigmund, 1983).

Technically, Taylor and Jonker (1978)
require P to satisfy a mild regularity
condition.

The application of efficient coding
to the brain was initiated by Barlow

(1961).
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means that firing rates calculated over some fixed interval of time are
discrete; thus, firing rates can only distinguish a finite number of dif-
ferent input levels. Third, irreducible sources of noise (e.g., thermal
noise that affects ion channels) limit the precision with which small
changes in a neuron’s input lead to commensurate changes in the
firing rate. These constraints mean that a neuron has an upper bound
on how much information it can communicate about its inputs. The
efficient coding principle states that the neuron should be configured
to operate at this upper bound.

To formalize this principle, let’s start with a single neuron con-
ceptualized as a communication channel for a scalar stimulus s. It
receives inputs (“messages”) about s that it communicates to down-
stream neurons via its firing rate (the channel output). Assume that
the firing rates can distinguish M different input levels. Informa-
tion is usually measured in “bits” (binary digits); with M firing rate
levels, a neuron can communicate up to log M bits per sample. This
upper bound is achieved when each firing rate is used with equal
frequency across the distribution of inputs. To see why, we need to
define information rate more precisely.

Intuitively, a communication channel is informative to the extent
that its outputs change the receiver’s beliefs about its inputs. In the
context of neural transmission, a neuron’s activity x (the spike count
vector) is informative to the extent that it allows downstream neurons
to reduce their uncertainty about the stimulus s. We can quantify
this uncertainty in the following way. The “surprisal” of observing s
(measured in bits) is defined as — log p(s), where we have assumed

that the base of the logarithm is 2. If a stimulus is perfectly pre- Returning to our earlier example,
if we rarely encounter a predator,

. . . . p(s) = 0.001, then surprisal will be
surprisal will be 1. Uncertainty can then be quantified as the average about 10 bits when we encounter the

dictable, p(s) = 1, then its surprisal will be o; if it’s a toss-up, the

surprisal, or entropy, capturing the idea that one is more uncertain predator. the rest of the time, surprisal

will be close to o bits. So the average

about stimuli that one can’t predict well: surprisal (entropy) will be about 0.01

bits.
Hls) = E[-logp(s)] = — ) p(s) logp(s (3)
In the same fashion, we can quantify uncertainty about s after ob-
serving neural activity x in terms of the conditional entropy:
Hlsla] = E[—log p(s|x)] = =L p(0) Lp(s)logplshy). (@)
The uncertainty reduction afforded by observing x is the difference
between these two entropies, the mutual information: Mutual information is also known as

relative entropy.

Zls; x] = H[s] - Hls|x]. (5)

Another way of thinking about uncertainty reduction is through the
lens of Bayesian updating. Before observing x, the receiver starts with

3
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a prior p(s), and then updates this to p(s|x) using Bayes’ rule. The
degree of change from the prior to the posterior can be quantified by
the Kullback-Leibler (KL) divergence:

s|x
Dlp(sl)]p(5)] = L p(s}) tog Lo ©
: p(s)
The expectation of the KL divergence under p(x) is equal to the
mutual information:

Tls;x] =} p(x)D[p(s|2)lp(s)]- )
X
Thus, the mutual information characterizes the average degree of
change in the posterior over s after observing x.
The mutual information is a symmetric function of its arguments,
which means we can equivalently write it as:

I[s; x] = H[x] — H][x|s]. 8)

This is convenient for thinking about neural coding. The first term
measures the variability of firing rates across the distribution of in-
puts. The second term measures transmission noise. If we assume
that transmission noise is negligible, then #[x|s] approaches o. Maxi-
mizing information then corresponds to maximizing output entropy.
This is achieved when the output response distribution p(x) is uni-
form, which can be implemented by setting the tuning function to be
the cumulative distribution function (CDF) of the stimulus distribu-

tion p(s): This is known as the probability integral
transform. In image processing it is
known as histogram equalization.
N Ao
f(s) e P(s) = [, p(s')as’ (©)
s'<s

We can think of this tuning curve as a rank transformation, where
the firing rate for a stimulus corresponds to its normalized rank in
the stimulus distribution. These ranks will change quickly in high-
density regions of the stimulus space, so the neuron will be most
sensitive to changes in these regions.

As an example, consider the distribution of brightness contrasts in
a natural image (Figure 1). Although the range of contrasts is rather
large, the distribution is concentrated in a narrow range. The tun-
ing curve derived from the CDF shows that sensitivity is optimized
around the mode of the distribution, flattening out for very low and
very high contrast values.
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Laughlin (1981), in a classic study of efficient coding, connected
the CDF for brightness contrast to neural responses of the blowfly’s
large monopolar cells, which are analogous to bipolar cells in the
vertebrate retina. These neurons exhibit a graded, sigmoidal response
to brightness contrast that is well-matched to the CDF (Figure 2).
This is remarkable considering that there are no free parameters; the
tuning curve is derived entirely from image statistics.

In this example, efficiency is gained by only coding variations
around the mean—absolute magnitude is discarded. This can lead
to powerful illusions, such as the one shown in Figure 3. The same
stimulus is mapped onto different firing rates depending on the
stimulus distribution, such that a brightness difference is perceived
where there is no objective difference.
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Figure 1: Brightness contrast statistics.
The distribution of brightness contrast
in a natural image and an estimate of
the cumulative distribution function.
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Brightness contrast

Figure 2: Efficient coding in the
blowfly eye. The circles show the
normalize responses of large monopolar
cells at different contrast levels. The
line shows the cumulative distribution
function of contrast estimated from
images of the fly’s natural environment.
Adapted from Laughlin (1981).

Figure 3: A brightness illusion. (Top)
The disc on the bright background
appears darker than the disc on the
dark background. (Bottom) When
displayed on a uniform background, the
two discs have the same brightness.



2.1 Noise

So far, we have assumed that noise is negligible. However, this as-
sumption is questionable. Consider again the blowfly large monopo-
lar cells, which receives input from photoreceptors. The precision
with which these photoreceptors can detect light is limited by sev-
eral sources. One is the noise from photon counts: because they are
quantum particles, the number of photons hitting a photoreceptor
has non-negligible variability when aggregated over the timescale
relevant for vision. A second source of noise comes from the trans-
duction of photons into membrane voltage (Lillywhite and Laughlin,
1979). Taken together, these noise sources imply that 7{[x|s] > 0,
and thus the optimal channel needs to balance entropy maximization
with noise suppression. The latter can be accomplished by smooth-
ing the noisy signals (e.g., by temporal averaging) before computing
the CDF (Atick and Redlich, 1992). Consistent with this hypothesis,
van Hateren (1992) showed that under conditions of low background
illumination (when photon noise is expected to be higher), neural
responses to light flashes are slower and more prolonged, indicative
of temporal averaging.

2.2 Efficient coding with multiple neurons

The efficient coding principle presented thus far applies only to a
single neuron. What is the optimal efficient code for a population of
neurons? One strategy for answering this question (see Atick, 1992;
Nadal and Parga, 1994) is to start by noting that if each neuron (d)
is tuned to a different stimulus (s;), then we’re back to the single-
stimulus setting described above. This realizes a factorial code, where
the marginal firing rate distribution decomposes into a product of
factors:

p(x) =T Tp(xa) (10)
d
The entropy then decomposes additively:

H[x] = ;H[xd]- (11)

As a consequence, the joint efficient coding problem separates into
independent efficient coding problems. Thus, low redundancy of
tuning curves allows neurons to solve a simpler efficient coding
problem.

An architecture of this sort may exist in the retina, where the reti-
nal ganglion cells (the stage of retinal processing prior to transmis-
sion into the brain) exhibit strong, though incomplete, decorrela-
tion of firing (Figure 4). This appears to arise from two mechanisms
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Figure 4: Decorrelation in the retina.
Pairwise correlations between reti-

nal ganglion cells. The solid blue line
shows the correlation for cells of the
same type; the dashed blue line shows
the correlation for cells of different
types. The black line shows the cor-
relation between pixels, a proxy for
correlations present in the photorecep-
tor array. Adapted from Pitkow and
Meister (2012).

Even though retinal ganglion cells are
not perfectly decorrelated, Nirenberg

et al. (2001) showed that more than 90%
of the information they carry about
stimuli could be extracted by a decoder
that ignored the correlations.



(Pitkow and Meister, 2012). One mechanism is the center-surround
structure of the receptive fields (Figure 5), which implement a form
of predictive coding (Srinivasan et al., 1982): each cell only responds
to the extent that excitatory input (in the center of its receptive field)
cannot be predicted by neighboring inputs (which send inhibitory
drive, thereby creating the antagonistic surround). In this way, the
cells respond primarily to uncorrelated prediction errors.

To see how this works, consider a simple linear model in which
a multidimensional stimulus s = (s1,...,Sp) corresponds to a pat-
tern of photoreceptor activity, where s; reports the light intensity at
retinotopic location d. The activity of nearby photoreceptors will tend
to be highly correlated because of correlations in the light intensities.
We model the activity of retinal ganglion cells (x) as a noisy linear
combination of photoreceptors (although in reality the connection is
indirect):

Xg=5S4— ) Wyasn +6€, (12)
n

where 1 ranges over the neighborhood of d, and € is uncorrelated
noise. If the second term is a good predictor of the first term, then
the elements of x will only reflect the uncorrelated prediction errors.

A second decorrelation mechanism is the non-linearity in the
response function, such that cells do not respond appreciably until
the excitatory drive is very strong. This has the effect of making
responses sparse (only a small proportion of cells are active for any
given stimulus), and generally reduces correlations between cells. As
we will discuss below, sparsity is itself a representational principle
used by the brain.

2.3 Efficient coding with a convolutional population

We can obtain further analytical insight into efficient codes by mak-
ing stronger assumptions about neural populations. Here we summa-
rize a model derived by Ganguli and Simoncelli (2014), who posited
an idealized “convolutional” population of neurons with identical,
uniformly spaced tuning functions—i.e., each idealized tuning func-
tion is a shifted copy of a “prototype” tuning function f, such that
the population obeys a tiling property:

Y fals—sa) =1, (13)
7

where {s;} is a set of evenly spaced points in stimulus space (what
we’ll call the stimulus lattice). The firing rates are then rescaled the

preferred stimuli warped to maximize an approximation of the mu-
tual information (the Fisher information) subject to an upper bound
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Figure 5: Center-surround receptive
field. Stimuli in the center of the
receptive field (green area) excite the
neuron; stimuli in the surround of the
receptive field (red area) inhibit the
neuron.

The log of Fisher information may

be either an upper bound or a lower
bound (up to a constant) on the mutual
information, depending on assumptions
about firing rate variability (Wei and
Stocker, 2016). For Poisson neurons
with high firing rates, variability is
approximately Gaussian, in which case
Fisher information is a lower bound.



(G) on the average firing rate summed across the population:
f = argmax Elog () (14)
subject to: E [Y_; f4(s)] <G, (15)

where both expectations are taken with respect to p(s). The Fisher
information J(s), implicitly a function of f, is defined as:

82
J(s) = Y. p(x]s)5 5 log p(xls), (16)

where x is the spike count vector for the population. For independent
Poisson neurons, this becomes:

/0%
](S) _g fd(s) ’ (17)
where f’ é(s) is the derivative of the tuning curve for neuron d. This
objective function is convenient because it can be expressed in terms
of the tuning functions and their derivatives, enabling an analytical
solution.

Each tuning function is parametrized according to:

fa(s) = g(s3) (T (s) = sa), (18)

where g(s) is a gain function (controlling the scale of the tuning func-
tion), I'(s) is a warping function (controlling the shape of the tuning
function), and s} = I~1(s4) is the preferred stimulus of neuron d
after warping. The warping function is derived from an underlying
density function y(s):

re) = [_ )" (19)

Intuitively, the density function controls to what extent the popula-
tion of neurons is tuned to a particular state, via both the spacing
of their preferred stimuli and their tuning widths. This can be seen
more easily by taking a first-order Taylor expansion of I'(s) around
syt
fa(s) = g(sq) f(v(sq)(s = s3), (20)

which shows that high-density regions of the stimulus space will
have both narrower spacing and narrower tuning.

The information-maximizing density and gain functions are given

by:

v(s) o pls),  g(s) =G (21)
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The warping function is the CDF of the
density function.
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Under this solution, the optimal warp-
ing function I'(s) is proportional to the
CDF of the prior distribution.

This solution shows that high probability stimuli should be encoded
with higher tuning density (i.e., there should be greater discrim-

inability of neural activity for high probability stimuli, due to the fact
that more neurons are tuned to that part of the stimulus space), and
that the gain is constant across stimuli. Thus, different stimuli are
encoded with varying precision depending on their prior probability,
but each neuron participates roughly equally in the representation

of the stimulus distribution—a hallmark of efficient coding, as we
discussed earlier.

Several empirical implications follow from this analysis. One is
that the average firing rate for a neuron, E[f;(s)] = [, p(s)fa(s)ds,
should be approximately constant across the population, due to the
constant gain function. Figure 6 shows the distribution of average
firing rates across a population of neurons in auditory cortex. We can
see that the distribution is strongly peaked and skewed; a large pro-
portion of the probability mass is concentrated around 1 Hz. Notably,
the stimulus-evoked distribution was found to be very similar to the
spontaneous distribution (not shown here), consistent with the idea
that average firing rate is invariant.

A second implication is that the distribution of preferred stimuli
should match the prior distribution. This is because the optimal
warping function is the CDF of the stimulus distribution, and the
preferred stimuli are obtained by taking the inverse CDF evaluated
at each stimulus on the stimulus lattice. This generates samples from
p(s), an algorithm known as inverse transform sampling (the inverse
of the probability integral transform described above). Orientation
of edges provides a useful case study, because the distribution in
natural images is non-uniform (Figure 7, left); cardinal orientations
(vertical and horizontal) are more prevalent than oblique orientations.
The distribution of preferred orientations in primary visual cortex
(V1) closely matches this distribution (Figure 7, right), as predicted
by the efficient coding theory.
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Figure 8 shows how this works in greater detail. We use the para-
metric form p(s) o 2 — |sin(s)|, which is a decent approximation
to the distribution of edge orientations in natural images (Girshick
et al., 2011; Wei and Stocker, 2015). The prototype population is a set
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Figure 6: Firing rate distribution in
auditory cortex following presentation
of auditory stimuli. Adapted from
Hromaédka et al. (2008).

Figure 7: Efficient coding of orien-
tation in primary visual cortex (V1).
(Left) Orientation distribution de-
rived from natural images. (Right)
Distribution of preferred stimuli from
orientation-tuned cells recorded in
Macaque V1 (Mansfield, 1974). Repro-
duced from Ganguli and Simoncelli
(2010).
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of cosine tuning curves of the form f;(s) = exp[cos(s —s})/v], where
s; is the preferred orientation for neuron d and v is the tuning width
(shared by all neurons). The prototype population is transformed
into an efficient code, which exhibits a concentration of tuning curves
in the high-probability region of orientation space—much like what
is seen in V1.

0.014 1 1 Figure 8: Efficient orientation coding.
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A third implication is that psychophysical performance should
correlate with coding fidelity. In particular, stimuli in high-probability
regions of the stimulus space should be more discriminable, because
more neural resources are allocated to those regions. This is true for
orientation: cardinal orientations are more accurately discriminated
than oblique orientations, a phenomenon known as the obligue effect
(Appelle, 1972; Girshick et al., 2011).

2.4 Fisher information as the fundamental unit of analysis

The previous section made a set of parametric assumptions about
the family of tuning functions, and then optimized these parameters.
While this is a powerful approach that lends itself to experimental
verification, one might wonder whether these assumptions are too
restrictive. After all, the space of possible tuning functions is vast. An
alternative approach is to abstract away from the details of specific
tuning functions and characterize the neural representation in terms
of more global properties.

Ganguli and Simoncelli (2014) found that the optimal Fisher infor-
mation scales quadratically with stimulus probability: J*(s) e« p(s)2.
It turns out that this is a general property of efficient coding. Wei
and Stocker (2015) obtained the same result by maximizing mutual



information subject to an upper bound on total Fisher information:

/S JIs)ds < C. (22)

Prat-Carrabin and Woodford (2021) analyzed a more general objec-
tive function:

¢ _ aromin | PG
fr= argjlcnm/sj(s)mds (23)
subject to: [, \/J(s)ds < C. (24)

In the limit B — 0 and a = 1, this recovers the efficient coding
objective. When = 1 and & = 2, the objective function corresponds
to maximizing expected reward in a discrimination task where the
decision-maker receives a constant reward for a correct answer. The
general form for the Fisher information under the optimal solution is
given by:

J*(s) & p(s) P (25)

Thus, the general form is always a power function of the stimulus
distribution. Inspecting this equation, we can see that the discrimina-
tion task leads again to [*(s) « p(s)?. Prat-Carrabin and Woodford
also considered other tasks which lead to different powers. For exam-
ple, the representation that minimizes squared estimation error (see
next chapter) leads to J*(s) & p(s)?/3.

The take-away from this section is that it’s possible develop a
general theoretical account of optimal representation that abstracts
away from specific assumptions about tuning functions. The cost of
doing this, of course, is that the predictions about the precise form of

tuning functions in the brain become weaker.

3 Representations optimized for sparsity

A number of experiments have demonstrated that only a small pro-
portion of neurons are active at any given time. For example, Yoshida
and Ohki (2020) measured the response of V1 neurons to natural im-
ages, finding that on average 2.5% of neurons were active for each
image. Of these responsive neurons, only 5.4% of them exhibited
overlap between pairs of images. In olfactory cortex, individual odors
activate on average 10% of neurons (Poo and Isaacson, 2009). In au-
ditory cortex, sounds activate on average 5% of neurons (Hroméddka
et al., 2008). In the medial temporal lobe, 40% of visually responsive
neurons were selective for pictures of a single person, place, or object
(Quiroga et al., 2005). These observations suggest a general principle
of sparse coding.

CHAPTER 3
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One way to think about the logic underlying this principle is to
start from the observation that our sensory data arise from many dif-
ferent causes, only a few of which are present at any given moment.
For example, if your eyes scan a scene, you'll see a relatively small
set of objects; the high-dimensional time series of retinal images
arises from different glimpses of a slowly changing object set. As a
consequence, the retinal images live on a low-dimensional subspace
defined by the set of currently active causes (objects in this case). The
problem of perceptual inference is identifying which causes are active
at any given moment, while the problem of perceptual learning is
identifying the stable mapping between causes and images.

3.1 Linear sparse coding

Olshausen and Field (1996) formalized these ideas in terms of a lin-
ear model of stimuli:

Su =3 Panva + €n, (26)
F

where v, is the activation of cause d, ¢, is the contribution of cause
d to stimulus component s, (e.g., photoreceptor activity correspond-
ing to retinotopic location n), and €, is a Gaussian error term. They

also placed a prior on v that favors sparse activation of causes (i.e.,

12

most causes are inactive): This is known as the Laplace distribu-

tion.

p(vq) < exp(=Alvgl), (27)

where A > 0 is a scaling parameter. Putting these together and taking

logarithms leads to the following optimization problem: The optimal parameters here corre-
spond to the mode of the posterior

2 distribution, p(v, ¢|s).

+ A |val. (28)
d

v, 9" = argminz [sn - Zgbdnvd
d

v, n

Optimizing this cost function produces a sparse code f(s) = v*

for each stimulus, as well as the optimal linear transformation ¢*.
The resulting tuning functions are remarkably similar to those of Tuning functions of this kind are

sometimes known as Gabor filters,

. . . . . a classical model of V1 simple cells
of particular orientations and frequencies (Figure 9). (Marcelja, 1980).

“simple” cells in V1: they are spatially localized, and tuned to edges

3.2 The metabolic argument for sparsity

So far, we have focused on the argument that sparsity is a good as-
sumption about the distribution of stimuli, which in turn makes it a
good constraint on neural representations. Here we will discuss how
sparsity can also reduce the metabolic cost of information processing.
The two major contributors to energy consumption in the brain

are spiking and synaptic transmission (Attwell and Laughlin, 2001). The neocortex (the primary division of

the cerebral cortex) consumes 44% of

the brain’s energy budget.
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Learned receptive fields Figure 9: Visual receptive fields from
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Lennie (2003) estimated that a single spike in human cortex costs
2.4 x 10° molecules of ATP. Based on cortex-wide measurements
of glucose metabolism, Lennie came to the conclusion that single
cortical neurons would need to spike on average less than once per
second in order to satisfy the energy budget. This is remarkably low
given the fact that electrophysiology studies have reported spike rates
of up to 100 Hz. In fact, both of these observations are present in
Figure 6, which we saw earlier: neurons typically spike close to 1 Hz,
but can infrequently achieve much higher spike rates.

Lennie then examined the case of a typical “strong” response to
a stimulus, with a spike rate of 10 Hz over 200 ms. In this case, the Don'’t take these numbers too literally,
energy budget could support concurrent spiking in 0.3% of neurons. they’re mainly for the sake of argument.
Even allowing for large transient increases in glucose consumption
during intense sensory stimulation, the average spike rate can only
increase by a few spikes per second, yielding an estimate of 4% of
concurrently active neurons spiking at 50 Hz. The point of these
calculations is to show that metabolic constraints necessitate sparsity
of neural activity.

Intriguingly, the glucose metabolism rate in human cortex is 3
times lower than in rats, despite the fact that individual spikes use
3.3 times more energy per spike. This suggests that the human brain
has evolved a high degree of information processing efficiency. It is
tempting to speculate that this is the dividend from a more powerful
internal model: we can parsimoniously encode high-dimensional
sensory signals into low-dimensional and sparse causes.

4 Representations optimized for prediction

As Shakespeare wrote in The Tempest, “what’s past is prologue”—

the future can, at least partially, be predicted from the past. A per-

ceptual system that can exploit this predictability can reap several

benefits. The fovea is a structure at the center
of the retina containing tightly packed
cone photoreceptors, the main source

of visual information under well-lit
conditions.

For example, our high-acuity (foveal) vision is limited to a small
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portion of the visual field (about 2 degrees, approximately twice the
width of your thumbnail held at arm’s length). One reason that we
perceive much more than the central 2 degrees is that our eyes are
making frequent saccades—ballistic, high-velocity movements to
salient regions of the visual field. Saccades to unpredictable stimuli
usually take around 200 ms. In contrast, saccades to predictable
stimuli can be initiated even before the stimulus appears (Stark et al.,
1962). This is useful in a fast-changing but predictable world, where
predictive saccades can increase the rate of information flow.

A similar story can be told about smooth pursuit, where the eyes
stay fixated on a moving object. With extended experience track-
ing an object that follows a repeating path (e.g., sinusoidal motion),
smooth pursuit improves and can even make anticipatory changes in

direction (Dodge et al., 1930). See Chapter 6 for more on the mech-
Even without eye movements, prediction can improve perception. aﬁlsmts, underlying cued attentional
allocation.

A centrally presented cue, indicating the likely future location of a
target, speeds detection of the target when it appears in the cued
location, and slows down detection when it appears unexpectedly in
an uncued location (Posner, 1980).

With these observations as backdrop, let’s return to the question of
perceptual representation. We will formalize a principle of predictive
optimality for neural encoding, and then examine to what extent this
principle fits with empirical data.

4.1 The predictive information bottleneck principle

Let spast denote the history of stimuli, and sgure denote future stim-
uli that haven’t been observed yet. The prediction problem is illus-
trated in Figure 10. A population of neurons encodes the stimulus
history into its spiking activity. If this population carries predictive
information, it should be able to predict the future trajectory of the
stimulus over some timescale.
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An optimal predictive representation x = f(spast) should maxi-
mize predictability of the future subject to a constraint on memory of
the past (Bialek et al., 2001):

f* = argmaXI[x; Sfuture} (29)
subject to Z [spast; x] < C. (30)

For different choices of the capacity parameter C, we can chart an
optimality frontier (Figure 11). This tells us the highest achievable
predictive information for a given constraint on memory capacity. We
can then use this as a quantitative benchmark for assessing predictive
information in neural populations.

4.2 Predictive information in a retinal population

The retina is one of the earliest stages of vision in which signatures of
prediction are present. For example, Berry et al. (1999) found that a
moving bar evokes a wave of activation in retinal ganglion cells that
tracks the leading edge of the bar. This is remarkable given that firing
latency of retinal ganglion cells to unpredictable flashes is around 50
ms. The population apparently learns to compensate for this delay by
anticipating the bar position.

Applying the predictive information bottleneck to the retinal en-
coding of a moving bar, Palmer et al. (2015) found that the encoding
was very close to optimal: given the amount of information carried
by the retinal ganglion cells about past stimuli, information about
future stimuli was almost perfectly on the optimality frontier (Figure
12). This result could not be explained by a conventional model of
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Figure 10: The prediction problem.
(Top) A one-dimensional time-varying
stimulus. (Bottom) A spike raster show-
ing the activity of a neural population.
Reproduced from Rust and Palmer
(2021).
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Figure 11: The predictive information
bottleneck. The blue curve shows the
optimality frontier. Representations
that lie above the frontier are forbidden;
representations that lie below the
frontier are suboptimal. The dashed
line shows a hypothetical capacity
parameter.

See also Liu et al. (2021) for converging
evidence with other motion patterns.



retinal ganglion cells based on linear filtering of the spatiotemporal
stimulus followed by a spiking non-linearity; fitting this model to the
neural data produced predictive information far below the optimality
frontier.

4.3 Predictive information in sensory cortex

Moving into cortex, we can find even more impressive feats of pre-
diction. For example, a moving spot evokes a sequential pattern of
activity in V1; after repeated stimulus presentations, this sequential
pattern is reproduced autonomously by a stationary spot of light at
the starting point of the motion path (Xu et al., 2012; Ekman et al,,
2017). Similarly, V1 neurons can “complete” sequences of stimuli
with missing elements (Gavornik and Bear, 2014). Another study
found that V1 activity during spatial navigation becomes increasingly
predictive of upcoming stimuli (Fiser et al., 2016).

Singer et al. (2018) asked whether known properties of receptive
fields in sensory cortex could be explained as the result of representa-
tions optimized for prediction. They trained simple neural networks
to predict future auditory or visual stimuli based on recently pre-
sented stimuli. For visual stimuli, they fed the network the 7 most
recent frames and predicted the next frame. For auditory stimuli,
they fed the network the cochleagrams covering the last 200 ms and
predicted the next 15 ms. Singer et al. compared the learned recep-
tive fields to those of V1 and primary auditory cortex (A1), finding
that the model reproduced many of the receptive field types observed
experimentally, with a quantitative match superior to non-predictive
models. They also found that the predictive ability of the trained
networks was correlated with their match to neural data. These find-
ings support the claim that representations in sensory cortex are
optimized for prediction.

5 Predictiveness vs. efficiency

The attentive reader may have noticed a tension between the solution
to the predictive information bottleneck problem (Section 4) and the
predictive coding solution to the efficient coding problem (Section

2). Although both solutions involve predictions, what they do with
these predictions is quite different. In the predictive information bot-
tleneck, only the predictively useful information is kept; in contrast,
predictive coding discards predictive information by only encoding
prediction errors. Since sparse coding can arise from efficient coding
(as we saw in the case of the retina), predictiveness may also some-
times be at odds with sparsity.
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Figure 12: Predictive information in
a retinal population. Color denote
groups of cells of different sizes (N).
The black line shows the optimality
frontier. Adapted from Palmer et al.
(2015).

A cochleagram is a time-frequency
representation of auditory input that is
matched to the filtering properties of
auditory nerve fibers carrying sound
information from the cochlea.
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Although these different objectives seem fundamentally incom-
patible, it’s important to keep in mind that efficient coding in fact re-
quires that probability information is retained in some form—though
not necessarily in the spiking activity. For example, the approach
of Ganguli and Simoncelli (2014) assumes that the stimulus distri-
bution is encoded in the set of tuning functions. In the approach of
Srinivasan et al. (1982), the stimulus distribution is encoded in the
inhibitory connections impinging on retinal ganglion cells. Further-
more, a downstream decoder reading out this information would
need to have access to this information in a computationally use-
ful format. Ganguli and Simoncelli (2014) show how a biologically
plausible decoder can be constructed that reports the posterior mean.

Another point of view is that these different objectives may arise
as special cases of a single unifying objective. Chalk et al. (2018) gen-
eralized the predictive information bottleneck problem by allowing
prediction at some future time point ¢t + A (where ¢ is the current
time point) to depend on neural activity in a window of length 7.
When A < 0, the goal is to reconstruct the stimulus history based
on the neural activity x;_.; the optimal solution is sparse, with
highly selective tuning functions (e.g., to particular motion directions
when trained on moving stimuli). When A > 0, the goal is to predict
future stimuli, and the code becomes distributed, with relatively non-

selective tuning functions. Underlying this transition from sparse to Chalk et al. (2018) also discuss how the
distributed is the constraint that prediction (particularly for short A) framework predicts different effects

. . . . . Lo . . depending on 7, the capacity parameter
requires rapid processing of stimuli. This is not possible with sparse C, and the statistical structure of the
codes, where each neuron only glimpses a slice of the stimulus. Thus, stimulus. In the interest of brevity, we

. . . . do not discuss those aspects here.
prediction latency imposes a strong constraint on sparsity.

6 Conclusion

While no single principle can explain all the relevant empirical phe-
nomena, we have seen that a small set of principles has a remarkably
wide scope. All of these principles are closely related to one another,
even when they make qualitatively different predictions. Weaving
through the different formalisms is the unifying idea that represen-
tations should be optimized to encode information that is useful for
certain tasks (reconstruction, inference, prediction). In the following
chapters, we will explore in greater detail how the brain carries out
these tasks.
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Study questions

1. Efficiency, sparsity, and prediction principles are partly complemen-
tary but sometimes contradictory. How might these principles be
reconciled into a single unifying framework of perceptual represen-
tation? To what extent are they incompatible?

2. Representations are conceptualized here in terms of tuning func-
tions. What are the limitations of this conceptualization when com-
pared with a more dynamical view of neural computation?

3. The energy efficiency of the brain is remarkable (its power usage
is comparable to a dim light bulb). What might we learn about the
design of energy-efficient artificial systems from studying the brain?
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