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Chapter 15: Generalization, geometry, and
causality

Natural environments present agents with a combinatorial space of
problems. Learning a solution to one problem is useless in the long run
unless some aspect of the solution is generalizable to other problems.
The brain’s ability to do this effectively is an important computational
mystery. One approach to unraveling the mystery, pursued in this
chapter, is to look at generalization from the perspective of causality:
generalization is most effective when learning invariant predictors
that plausibly capture causal relationships between variables, while
disregarding spurious (non-causal) relationships. Representations that
support invariant prediction have a distinctive parallel geometry that is
attested in neural recordings, supporting the idea that the brain orga-
nizes its representational architecture to support causal generalization.
Several mechanisms for learning invariant predictors are reviewed,
with connections to dreaming and oscillatory plasticity rules.

Generalization is something so natural for our brains that it’s easy
to miss how remarkable it is. Consider the seemingly simple problem
of recognizing a cow in an image. People have no trouble with the
images shown in Figure 1, yet convolutional neural networks trained
for object recognition (see Chapter 8) struggle when cows appear in
unusual backgrounds like beaches. Because cows appear mainly in
pastures, the networks learn to rely on information contained in the
background—a spurious correlation that should be ignored. How
does the brain know what to ignore?

Figure 1: Recognizing cows with dif-
ferent backgrounds. Labels, generated
by a convolutional neural network, are
shown below each image. Reproduced
from Beery et al. (2018).

The essence of the problem is causality: we understand intuitively
that pastures don’t cause cows to appear in images. Only cows cause
the appearance of cows! Because cows often graze in pastures, the
presence of a pasture makes it more likely that a cow will be there.
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In other words, we could think of the pasture as a cause of the cow’s
presence, which in turn causes its appearance in a photo of the pas-
ture. Critically, if the farmer arrives and leads the cow back to its It’s important to understand that

interventions are a special form of
variation, because they alter causal
structure; they aren’t simply random
samples from the joint distribution of
variables.

stable, the pasture will still appear in the photo but the cow will not.
The farmer has “intervened” on the causal structure, severing the
correlation between the pasture and the cow appearance.

Figure 2 depicts the situation graphically. Here X is the pasture,
Y is the cow presence, and Z is the cow’s appearance in the photo
(all binary variables in this case). The farmer’s intervention is repre-
sented by the “do” operator (Pearl, 2009), which removes the causal
influence of X on Y. This in turn breaks the spurious correlation
between X and Y. In other words, X is not a cause of Z because its
effect on Z is not invariant across interventions on Y (a cow will not
appear in a photo if it’s absent, even if the photo is taken in a pas-
ture). In contrast, Y is a cause of Z because its effect on Z is invariant
across interventions on X (a cow will appear in a photo if it’s present,
even if the photo is taken on a beach).

X Y Z

X Y Z

do(Y=0)

Figure 2: A causal model. (Top) The
model represented as a directed graph,
where nodes represent variables and
arrows represent causal dependencies.
(Bottom) Intervening on variable Y,
represented by do(Y = 0), sets Y to 0

and removes the arrow from X to Y.

The view of causality as invariance under intervention is central to
understanding its role in generalization. A system that learns in-
variant causal mechanisms will generalize correctly to new contexts,
whereas a system that learns spurious correlations will not. The goal
of this chapter is to unpack this idea more systematically, and then to
explore its implications for the brain. We will see how causal invari-
ance is achieved by neural representations with a particular geometry
in the high-dimensional space of population activity. This geometry
is abstract in the sense that it maintains its structure across contexts,
reflecting the underlying causal invariants that are unaffected by
interventions on the other variables that collectively comprise the
context.
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1 Causality and invariance
For a philosophical exposition, see
Woodward (2005). A plethora of terms
in other fields have been used to de-
note closely related ideas: robustness
(Bühlmann, 2020), autonomy (Haavelmo,
1944), ignorability (Rubin, 1978).

Many different strands of thinking about causality have pivoted
around some notion of invariance. They all have in common the as-
sertion that causal relationships are “law-like” in the sense that they
generalize across many contexts. Conversely, contexts are interven-
tions that leave the causal relationships intact. Because each context
is associated with a different distribution over observations, knowl-
edge of causal relationships enables a form of “out of distribution”
generalization.

The critical question is how we can obtain causal knowledge from
observational data. The next section describes a formal framework
that (under some assumptions) guarantees invariance across the
space of all contexts, provided invariance is satisfied in a sufficiently
diverse set of training contexts.

1.1 From empirical to invariant risk minimization

Recall the empirical risk minimization setup from Chapter 8. We
are given a dataset of M input-label pairs, {xm, sm}M

m=1, where xm is
an input (e.g., an image) and sm is its label (e.g., an object category
or a continuous feature like size). The goal is to find a conditional
distribution q(s|x), a predictor, that minimizes the empirical risk:

L̂(q) =
1
M ∑

m
L(q, sm, xm), (1)

where L(q, s, x) is a loss function.
Now consider the following regression example using continuous

labels (s ∈ R) and two continuous inputs (x = [xa, xb]). Suppose that
the data-generating process has the following structure:

xa ∼ N (0, σ2
a ) (2)

xb ∼ N (y, σ2
b ) (3)

s ∼ N (xa, σ2
s ). (4)

Here s is an effect of xa and a cause of xb. Ideally, we would like our
classifier to correctly identify the causal structure, relying only on xa

to predict s. Unfortunately, this will not generally be the case for em-
pirical risk minimization. The Bayes-optimal predictor, obtained by Cross-entropy loss: L(q, s, x) =

− log q(s|x).minimized by the cross-entropy loss (see Chapter 8), is the posterior,
q(s|x) = p(s|x), which in this case is a Gaussian with mean ŝ:

ŝ =
σ2

b
σ2

y + σ2
b

xa +
σ2

y

σ2
y + σ2

b
xb. (5)
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In the limit σ2
b → 0, xb becomes a deterministic effect of s, and its

coefficient goes to 1, whereas the coefficient for xa (the correct causal
predictor) goes to 0. This is a case where empirical risk minimiza-
tion learns a spurious correlation rather than an invariant cause. In
essence, the problem is that there is no way to learn invariant causes
without some source of variance.

To address this problem, we need to generalize the setup by con-
sidering a set of contexts or environments (indexed by e), each as-
sociated with a distribution pe(s, x). This provides the source of
variance that allows us to an identify invariant predictor that cap-
tures the causal structure. Naively, you might think that you could
just pool all the contexts together and apply the standard empirical
risk minimization approach. However, this can still lead to fitting
spurious correlations if the variance of the non-causal variables is
small. What’s needed instead is a predictor that performs well simul-
taneously in all the contexts, which eliminates non-causal predictors
by stress-testing them in contexts where they fail. This is known as
invariant risk minimization (Arjovsky et al., 2019).

In order to guarantee that causal variables can be identified, the
predictor needs access to a sufficiently rich feature representation,
such that at least some of the features correspond to causal variables.
In Chapter 8, we decomposed q(s|x) into two parts: a non-linear
encoder ϕ(x), followed by a log-linear decoder:

q(s|ϕ(x)) ∝ exp [βs + ws · ϕ(x)] , (6)

where ws is a weight vector and we have included a bias term βs.
With this parametrization, the feature representation corresponds to
the encoder. A rich feature representation typically entails that the
encoding matrix Φ = [ϕ(x1), . . . , ϕ(xM)] is high-dimensional and has
a large rank (to ensure diversity of features).

For simplicity, we will focus on binary classification, with s ∈
{1, 2}, where the log odds takes the following form:

log
q(s = 1|ϕ(x))
q(s = 2|ϕ(x))

= β + w · ϕ(x), (7)

where w = w1 − w2 and β = β1 − β2. When the class-conditional
distribution over features is Gaussian, ϕ(x)|s ∼ N (ϕ̄s, Σ), the Bayes-
optimal weight vector and bias are given by:

w∗ = Σ−1(ϕ̄1 − ϕ̄2) (8)

β∗ = log
p(s = 1)
p(s = 2)

− 1
2
(ϕ̄1 + ϕ̄2)w∗, (9)

where p(s) is the prior distribution over class labels. For isotropic
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covariances, Σ = σ2I, the optimal weight vector simplifies further:

w∗ ∝ ϕ̄1 − ϕ̄2. (10)

The optimal weight vector is proportional to the coding direction—the
direction in feature space that maximally separates the two classes,
which in this case corresponds to the difference between the class-
conditional means (Figure 3).

Figure 3: Binary classification. The
two green arrows represent the vectors
pointing at the class-conditional means.
The red arrow shows the coding direc-
tion obtained by vector subtraction.

Let’s now consider how context affects this picture. Suppose that
each context appends a set of extra features that are uncorrelated
with the labels. This will change the optimal bias, but will not change
the optimal weight vector. Thus, w∗ defines an invariant predictor: it
can be applied across all contexts.

1.2 Context-dependent flexibility

Our assumption that context essentially adds noise to the classifica-
tion problem is violated in settings where the labels are correlated
with the context. These settings require context-dependent flexibil-
ity, where the weight vector is allowed to vary across contexts. At
the same time, we still want to seek causal invariants that support
abstraction across contexts. To this end, we relax the invariant risk
minimization problem as follows: Note that the subscript on the weight

vector now indicates context, not class.

w∗
e = argmin

w
L̂e(w) + λ∥w̄ − w∥2, w̄ =

1
N ∑

e
we, (11)

where L̂e(w) is the empirical risk given weight vector w in context e,
and w̄ is the average weight vector across all N contexts. The second
term regularizes each context-dependent weight towards the average
weight; the parameter λ controls the strength of this regularization.
When λ is large, w∗

e will tend to be invariant across contexts.
The regularizer implies an intriguing geometric property. Suppose

we have two contexts, e ∈ {1, 2}. If we sum the regularization terms
across contexts and apply the Law of Cosines, we get:

∥w̄ − w1∥2 + ∥w̄ − w2∥2 = ∥w1∥2 + ∥w1∥2 − 2∥w1∥∥w2∥ cos(θ), (12)

where θ is the angle between the weight vectors. Thus, the regu-
larizer penalizes both large weights (the first two terms) and large
angles between the weight vectors. Recall that the optimal unreg-
ularized weight vector is proportional to the coding direction (the
difference between the class-conditional means). This suggests that
if we also optimize an encoder ϕ(x, e) defined jointly over sensory
inputs and context, we should find representations where the coding
directions are approximately parallel across contexts (i.e., θ ≈ 0). This
geometric property can be found in parts of the brain, as we discuss
next.
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2 Representational geometry in the brain

Bernardi et al. (2020) trained monkeys to perform a context-dependent
decision making task in which monkeys could make one of two re-
sponses (a ∈ {R, H}) to an image (x). They received reward based
on a context-dependent reward function. The context switched ev-
ery 50-70 trials. While monkeys performed this task, the researchers
recorded neurons in the hippocampus and two prefrontal areas (the
dorsolateral prefrontal cortex, and the anterior cingulate cortex).

To perform well on this task, monkeys should represent the task
structure in such a way that the correct action can be decoded from
ϕ(x, e). For a linear decoder, this only requires that there is some
weight vector w that separates the correct and incorrect actions for
each context. However, as we’ve already discussed, this admits spuri-
ous correlations that can lead to poor generalization. The framework
developed in the last section suggests that we should expect invariant
predictors to exhibit parallelism in the representational geometry: the
angle between coding directions for different contexts should be close
to 0. This was indeed the case for all three brain areas; two exam-
ples are shown in Figure 4, where neural representations for the two
contexts look like approximately translated copies of one another.
This suggests that representations in these areas are optimized for
extracting invariant predictors.

Figure 4: Representational geometry
in two prefrontal areas. Each point
corresponds to neural activity (pro-
jected into 3D using multidimensional
scaling) for a single context-value-action
combination, where the letters denote
stimuli, the superscripts denote value
(+ reward, - unrewarded), and the
subscripts denote actions. The colors
correspond to the two contexts. DLPFC:
dorsolateral prefrontal cortex; ACC:
anterior cingulate cortex. Reproduced
from Bernardi et al. (2020).

On its own, parallelism doesn’t guarantee flexibility. In fact, par-
allelism strongly limits flexibility. This is because to achieve perfect
parallelism, the representation needs to be factorized:

ϕ(x, e) = f (x) + g(e). (13)

This structure guarantees that context-dependent factors are un-
correlated with input-dependent factors that arise from the class-
conditional distribution p(x|s). To quantify flexibility, we can ask
how many different dichotomies of M points can be linearly sepa-
rated (i.e., correctly discriminated by a linear decoder) by a given
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representation—the shattering dimensionality. In the fully factorized
case, the shattering dimensionality is the rank of the representation
matrix Φ; if all the columns (corresponding to features) are linearly
independent, then the rank is simply the number of features. This is
usually much smaller than the total number of possible dichotomies
(2M).

One way to achieve greater flexibility is to add an “interaction”
term ψ(x, e): The interaction term corresponds to

what Rigotti et al. (2013) call nonlinear
mixed selectivity.ϕ(x, e) = f (x) + g(e) + ϵψ(x, e), (14)

where ϵ ≥ 0 controls the strength of the interaction term. As long
as ϵ is close to 0, parallelism will be approximately satisfied. Im-
portantly, even a small non-zero value of ϵ is sufficient to guarantee
that all dichotomies are linearly separable, as long as the rank of the This result is known as Cover’s Theo-

rem (Cover, 1965).representation matrix is at least M. Thus, sacrificing a small amount
of parallelism can enable a huge gain in flexibility. This is consis-
tent with observations from Bernardi et al. (2020), who found that
all three brain exhibited high shattering dimensionality, despite also
having high parallelism.

3 Offline mechanisms for causal learning

So far, our treatment of invariant prediction has relied on an ex-
trinsic source of variance. In other words, an agent has to actually
experience different contexts in order to discover invariant predic-
tors. As such, the prison of experience severely constrains the scope
of causal learning. Fortunately, the brain is not truly a prisoner of
experience—it can synthesize counterfactual data, providing itself
with an alternative source of variance.

3.1 Learning from randomized data: a function of dream sleep?

Domain randomization (Tobin et al., 2017) is a powerful and sim-
ple method for improving the generalization capabilities of machine
learning systems. It was originally developed in robotics, where sys-
tems are first trained on simulated data before being deployed in the
real world. A common pitfall for such systems is the reality gap: poor
performance in the real world despite good performance in simu-
lation. One reason this happens is that the learning algorithms fit
spurious correlations in the simulated data. Domain randomization
addresses this problem by randomizing aspects of the simulator (e.g.,
viewpoint, color, texture) that are independent of the underlying
physical laws (Figure 5). This provides the source of variance needed
to learn invariant predictors.
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Figure 5: Images generated from a
randomized simulator. Reproduced
from Tobin et al. (2017).

Hoel (2021) has argued that dream sleep might serve a similar
function. Dreams often occur in response to repetitive task training.
For example, many people trained on a virtual maze navigation
task reported task-related mental imagery during sleep, and the
occurrence of this imagery was predictive of subsequent performance
on a later test with random starting positions (Wamsley et al., 2010). The chemist Friedrich Kekulé famously

discovered the circular structure of
benzene based on a dream in which a
snake bit its own tail.

This suggests that dreaming does not merely improve memory—
it also improves generalization (see Lewis et al., 2018, for further
examples).

Overtraining can sometimes lead to performance degradation, pos-
sibly due to overfitting, which can be reversed with sleep. Mednick
et al. (2002) showed that human performance on a visual texture dis-
crimination task declined over several training sessions, except when
subjects took a nap between sessions. One explanation centers on the
fact that performance in this task is retinotopically specific: changing
the location of the stimulus to an untrained region of visual space
rescued performance. If some neurons in early visual areas (which
are retinotopically organized) are relatively insensitive to visual tex-
ture, then these would constitute spurious correlations when stimuli
are consistently presented in a particular location. Overfitting these
spurious correlations would then lead to performance degradation.
If sleeping generates variation not available during waking, it could
ameliorate overfitting by breaking the spurious correlations. While
there is no direct evidence for this hypothesis, it is consistent with
the finding that activation of visual areas during REM sleep (when
dreams typically take place) tend to be broader than activation dur-
ing waking (Igawa et al., 2001).

If dreaming prevents overfitting by generating variation for learn-
ing, then we should expect patterns of activation that look different
between sleeping and waking states. Analyses of dream diaries indi-
cate that dream content is typically related to recent waking experi-
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ence, but is rarely a simple replay of experience (Fosse et al., 2003).
Another avenue into this question is the measurement of hippocam-
pal place cells, which are known to activate during sleep. Spatial
locations can be decoded from these activations, enabling comparison
of decoded trajectories between sleeping and waking states. No-
tably, these trajectories are not the same (Stella et al., 2019). The same
conclusion is reached when examining activations during quiet rest
periods, when animals are awake but not moving much (Gupta et al.,
2010). These findings are in broad agreement with the hypothesis
that offline activation generates a form of domain randomization.

Figure 6: Separation of encoding
and retrieval phases by theta oscil-
lations in the hippocampus. EEG:
electroencephalography; LTP: long-term
potentiation; LTD: long-term depres-
sion. CA3 and CA1 are subfields of
the hippocampus. The fissure is an
anatomical landmark at the input to
CA1. Reproduced from Hasselmo et al.
(2002).

3.2 Oscillating inhibition and contrastive learning

Another way to generate variation in the service of learning is through
transient alteration of brain activity. Brain oscillations are a promis-
ing candidate for this function. In particular, the hippocampal theta
rhythm (4-8 Hz), which arises from inhibitory interneurons (Allen
and Monyer, 2015), controls both the level of activity, the relative
strength of feedforward vs. feedback/recurrent pathways, and the
direction of plasticity (summarized in Figure 6). Hippocampal ex-
citatory (pyramidal) neurons tend to have the highest firing rates
near the peak of the theta oscillation (Fox et al., 1986). This phase
also coincides with the strongest recurrent activity in subfield CA3

and greater long-term depression at hippocampal synapses (Huerta
and Lisman, 1995). An opposite profile is observed at the trough of
the theta oscillation: lower firing rates, stronger feedforward activity
from entorhinal cortex, and greater long-term potentiation. On the
basis of these data, Hasselmo et al. (2002) proposed that a function
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of theta oscillations in the hippocampus is to separate encoding and
retrieval phases.

The fact that plasticity is still happening (albeit in the opposite
direction) during the “retrieval” phase suggests that this isn’t pure
retrieval, but rather a different kind of encoding. Instead of encoding
vs. retrieval, we could think of phase-dependent plasticity as imple-
menting a form of contrastive learning, with Hebbian plasticity during
the theta trough and anti-Hebbian plasticity during the theta peak
(Norman et al., 2006; Ketz et al., 2013). Oscillating inhibition plays The idea of using contrastive learning

to discover causal representations has
also been explored in the machine
learning literature (Mitrovic et al., 2020;
Wang and Jordan, 2024).

an important role here, by generating “positive” examples near the
trough (when inhibition is high) and “negative” examples near the
peak (when inhibition is low). Positive examples correspond to plau-
sibly invariant causal mechanisms: these reflect patterns of covaria-
tion that survive when inhibition intervenes on spurious correlations.
Hebbian plasticity strengthens these patterns. When inhibition is
reduced near the peak, spurious correlations are revealed and then
weakened by anti-Hebbian plasticity. In this way, contrastive learning
with oscillating inhibition can learn causal representations.

Figure 7: The nonmonotonic plasticity
hypothesis. (Left) Hypothetical rela-
tionship between activation level and
plasticity. Strongly activated memories
are strengthened; moderately activated
memories are weakened. (Right) Data
from Kirkwood et al. (1996) showing
long-term depression for intermediate-
frequency stimulation and long-term
potentiation for high-frequency stim-
ulation. Reproduced from Ritvo et al.
(2019).Oscillating inhibition combined with contrastive learning produces

a form of plasticity that varies nonmonotonically with neural activa-
tion level (Figure 7). When inhibition is high, only the most invariant
patterns survive—these get strengthened by Hebbian learning. When
inhibition is low, both spurious and invariant patterns are active—
these get weakened by anti-Hebbian learning.

4 Conclusion

This chapter aimed to demystify some central aspects of high-level
intelligence: generalization, abstraction, and causal knowledge. We
started with the principle that causality is invariance under interven-
tion: a causal relationship between variables is precisely the structure
that remains intact when other aspects of the world change. This
principle ties causality tightly to generalization, since invariance
is the abstraction needed to make predictions in new contexts. We
showed how invariance manifests geometrically as a parallel struc-
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ture in neural representations, reflecting the factorization of causal
and contextual variables. The parallelism cannot be perfect, however, This treatment of “causal representa-

tion” picks up a thread that was begun
in Chapter 3, exploring different prin-
ciples of representation. For a more
comprehensive discussion of causal
representation learning, see Schölkopf
et al. (2021).

because some non-linear interaction between these variables (mixed
selectivity) is needed to endow the system with a sufficiently rich fea-
ture set for generalization across many different prediction problems.

Finally, the chapter discussed biologically plausible algorithms for
escaping from the prison of experience: domain randomization by
dreaming, and contrastive learning by oscillatory plasticity. Both al-
gorithms have in common the idea that the source of variance needed
for learning invariant predictors can be generated intrinsically by the
brain. This broadly agrees with theories from cognitive science about
the role of counterfactual simulation in causal learning (Gerstenberg,
2024).

Study questions

1. Why is generalization fundamentally a causal problem rather than a
statistical one?

2. Why does perfect parallelism limit flexibility?

3. What kinds of experiments can you think of to test the domain
randomization hypothesis about dreaming?
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