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Chapter 13: Simulation and planning with
mental models

The pinnacle of flexibility is achieved through the use of mental models
that support simulation and planning. This chapter discusses evidence
for mental models in the brain. Building on the last few chapters, we
formalize the function of mental models in terms of model-based solu-
tions to sequential decision problems. Some model-based algorithms
use offline simulation to provide synthetic data for training model-free
algorithms. Other model-based algorithms use online simulation to
evaluate different courses of action at decision time. The brain appears
to implement both kinds of algorithms. Unifying these two approaches
is the idea that the brain can imagine answers to “what if?” questions,
liberating itself from the prison of pure experience.

The predictive maps introduced in the last chapter (the successor
representation and its feature-based generalization) confer some
flexibility upon agents, consistent with patterns of behavior such
as latent learning, and their underlying neural mechanism in the
hippocampus. However, predictive maps are still fundamentally
constrained in certain ways. They compile the detailed transition
structure of the environment into an actionable format that permits
linear value computation. In doing so, they sacrifice the ability to
use the transition structure to support an even greater degree of
flexibility.

This chapter will review evidence that animals are capable of flex-
ibility beyond the reach of predictive maps. We will focus on spatial
navigation, which provides the most well-studied examples, and
which carries ecological significance for many species. Experiments
indicate that even animals with relatively simple nervous systems,
such as ants, are capable of tracking their spatial location and us-
ing this information for charting a path toward specific landmarks.
In some cases, animals are able to use their knowledge of the envi-
ronment to plan detour and shortcut routes. We will consider what
kinds of neural mechanisms could support these computations.

1 Spatial navigation
Compare with around 70-100 million
neurons in a mouse brain.The desert ant Cataglyphis, despite its small brain (less than 1 million

neurons), is capable of incredible navigational feats. While foraging,
the ant will typically follow a circuitous path until it finds food.
Rather than retracing its steps, it orients toward its nest and follows
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a more or less straight path home—a hole 1 mm in diameter, which
might be over 100 m away (Figure 1).

Figure 1: Foraging (solid line) and
return (dotted line) trajectories of the
desert ant Cataglyphsis. F = food, N
= nest. Reproduced from Müller and
Wehner (1988).

A clever experiment illuminates one aspect of the ant’s navigation
algorithm. If the ant is displaced far from its nest after finding food
(so that it can’t rely on visual landmarks), it will orient in the direc-
tion where its nest would have been had it not been displaced, and
follows a straight-line path that terminates close to the counterfactual
location of the nest (Wehner and Srinivasan, 1981). Moreover, ants
trained with consistent food locations follow straight-line outbound
paths from the nest back to those locations (Collett et al., 1999). These
“food vector” memories appear to last the ant’s entire lifetime.

It has been asserted (controversially) that desert ants, as well as
certain foraging bees and wasps, accomplish these navigational feats
by using a “cognitive map” (or mental model) of space similar to
the kind of cartographic map used by human navigators (Gallistel,
1990). According to this interpretation, ants keep track of their 2D
location relative to the nest, and then use this to chart a “homing”
vector back to the nest. The hypothesized algorithm for keeping
track of position—path integration—is essentially identical to the dead
reckoning algorithm used by human sailors for thousands of years. Small errors accumulate over time, so

animals need to correct their positional
estimates using landmarks and other
sources of information.

The core idea is that position is the integral of velocity over time, so
that a position vector can be computed by adding up movements
over time. The same algorithm is used by many animals, including
some mammals (Etienne and Jeffery, 2004).

Path integration exemplifies an elementary form of model-based
reasoning: what happens to my location when I move? In terms of
the sequential decision framework studied in the last few chapters,
we can identify this knowledge with a representation of the transi-
tion function, with locations as the state and movement vectors as
the actions. In the next section, we describe path integration formally,
and then turn to how this might work in mammalian brains. Despite
its usefulness, path integration is also limited in certain ways: it ap-
plies specifically to spatially organized state spaces, where movement
velocity has a unique effect on state transitions, and it relies on id-
iothetic (self-generated) cues rather than more abstract knowledge
of environment structure. Despite these limitations, access to a path
integration system can be harnessed by more powerful algorithms
as a forward simulator even in the absence of overt movement (i.e., a
form of imagination), opening the door to online planning and offline
learning abilities. As we’ll see, path integration can sometimes be
applied to more general “conceptual” state spaces that can be repre-
sented in an approximately Euclidean form (i.e., a low-dimensional
manifold in a metric space).
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1.1 Path integration

Let st ∈ R2 denote the agent’s 2D spatial position at time t. The
agent’s action at ∈ R2 is a velocity vector, which specifies the instan-
taneous change in position:

ṡt = at. (1)

If the position variable is initialized to [0, 0] at time 0, the path inte-
gral of velocity yields position in the reference frame centered at the
initial position:

st =
∫ t

0
at̃dt̃. (2)

For the foraging ant, the initial position is the nest, so that the in-
tegrated position is represented in nest-centered coordinates. Once
food is found, the ant can chart a path home by aligning its move-
ment direction with the homing vector, −st. Once the homing vector
is close to [0, 0], the ant knows that it’s in the vicinity of the nest (up
to noise in the integrator). In addition, it can store the food location
in memory, so that it can return to it from the nest by aligning its
movement direction with the vector pointing at the stored location.

1.2 Continuous attractor network

While the preceding section provides a useful abstraction, the brain
needs to implement these computations with neurons. A stan- Our treatment is similar to previous

continuous attractor models (e.g., Burak
and Fiete, 2009).

dard implementation uses a network of recurrently connected neu-
rons with population activity x and recurrent weight matrix W. Its
continuous-time firing rate dynamics are given by: To keep the notation light, we’ve

dropped the time index here.

τẋ = −x + ϕ(Wx + Ga), (3)

where ϕ(·) is a non-linearity (e.g., a rectified linearity, to prevent
firing rates below 0), τ is a time constant, and a is the velocity drive
acting through the feedforward matrix G, which implicitly encodes You can think of gi , the ith row of G,

as a vector pointing in the preferred
movement direction for neuron i.

the preferred movement direction θi for each neuron i. Each neuron
also has a preferred position s̄i, which governs the “difference of
Gaussians” connectivity profile:

Wij = K(s̄i − s̄j − gj), (4)

K(s) = exp[−α∥s∥2]− exp[−β∥s∥2], (5)

where α and β control the relative strength of excitation and inhi-
bition. With this connectivity profile, neurons that prefer nearby
positions excite one another. The inhibitory term produces surround
suppression, whereby neurons with preferred positions just outside
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the neighborhood of a given neuron send inhibitory input. The shift
term gj skews the flow of activity in the direction that the agent is
moving.

This network will form stable “bumps” of activity at particular
positions. Stability means that the bumps will be restored following
small perturbations of the activity state—the bumps are “attrac-
tors” in dynamical systems terminology. The set of attractors forms
a continuous manifold in position space: smooth changes in position
generate locally Euclidean changes in neural activity. Thus, this kind
of network is referred to as a continuous attractor network.

Figure 2: Activity on the neural sheet.
The center-surround kernel, K(x), is
shown on the bottom. Reproduced from
Burak and Fiete (2009).

We can think of the network’s activity as organized on a sheet,
where neurons are placed topographically based on their preferred
location. Each patch of the sheet contains neurons covering all pre-
ferred directions. When the animal is stationary at a particular lo-
cation, a periodic grid of neurons is activated on the sheet (Figure
2), similar to the entorhinal grid cells introduced in the last chapter.
The periodicity comes from the center-surround interactions between
nearby neurons on the sheet. To avoid edge effects, some models Note that the sheet does not correspond

to the true anatomical arrangement of
neurons in the brain; it’s a conceptual
device to facilitate visualization.

assume periodic boundary conditions, where neurons near the edge
of the sheet wrap around to the opposite edge (Figure 3).

Figure 3: Neural connectivity with
periodic boundary conditions. (Left)
Neural connectivity wraps around the
neural sheet. (Right) The connectivity
is topologically equivalent to a torus.
Reproduced from McNaughton et al.
(2006).

A non-zero velocity drive causes the activity bump to translate
on the sheet. For grid cells, this means that individual neurons fire
periodically as an animal traverses space, while maintaining their
phase relationships (as observed empirically; Yoon et al., 2013). The
critical question is whether these activity dynamics carry a stable rep-
resentation of the animal’s position that is updated correctly based
on the animal’s motion. In other words, can downstream neurons
accurately decode position from the pattern of activity? One way to Phase here refers to the phase of the 2D

center of the bump on the sheet (i.e.,
the attractor phase). The activity of the
population does not itself have a fixed
phase, since the neurons do not fire
synchronously.

do this is using the phase of neural activity relative to the starting
point of the traversal: position can be decoded linearly from phase up
to the period of the grid. Geometrically, this corresponds to identi-
fying a position on a ring wrapping around the torus representation
of the sheet (see Figure 3). Using this readout, Burak and Fiete (2009)
showed with simulations that the total positional error accumulated
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over 20 minutes (covering around 260 meters) is less than 15 centime-
ters.

At first glance, it seems strange to use a periodic representation of
space to keep track of position. If position can only be identified up
to the grid period, this representation will be useless for any environ-
ments that are larger than the grid period. Critically, the entorhinal
cortex contains multiple modules, as described in the last chapter.
Each module has a different period, giving rise to a multi-scale repre-
sentation of space. By combining the modules, positional information
can be tracked over very large spaces (Fiete et al., 2008). To under-
stand why, let’s examine a simplified problem: representation of 1-D
position.

Let λk denote the period of module k. The attractor phase in mod-
ule k can be written as θk = ŝ mod λk, where ŝ is the animal’s po-
sition estimate and “mod” refers to the modulo operator. The phase
vector θ = (θ1, . . . , θK) collects together the phases from K different
modules. This phase code is an example of a residue number system,
which can uniquely represent a number of positions that is exponen-
tial in the number of modules. In the (admittedly contrived) setting Another computationally useful prop-

erty of this representation is that each
phase can be updated in parallel when
the animal moves; no interaction is
needed between the modules. This
allows distributed tracking of position.

where the periods are whole numbers and share no common factors
(i.e., they are co-prime), then one can apply the Chinese remainder
theorem to prove that any number in the range 0 to ∏k λk − 1 can
be uniquely represented with the phase code (Fiete et al., 2008). For
example, over 1 million positions could be represented with only 5

modules. The vast capacity of this representation means that any
excess capacity could be utilized for error-correcting redundancy,
thereby conferring robustness in the face of spiking noise. Further evidence that the entorhinal

cortex is important for path integration
comes from the finding that lesions to
this area impair the ability of rats to
find their way back to a starting refuge
using only self-motion information
(Parron and Save, 2004).

In summary, this section has shown how path integration can
be implemented in a velocity-driven continuous attractor network,
thought to exist in the entorhinal cortex. Returning to our main
theme, the purpose of this exercise was to show how an ecologically
significant form of model-based knowledge (what happens to my
position when I move?) can be implemented in biologically plausible
neural circuitry.

1.3 Connection to predictive maps

In the last chapter, we suggested that grid cells might provide a low-
dimensional basis (specifically, an eigendecomposition) of the predic-
tive map (successor representation) in the hippocampus, possibly in
the service of regularization. While this proposal seems fundamen- Technically, this requires the tran-

sition matrix to be diagonaliz-
able, a condition satisfied when
the Markov chain is reversible:
Tπ(s′|s)µπ(s) = Tπ(s|s′)µπ(s′), where
µπ is the stationary distribution of the
Markov chain.

tally different from the idea that the grid cells encode a transition
model for path integration, the transition function and the successor
representation share the same eigenvectors.
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When the velocity drive is close to 0, or random exploration gen-
erates isotropic velocity signals (i.e., the agent moves in any direction
with equal probability), the neural activity “relaxes” towards the
eigenvectors. Thus, a low-dimensional predictive representation,
as described in the last chapter, is intrinsic to the network dynam-
ics. When the velocity drive is non-zero/anisotropic, the popula-
tion activity bump tracks position by integrating velocity, mirroring
movement-driven transition dynamics. To summarize, the same
network has different modes of operation: exploration-driven (low-
dimensional predictive representation) and velocity-driven (path
integration).

1.4 Shortcuts and detours

Having access to a spatial model enables more than tracking position
and computing homing vectors. An agent can also plan shortcuts
and detours, by using the same path integration mechanism in its
imagination rather than during actual movement. Before describing
how such mental navigation can be implemented, let’s look at a few
empirical examples.16 E. C. TOLMAN, B. F. RITCHIE,;AND D. KALISH

C. APPARATUS
Figs, i and z present diagrams of the apparatus which were used. In Fig. i[we see the ap-

paratus used in the preliminary training. It consisted of an unpainted wooden circular table
top, which was three feet in diameter, and several unpainted pine elevated paths which were
two in. in width. Path AS was 24 in. in length and was used as a starting path. Paths CD,
DE, and EF were all 18 in. in length, while path FG was 60 in. long. A stand with a sliding food-
box was located at the end of path /G, and whenever a rat entered one of its stalls the whole box
moved in the direction indicated by the arrow, until an empty stall was ready for the next rat.

FIG. i. Apparatus used in preliminary training :

Each stall was 4 in. wide, 10 in. deep, and 6 in, high. Within each stall was placed a white glass
bird-bath, and on the rim of this bird-bath was placed a half-teaspoon of wet food. A s-watt
bulb in an ordinary desl?; lamp was the only illumination in the room. It was located at H,
six in. behind the sliding food-box. The reflector on this lamp was turned in such a way that the
light was primarily directed down path FG. Fastened to the sides of path CD were two pieces
of unpainted plywood, which were 18 in. high and 30 in. in length. These formed an alley which
began in the middle of the table-top and ended just at the point where path CD turns into path
DE.

In Fig, 2 we see the apparatus used in the test trial. This consisted of the same starting
path, circular table-top, alley on path CD, and lamp at H. But the food-box ahd paths DE,
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EF, and FG were removed. At the end of the alley On path CD, a block was placed. Then
12 six-foot unpainted pine paths were placed: around the circular table-top. These paths began
at a point 90 degrees to the right of path CD and radiated in a counter-clockwise fashion, each
path being placed 10 degrees to the left of its neighbor. - These paths were firmly nailed to a
supporting structure so that the table-top could be revolved independently of these paths.

The six 24-in. paths to the left of the last six-foot path were shorter because the size of the
room in which the experiment was conducted did not permit-any greater length.

FIG. 2. Apparatus used in the test trial

D. METHOD
Prt'test procedures.—Two days before the first run on the apparatus in Fig. i, the rats were

put on a 24-hour wet-food maintenance schedule, being fed every evening at 10:30 P.M.
On Day i the rats were given three trials.- On the first trial they were put by hand into the

food-box and allowed to eat for five rain. On the second trial they were put in the middle of
path FG and allowed to run to G and into the food-boxes. On the third trial they were started
at F and allowed to run into the food-boxes. They were then returned to their home cages
and fed their full ration approximately 30 min. later.

On Day z they were given-three more trials. On the first trial they ran from Fto the food-
boxes. On the second trial they were put by hand into the alley on path CD and forced to
run from there out onto path DE and from there to the food-boxes. This was repeated on the
third trial.

On Day 3 they were again given three trials, On^the first trial they were forced to run out
of the alley on path CD. On the second and, third trials they were started at A and allowed
to explore the table-top, run through the tunnel and on to the food-boxes.

Figure 4: Tolman shortcut experiment.
(Left) Training apparatus. (Right) Test
apparatus. “H” indicates the goal
location. Adapted from Tolman et al.
(1946).

In a classic demonstration of shortcutting behavior, Tolman et al.
(1946) first trained rats to take an indirect route from a circular plat-
form to a goal location containing food. After this initial training, rats
were placed back on the circular platform, but this time they could
choose from several alleys radiating from the platform (Figure 4). The
key finding was that rats preferred the alley leading directly to the
food. This finding is closely related to the homing behavior discussed
above: essentially, the rats are “homing” toward the goal location.

Figure 5: Sato shortcut experiment.
Red line shows the wall that was
removed in the shortcut test. The
dashed black line shows the path rats
took during training; the solid black
line shows the path rats took during the
shortcut test. Adapted from Sato et al.
(2018).

Unfortunately, Tolman’s experiment had two major problems.
First, a light bulb was suspended above the goal location throughout
training and testing; the rats could have used this as a beacon, rather
than relying on a cognitive map of space. A similar confound also
afflicted many later studies of shortcut behavior. Second, the shortcut
doesn’t require any flexible planning or spatial reasoning; the rats
simply have to run in a single direction until they reach the food.
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Later work addressed these problems. Roberts et al. (2007) showed
that rats still take shortcuts in enclosed mazes, where they can’t make
use of distal cues as beacons. Sato et al. (2018) developed a “lattice
maze” where rats could take circuitous paths to a goal. After train-
ing, a shortcut was created by removing one of the walls in the lattice
(Figure 5). Rats were more likely to take the shortcut than a longer
detour path, demonstrating that they are capable of flexible shortcut-
ting behavior.

A fascinating (and under-appreciated) example of shortcutting
behavior comes from a study by Zanforlin and Poli (1970), who took
advantage of rats’ natural tendency to burrow underground tunnels.
They first trained rats to follow an S-shaped tube between boxes, and
then observed as the rats burrowed tunnels (Figure 6). Strikingly,
of the rats that successfully reached the goal box, the paths they
burrowed were shorter than the S-shaped training tube.

Figure 6: Burrowing rats (sometimes)
take shortcuts. Out of 10 rats in the
experiment, 5 burrowed from box A to
box B, and one missed it by 10 cm. Four
of these tunnels are shown, along with
the S-shaped tube used during training.
Reproduced from Zanforlin and Poli
(1970).

Another example of flexible mental navigation is the ability to
adapt in response to novel obstacles. Tolman and Honzik (1930) stud-
ied a maze with multiple possible paths to a goal (Figure 7). When
they blocked one of these paths, rats tended to take the shortest path
that would get them to the goal.

Goal

Start

Path 2

Path 1

Path 3

B

A

Figure 7: Schematic of Tolman detour
maze. Red lines show two block loca-
tions. Based on apparatus described in
Tolman and Honzik (1930).

We now turn to the computational question: how does the brain
do it? It’s not enough to compute the direction of the goal, because
in many of these cases animals have to move away from the goal in
order to take the shortest path. What’s needed is the ability to look
ahead in a cognitive map, until a sufficiently short path is found.
Tolman (1948) pointed out that rats often pause at choice points
(intersections) in a maze, looking in each direction before moving
again. He dubbed this behavior vicarious trial and error, based on
the hypothesis that the rats are mentally simulating different paths
(sometimes to unseen goals), testing whether each path is successful
until a successful one is found. Many years after this hypothesis
was formulated, Johnson and Redish (2007) provided direct neural
evidence for such simulation, showing that place cells swept ahead of
the rat’s actual position at choice points (Figure 8).

Figure 8: Decoded spatial position
from hippocampal ensembles at a
choice point. Note that the rat is not
moving; thus, the decoded position is
imagined. Reproduced from Johnson
and Redish (2007).Hippocampal sweeps are temporally organized by the theta

rhythm (6-10 Hz), starting a little behind the rat’s current position
and ending slightly ahead of it about 100-160 milliseconds later, at
the end of a theta cycle (Foster and Wilson, 2007). These sweeps pref-
erentially project in the direction of the rat’s current goals, extending
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farther for more distant goals (Wikenheiser and Redish, 2015), and al-
ternating between different possible paths on consecutive theta cycles
(Kay et al., 2020). With more experience, rats stop exhibiting vicari-
ous trial and error, but hippocampal sweeps continue to be observed,
except now only projecting in the direction of the animal’s eventual
destination—mirroring the animal’s stereotyped behavior.

Figure 9: Cross-correlation between
positional probabilities decoded
from hippocampal activity. White
lines indicate landmarks in the maze.
The “pinches” in the cross-correlation
indicate that positional probabilities are
more strongly correlated within than
between landmarks. Reproduced from
Gupta et al. (2012).

Mechanistically, a path integration system could implement these
forward sweeps by applying velocity drive to the integrator. In a
cluttered environment, the velocity drive would need to point not
directly at the goal but rather at locally accessible subgoals. Indeed,
hippocampal sweeps appear to be chunked based on significant
landmarks or choice points (Figure 9). One proposal for how this
might work (Erdem and Hasselmo, 2012) uses head direction cells
(neurons tuned to specific head directions) to supply the directional
component of velocity drive. The resulting sweeps produce a form Entorhinal neurons tuned to speed

(speed cells) might provide the speed
component of velocity drive (Kropff
et al., 2015).

of locally linear look-ahead; by chaining these sweeps together, the
simulation can eventually reach a goal (Figure 10).

Figure 10: Linear look-ahead in the
Tolman shortcut maze. Dashed lines
show simulated trajectories. Repro-
duced from Erdem and Hasselmo
(2012).

The question remains how the head direction cells know what
direction to activate. Erdem and Hasselmo (2012) proposed that
the head direction cells are guided by a representation of reward
signals at particular locations; critically, this signal diffuses through
the cognitive map, such that a short linear look-ahead can contact
it and subsequently project further look-aheads in that direction.
This provides the key mechanism for shortcut discovery, since the
diffusion will tend to concentrate along shorter paths.

The “reward map” is thought to be implemented in the prefrontal
cortex, where neurons tuned to both location and reward have been
identified. The relatively large place fields of these neurons (com-
pared to hippocampal place cells) may lend themselves to reward dif-
fusion (Hok et al., 2005). Prefrontal place cells are coordinated with
the hippocampal theta rhythm during navigation (Tang et al., 2021),
and are predictive of subsequent hippocampal place cell activation
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during deliberation (Hasz and Redish, 2020).
The linear look-ahead + reward diffusion model has some intrigu-

ing similarities with modern planning algorithms, which have been
instrumental to the design of high-performance artificial intelligence
systems. For example, AlphaGo (Silver et al., 2016) uses a value func- In 2015, AlphaGo became the first

program to beat a professional Go
player without a handicap. A few years
later, it beat the top-ranked Go player in
a 3-game match.

tion approximator to guide look-ahead. The values are estimated
with a form of temporal difference learning (see Chapters 10 and 11).
In an environment with a single goal, this produces a diffusion-like
propagation of information. An important difference is that general
planning algorithms do not typically assume that the state space is
Euclidean (an assumption necessary for linear look-ahead). Below we
will discuss algorithms applicable to more general state spaces. But
first we will look at examples where non-Euclidean state spaces can
be treated in a Euclidean way.

1.5 Mental navigation in non-Euclidean state spaces

A Euclidean state space is geometrically self-consistent in the sense
that if you add together a sequence of translations and end up where
you started, then the sum of the translations must equal 0—a loop
closure property. This is the basis of the desert ant’s homing behavior:
following the homing vector ensures that its path integrator returns
to 0, coinciding with arrival at its nest. Non-Euclidean state spaces
don’t necessarily obey loop closure. For example, the Earth is only
locally Euclidean (the ground looks flat over short distances); over
longer distances, the curvature of the Earth starts to matter, and the
homing vector will not necessarily get the ant back to its nest, even if
the path integrator returns to 0.

The brain needs to plan in many state spaces that are not obvi-
ously Euclidean (e.g., imagine you’re adjusting the knobs in a shower
to control water temperature and pressure). The question is whether
we can represent these spaces in a way that is at least approximately
Euclidean. If we can, then we can harness the path integration capa-
bility of the entorhinal cortex for planning. This might be the case
for some “conceptual” state spaces. Constantinescu et al. (2016) used
functional MRI to identify brain areas in humans that exhibited grid-
like periodicity in their responses to changes in a conceptual space
(the neck and leg lengths of a bird silhouette). By associating par-
ticular points in this “bird space” with unique outcomes (Christmas
symbols), humans could be trained to plan morphs that achieve spe-
cific outcomes (Figure 11). The entorhinal cortex was among several
areas that exhibited grid-like periodicity over bird space.

Another example comes from a study of monkeys performing a
1-D mental navigation task (Figure 12). They were trained to move



chapter 13 10

Figure 11: A conceptual space and
associated outcomes. (Left) Example
birds and outcomes. (Right) Euclidean
representation. Reproduced from
Constantinescu et al. (2016).

through an abstract space of landmarks using a joystick, and could
eventually perform this task with high accuracy. When they moved
the joystick, movement through the space was invisible (they couldn’t
see the sequence of landmarks intervening between the start and end
points); nonetheless, neurons in entorhinal cortex exhibited periodic
firing patterns, with bumps that aligned to the expected timing of
landmark arrivals.

Figure 12: Signatures of mental navi-
gation in an abstract space. Monkeys
used a joystick to navigate between vi-
sual “landmarks” (images) arranged on
a 1-D line, illustrated in the schematic.
Monkeys learned to produce the correct
translation vector that would bring
them to a target landmark. As the
translation was unfolding invisibly,
entorhinal cells fired periodically, with
a period matched to the inter-landmark
interval. Adapted from Neupane et al.
(2024).

These studies suggest that the periodic structure of grid cells in
entorhinal cortex extend beyond spatial navigation, reflecting a com-
mon underlying principle. One way to formalize this principle is to
optimize a recurrent neural network that transforms neural state rep-
resentations by running the dynamics forward (Whittington et al.,
2020), as in Eq. 3. By mapping the state representations to obser-
vations, the network can be trained to match its predictions with
these observations. In open-field environments this produces grid-
like periodic representations. These representations form an abstract
structural code in the sense that they can be reused in any task that
shares the same underlying spatial structure.

Strictly speaking, the forward dynamics of recurrent neural net-
work do not necessarily correspond to path integration, because
there’s no guarantee that the loop closure property will be satis-
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fied. Iyer et al. (2024) addressed this by training neural networks
with an explicit loop closure loss (penalizing them for violations of
this property). This resulted in networks that were geometrically
self-consistent, such that we could more properly interpret their dy-
namics as a form of approximate path integration. Moreover, the
networks reproduced grid-like representations for several different
domains (an example is shown in Figure 13). The training procedure
is admittedly artificial, but perhaps points the way toward the kinds
of inductive biases that the brain might use to discipline its learned
representations.

Figure 13: Grid-like representation
learned for the bird space. Reproduced
from Iyer et al. (2024).

2 General planning algorithms

We now turn to general planning algorithms that don’t make Eu-
clidean assumptions about the structure of the state space.

2.1 Dynamic programming

The key idea behind dynamic programming is the decomposition of
a complex problem into a series of sub-problems by harnessing the
recursive structure of the complex problem. In a Markov decision
process (see Chapter 11), the recursive structure is represented by the
Bellman optimality equation: Here we have assumed discrete states,

but an analogous equation applies to
continuous states.Q∗(s, a) = R(s) + γ ∑

s′
T(s′|s, a)max

a′
Q∗(s′, a′), (6)

which decomposes the optimal value function Q∗ (i.e., the value
function under the optimal policy) into the sum of the immediate
reward and the expected reward at the next state. This optimality
equation can be used to define a simple dynamic programming al-
gorithm known as value iteration (Sutton and Barto, 2018). Start by
initializing estimates Q̂∗(s, a) arbitrarily, and then iterate over states,
applying a “Bellman backup” each time:

Q̂∗(s, a)← R(s) + γ ∑
s′

T(s′|s, a)max
a′

Q̂∗(s′, a′). (7)

This algorithm will converge to the true optimal values.
Friedrich and Lengyel (2016) developed a biologically plausible

implementation of dynamic programming, similar to value itera-
tion. Here we present their model in a slightly simplified form. They
posited a population of neurons tuned to different state-action pairs,
(si, ai), where i indexes neurons. Using a rate-based approximation,
the membrane potential dynamics are modeled as linear and recur-
rent: A similar approach can be used with

function approximation, but we omit
this for brevity (see Friedrich and
Lengyel, 2016).
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τµ̇i = −µ(t) + ∑
j

Wijxj(t) + Ii(t), (8)

where τ is the membrane time constant, µi(t) is the membrane po- [x]+ = x if x > 0, otherwise [x]+ = 0.

tential of neuron i, xi(t) = [µ − θ]+ is the firing rate of neuron i (a
rectified linear function of the membrane potential, with threshold
θ), and Ii(t) = R(si) is the input current representing the expected Friedrich and Lengyel express the

expected reward as a function of the
state-action pair, but for consistency we
use R(s) instead of R(s, a).

reward for the state encoded by neuron i. The recurrent weights are
parametrized as the sum of excitatory and inhibitory components:

Wij = Wexc
ij + Winh

ij (9)

Wexc
ij = γT(s′ = sj|s = si, a = ai) (10)

Winh
ij = I[i = j]− I[si = sj]. (11)

The excitatory component encodes the transition function (with post-
synaptic neurons representing the current state and pre-synaptic neu-
rons representing the next state). The inhibitory component encodes
the mutual exclusivity between different actions for the same state: if
the actions are different and the states are the same, this component
is negative. Friedrich and Lengyel showed that the firing rates of the
population converge to a fixed point that will (under suitable condi-
tions) correspond to the optimal value function, up to a constant that
depends only on the firing threshold θ and the discount factor γ: The summation is taken over all neu-

rons coding for state s.

V∗(s) = ∑
i:si=s

xi −
θ

1− γ
, (12)

where V∗(s) = argmaxa Q∗(s, a). The optimal policy is to choose the
action coded by any of the currently active neurons that correspond
to the current state, for example by choosing the action coded by the
most active neuron: a∗(s) = argmaxi xiI[si = s].

Figure 14 illustrates the model behavior on a sequential movement
selection task studied by Sohn and Lee (2007). Monkeys were trained
to execute a hand movement (selecting a visual target with a cursor)
in order to move to the next state. If they made no mistakes in the
sequence, they were given a juice reward; otherwise, they had to
start over. Although in principle the monkeys could solve this task
in an online manner (paying attention only to the current stimulus,
without planning), their response times suggested that they were
planning ahead. In particular, their response times were longest
when the number of remaining movements (NRM) was large.

Figure 14 shows activity recorded from the pre-supplementary
area (pre-SMA), a frontal cortical region known to be involved in
motor planning (Nachev et al., 2008). For example, neurons in pre-
SMA respond when a monkey needs to change the direction of a
forthcoming arm movement (Matsuzaka and Tanji, 1996). Disruption
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Figure 14: Neural activity and model
predictions during sequential move-
ment selection. (Left) Activity in the
presupplementary motor area (pre-
SMA) as a function of the number of
remaining movements (NRM). The inset
shows the state transition structure:
colored lines denote correct actions,
black lines denote incorrect actions, and
the grey square denotes the goal state.
The numbers on each state indicate
the corresponding NRM. (Right) Firing
rates of value neurons generated by
the model. The black line shows the
reward input, which was fitted to the
data. Reproduced from Friedrich and
Lengyel (2016). The neural data is taken
from Sohn and Lee (2007).

of pre-SMA activity impairs the ability to alter upcoming action
sequences (Kennerley et al., 2004). Thus, pre-SMA is a plausible
site of goal-directed value computation. Sohn and Lee found that
neurons respond earlier and more strongly when the NRM is small,
a pattern recapitulated by the Friedrich and Lengyel model. The
effect of NRM on neural response latency arises in this model from
spreading activation, which is needed to propagate value information
through the network. The effect of NRM on response amplitude
arises from discounting. Friedrich and Lengyel also showed that
the model could closely mirror the NRM-dependent response times
by assuming that movements are generated whenever the relative
activity of the corresponding neurons crosses a threshold.

2.2 Tree search

Dynamic programming is a powerful and widely applied family
of algorithms, but it suffers from a major limitation. Because it’s
designed to compute optimal values for every state-action pair, it
becomes intractable for large state-action spaces. This is why mod-
ern AI systems like AlphaGo, which are designed to work on the
extremely large state spaces of games like Go, do not use dynamic
programming. Instead, they use “rollouts” of simulated state-action The linear look-ahead algorithm de-

scribed above can be viewed as a kind
of rollout specialized for spatial tasks.

sequences initiated from the current state. These rollouts can be un-
derstood as search through the decision tree rooted at the current
state, hence the name tree search for this general family of algorithms.
Unlike dynamic programming, tree search algorithms estimate the
value function locally, so they don’t suffer from unfavorable scal-
ing with the size of the state space. On the other hand, this locality See Daw and Dayan (2014) for fur-

ther discussion of different trade-offs
involved in the design of tree search
algorithms.

means that action policies are not guaranteed to be globally consis-
tent over the entire state space. Moreover, the stochastic nature of the
rollouts introduces finite sampling errors when the transitions and
rewards are not deterministic, and the estimates can also be biased
due to finite truncation of the rollout when the planning horizon is
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infinite (i.e., the task doesn’t have a terminal state).

Figure 15: Tree search heuristics. Each
node represents a state, and each edge
represents an action. Reproduced from
Mattar and Lengyel (2022).

The trick to making tree search algorithms efficient is designing
the rollout policy to selectively search promising parts of the decision
tree (or equivalently pruning unpromising parts; see Figure 15). A
simple heuristic is to myopically prune sub-trees (rooted at the cur-
rent state) whenever an unfavorable outcome is encountered. There
is some evidence that humans follow this heuristic, relinquishing
high-payoff paths that require traversing a large loss (Huys et al.,
2012). A more sophisticated, non-myopic heuristic uses a learned
value function (e.g., via TD learning) to guide the rollouts. This is a
key design feature of systems like AlphaGo. Evidence from experi-
ments in which human subjects are asked to externalize their rollouts
(by trying out paths before committing to one) suggests that they can
adopt non-myopic heuristics, taking into account both the long-term
value and their own uncertainty when selecting rollouts (Fan et al.,
2025). Monte Carlo tree search algorithms

(Browne et al., 2012), widely used in
modern AI, construct rollouts stochas-
tically by following an exploration
policy.

Another trick that exploits a value function estimate is to execute
limited-depth rollouts (truncation, as shown in Figure 15) and then
add the accumulated reward to the value estimate of the final state.
This works because the Bellman equation can be expanded in the
following way: This is also known as partial evaluation

in computer science.

Vπ(s) = E[r1 + γr2 + · · · γK−1rK + γKVπ(sK+1)|s1 = s], (13)

where K is the rollout depth. In other words, the value function for
depth K + 1 “completes” the partial value estimate at the current
state estimated using the rollout. Humans typically plan 3-6 steps
ahead (at least on games such as chess, although professionals can
sometimes plan more deeply; De Groot, 1978); planning depth can
vary adaptively with task demands (Eluchans et al., 2025) and exper-
tise (Van Opheusden et al., 2023). Which plans humans ultimately
select depends on both their depth-limited rollout and the estimated
value at the end of the rollout (Keramati et al., 2016).

Chunking (Figure 15) is a heuristic that simplifies the planning
problem by abstracting away the fine structure of the decision tree.
This is familiar to anyone planning a complex activity like a vaca-
tion: planning initially unfolds at a high level (e.g., how to rent a car
or buy plane tickets), before figuring out the low-level details (e.g,.
what muscles to move in order to open a door or type on a com-
puter). One way that chunks form is through repetitive action or state
sequences (Dezfouli and Balleine, 2013; Tomov et al., 2020). These
sequences may get chunked together into a single unit; a hierarchi-
cal planning algorithm can operate on this unit rather than on the
low-level states/actions. One consequence of this chunking is that
humans forego optimal paths if they can reuse a chunk in a good but
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suboptimal path (Huys et al., 2015).

3 Using simulation for learning

We’ve now seen several ways in which “model-free” algorithms (like
TD learning) can assist “model-based” algorithms like tree search—
by guiding rollouts and completing partial evaluations. This form
of interplay is based on the idea that the model-based planner ulti-
mately controls behavior, whereas the model-free learning algorithms
operate in the background and provide input to the planner. We
could alternatively flip this on its head, handing control to the model-
free algorithm and allowing it to call upon a model-based system
for assistance. This is the essential idea underlying architectures like The same idea appears in modern AI

systems like Dreamer (Hafner et al.,
2025).

Dyna (Sutton, 1991), which uses a model to simulate synthetic data
that is fed into a model-free learning system (Figure 16). All interac-
tions with the environment are controlled by the model-free system.

Figure 16: The Dyna architecture.
Reproduced from Gershman et al.
(2014).

The principal advantage of this architecture is that action selec-
tion is very efficient, since it doesn’t require any planning. Instead,
model-based knowledge is compiled (via simulation in the back-
ground) into an efficiently actionable form such as cached values or
a computationally cheap function approximator. One implication of
this architecture is that the model-based system can generate syn-
thetic data which the model-free system has never experienced—i.e.,
a form of learning from imagination.

Consider for example the experimental design shown in Figure 17.
Human subjects were first taught a simple one-step transition model
(Phase 1), and then taught about rewards at each terminal state
(Phase 2). In Phase 3, the state space was expanded, with the for-
merly terminal states now serving as initial states. Finally, in Phase 4,
subjects were returned to the original initial states and asked to judge
which state is better. By comparing these judgments to the same
judgments after Phase 2, we can calculate a “revaluation score” that
quantifies how much Phase 3 training altered their value estimates.
The critical feature of this design is that subjects never experience an
unbroken trajectory through the state space—what a conventional
TD learning algorithm would require to correctly estimate values. Yet
they were still able to update their values based on the Phase 3 train-
ing. However, if they were placed under cognitive load during Phase
3 (simultaneously performing a secondary task), the revaluation score
was significantly attenuated. This is consistent with the hypothesis
that they were running simulations during Phase 3.

Even more direct evidence for offline simulation comes from an-
other experiment, using the same setup, where a rest interval is inter-
posed between Phases 3 and 4 (subjects sat quietly in a room listen-
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Figure 17: Experimental design for
studying simulation-based learning.
Reproduced from Gershman et al.
(2014).

ing to music, without any specific task). This rest interval rescued the
revaluation score from its attenuation under load, putatively by giv-
ing people more opportunity for offline simulation. Importantly, the Other experiments have shown that

cognitive load selectively impairs
model-based computation (Otto et al.,
2013).

subjects in these experiments were probably not using planning at
decision time, because cognitive load during Phase 4 did not impair
their performance.

Another source of evidence for offline simulation is a functional
MRI study using a similar design (Momennejad et al., 2018). This re-
vealed reactivation of state representations in the hippocampus dur-
ing a rest interval, specifically in a condition where values needed to
be updated (significantly less reactivation was observed in a control
condition where values were unchanged). The degree of reactivation
was significantly correlated with the revaluation score, again only in
the condition where values need to be updated.

A variation of the learning-by-simulation idea was explored by
Jensen et al. (2024). They trained a recurrent neural network to maxi-
mize cumulative reward by outputting actions conditional on a set of
inputs which included the most recent state, action, and reward. The
key innovation was to endow the agent with a “cognitive” action—
simulating a rollout using a learned world model. These rollouts
were then fed back into the network as additional inputs, thereby
influencing the policy. Because the simulation action is treated in the
same way as all the other actions, the agent can learn to adaptively
decide when and how much to simulate. Like humans, the agent
spent more time simulating when it was farther from a goal and
before the first action of a trial (Figure 18).

Jensen et al. (2024) used the same model to capture aspects of hip-
pocampal place cell sequences (using data from Widloski and Foster,
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and behavioral correlates of hippocampal replays have a striking 
resemblance to the policy rollouts in our computational model. Our 
work, thus, addresses two key questions from previous studies of 
hippocampal replay and planning. First, we show that a recurrent 
network can meta-learn when to plan instead of having to precompute 
a ‘plan’ to decide whether to use it5,27. Second, we propose a theory 
of replay-mediated planning, which uses fast network dynamics for 
real-time decision-making that could operate in parallel to slower syn-
aptic plasticity19. These results provide insights into the neural under-
pinnings of thinking by bridging the gaps between existing research on 
recurrent meta-RL10, meta-cognition and adaptive computation25,28–31 
and hippocampal replay for decision-making5,15.

Results
Humans think for different durations in different contexts
To characterize the behavioral signatures of planning, we recruited 94 
human participants from Prolific to perform an online maze naviga-
tion task where the walls and goal location changed periodically. The 
environment was a 4 × 4 grid with periodic boundaries, impassable walls 
and a single hidden reward (Fig. 1b and Methods; see Extended Data 
Fig. 1 for results with nonperiodic boundaries). The task consisted of 
several ‘episodes’ lasting T = 20 s each. At the start of each episode, the 
wall configuration, reward location and initial position were randomly 
sampled and fixed until the next episode. In the first trial, subjects 
explored the maze by taking discrete steps in the cardinal directions 
until finding the hidden reward. Subjects were then immediately moved 
to a new random location, initiating an exploitation phase where they 
had to repeatedly return to the same goal location from random start 
locations (Fig. 1b). Participants were paid a monetary bonus propor-
tional to the average number of trials completed per episode (Methods 
and Extended Data Fig. 1) and they displayed clear signs of learning in 
the form of increasing reward and decreasing response times over the 
40 episodes of the experiment (Extended Data Fig. 2a,b).

We first examined human performance as a function of trial 
number within each episode, comparing the first exploration trial 
to subsequent exploitation trials. Participants exhibited a rapid 
‘one-shot’ transition to goal-directed navigation after the initial 
exploration phase (Fig. 2a, black), consistent with previous demon-
strations of rapid adaptation in ‘meta-learning’ settings10. We next 
investigated the time that participants spent thinking during the 
exploitation phase. We estimated the ‘thinking time’ for each action as 
the posterior mean under a probabilistic model that decomposes the 
total response time for each action (Fig. 2b, top) into the sum of the  
thinking time (Fig. 2b, bottom) and a perception–action delay. The 
prior distribution over perception–action delays was estimated for 
each individual using a separate set of episodes, where participants 
were explicitly cued with the optimal path to eliminate the need for 
route planning (Methods and Extended Data Fig. 1). Because the 
first action within each trial also required participants to parse their 
new position in the maze, a separate prior distribution was fitted for 
these actions.

Participants exhibited a wide distribution of thinking times dur-
ing the exploitation phase (Fig. 2b, bottom). To examine task-related 
structure in this variability, we partitioned thinking times by 
within-trial action number and initial distance to the goal (Fig. 2c). 
Thinking times were longer when participants were further from 
the goal, consistent with longer routes taking longer to plan. Partici-
pants also had longer thinking times for the first action of each trial 
(Extended Data Fig. 3), consistent with the need to plan an entirely new 
route after being moved to a new location. These patterns confirm 
that the broad marginal distribution of thinking times (Fig. 2b) does 
not simply reflect a noisy decision-making process or task-irrelevant 
distractions. Instead, variability in thinking time is an important fea-
ture of human behavior that reflects the variable cognitive demands 
of action selection.

slow process of RL. Such recurrent neural network (RNN)-based agents 
can rapidly adapt to a new task or environment with fixed weights after 
training by integrating their experiences into the hidden state of the 
RNN10,21–24. However, previous models are generally only capable of 
making instantaneous decisions and cannot improve their choices by 
‘thinking’ before taking an action.

In this work, we propose a model that similarly combines slow 
synaptic learning with fast adaptation through recurrent dynamics 
in the prefrontal network. In contrast to previous work, however, this 
recurrent meta-learner can choose to momentarily forgo physical 
interactions with the environment and instead think (refs. 25,26). This 
process of thinking is formalized as the simulation of sequences of 
imagined actions, sampled from the policy of the agent itself, which we 
refer to as ‘rollouts’ (Fig. 1a). We introduce a flexible maze navigation 
task to study the relationship between the behavior of such RL agents 
and that of humans (Fig. 1b). RL agents trained on this task learn to use 
rollouts to improve their policy and selectively trigger rollouts in situ-
ations where humans also spend more time deliberating.

We draw explicit parallels between the model rollouts and hip-
pocampal replays through reanalyses of recent hippocampal record-
ings from rats performing a similar maze task7, where the content 
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RNN agent
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Fig. 1 | Task and model schematics. a, The RL agent consisted of an RNN, 
which received information about the environment and executed actions in 
response. The primary output of the agent was a policy from which the next 
action was sampled. This action could be to either move in the environment 
in a given direction (up, down, left or right) or think by using an internal world 
model to simulate a possible future trajectory (a rollout). The agent was trained 
to maximize its average reward per episode and to predict (1) the upcoming 
state; (2) the current goal location; and (3) the value of the current state. When 
the agent decided to plan, the first two predictors were used in an open-loop 
planning process, where the agent iteratively sampled imagined actions and 
predicted what the resulting state would be and whether the goal had been 
(virtually) reached. The output of this planning process was appended to the 
agent’s input on the subsequent time step (details in text). A physical action was 
assumed to take 400 ms and a rollout was assumed to take 120 ms (ref. 36). b, 
Schematic illustrating the dynamic maze task. In each episode lasting T = 20 s, 
a maze and a goal location were randomly sampled. Each time the goal was 
reached, the subject received a reward and was subsequently teleported to a new 
random location, from which it could return to the goal to receive more reward. 
The maze had periodic boundaries, meaning that subjects could exit one side 
of the maze to appear at the opposite side. c, Schematic illustrating how policy 
rollouts can improve performance by altering the momentary policy. An agent 
might perform a policy rollout leading to low value (top; black), which would 
decrease the probability of physically performing the corresponding sequence 
of actions. Conversely, a rollout leading to high value (bottom; orange) would 
increase the probability of the corresponding action sequence. Notably, these 
policy changes occur at the level of network dynamics rather than parameter 
updates (Supplementary Note 1).
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A recurrent network model of planning
To model the rapid adaptation and diverse thinking times displayed by 
human subjects, we developed an RNN model trained in a meta-RL set-
ting (Fig. 1a and Methods10,21,22; see Supplementary Note 2 for a discus-
sion of modeling choices). The RL agent had 100 gated recurrent units 
(GRUs32; Extended Data Fig. 4) whose time-varying internal activation 
state hk evolved dynamically according to

h

k

= ϕ

θ

(x

k

,h

k−1

)

y

k

= ζ

θ

(h

k

)

where θ denotes the model parameters, xk denotes RNN inputs and yk 
denotes its outputs. hk was reset at the beginning of each episode. k 
indexes the evolution of the network dynamics, which can differ from 
the wall-clock time t in agents augmented with the ability to think (see 
below). Inputs consisted of the current agent location sk, previous action 
ak−1, reward rk−1, wall locations and the elapsed time t since the start of 
the episode (Methods). While the reward location was hidden and had 
to be discovered, the remainder of the environment was fully observed. 
The output consisted primarily of a policy πθ(ak∣hk), which was a func-
tion of the network state. At each iteration, an action ak was sampled 
from πθ(ak∣hk). This triggered environment changes xk+1, sk+1 = ψ(ak, sk), 
which resulted in a new location sk+1 and inputs xk+1 that were fed back to 
the agent (Fig. 1a). In addition to the policy, the RNN output included 
a value function (Extended Data Fig. 5) and predictions of the agent’s 
next location and the current goal location (Extended Data Fig. 3).

Performance was quantified as the expected total reward accord-
ing to

J(θ) = 𝔼𝔼

π

θ

[

K

∑

k=1

r

k

]

where K denotes the number of iterations per episode, with each 
episode terminating when t exceeded T = 20 s as in the human data 
(Fig. 1b). During training, the parameters θ were adjusted using policy 
gradients to maximize the average J(θ) across environments (Meth-
ods)10,33,34. Because the agent lacked an intrinsic notion of wall-clock 
time, we considered each action to consume ∆t = 400 ms. This allowed 
50 actions per episode, which approximately matched the human data 
(Supplementary Note 2).

In this canonical formulation, the RL agent takes an instantane-
ous action in response to its inputs, implying constant (zero) thinking 
time in all situations. This formulation therefore cannot explain the 
salient patterns of thinking times observed in human participants 
(Fig. 2c). At first glance, temporally extended planning might also 
appear unnecessary because the agent has access to all information 
required for decision-making, including the current state, wall con-
figuration and reward location. However, this was also true for human 
participants, who spent time thinking nonetheless. We hypothesized 
that the RL agent could similarly benefit from the ability to trade off 
time for additional processing of the available information25,26 (Sup-
plementary Note 2).
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Fig. 2 | Trained RL agents perform more rollouts in situations where humans 
spend longer thinking. a, Performance (quantified as the number of actions 
taken to reach the goal) as a function of trial number within each episode, 
computed for both human participants (black) and RL agents (blue). Shading 
indicates the s.e.m. across human participants (n = 94) or RL agents (n = 5) 
and mostly falls within the interval covered by the solid lines. The gray line 
indicates optimal performance, computed separately for exploration (trial 1) 
and exploitation (trials 2–4; Methods). b, Distribution of human response times 
(top) and thinking times (bottom), spanning ranges on the order of 1 s (Methods). 
c, Human thinking time as a function of the step within trial (x axis) for different 
initial distances to the goal at the beginning of the trial (lines, legend). Shading 
indicates the s.e.m. across 94 participants. Participants spent more time thinking 
further from the goal and before the first action of each trial (Extended Data Fig. 
3). d, Model thinking times separated by the time within trial and initial distance 
to goal, exhibiting a similar pattern to human participants. To compute thinking 

times for the model, each rollout was assumed to last 120 ms as described in 
the main text. Shading indicates the s.e.m. across five RL agents. The average 
thinking time can be less than 120 ms because the agents only perform rollouts 
in some instances and otherwise make a reflexive decision. This is particularly 
frequent near the goal and late in a trial, where humans also spend less time 
thinking. e, Binned human thinking time as a function of the probability that 
the agent chooses to perform a rollout, π(rollout). Error bars indicate the 
s.e.m. within each bin. The gray horizontal line indicates a shuffled control, 
where human thinking times were randomly permuted before the analysis. f, 
Correlation between human thinking time and the regressors (1) π(rollout) under 
the model; (2) momentary distance to goal; and (3) π(rollout) after conditioning 
on the momentary distance to goal (Residual; Methods). Bars and error bars 
indicate the mean and s.e.m. across human participants; gray dots indicate 
individual participants (n = 94).

Human RNN Figure 18: Adaptive simulation. (Left)
Agent architecture. (Middle) Human
thinking time on a maze navigation
task. (Right) Recurrent neural network
(RNN) thinking time (number of
rollouts x 120 ms/rollout). Adapted
from Jensen et al. (2024).

2022). Consistent with the data reviewed above, hippocampal se-
quences (forward sweeps) are interpreted as rollouts of the transition
model under the learned policy. This interpretation is supported by
the several facts: sequences tend to (i) avoid passing through walls;
(ii) reach the goal; (iii) predict the next physical movement specifi-
cally when the sequence reaches the goal; and (iv) increase the rate at
which the goal is reached over multiple sequences.

4 Conclusion

Model-based reasoning is often thought to be the pinnacle of cogni-
tion, underlying our most impressive feats of flexibility. Elements of
an internal world model can be seen not only in humans but even in
much simpler creatures like ants and wasps. This chapter reviewed
several ways in which an internal model can be used: for homing
behavior (in spatial navigation tasks), for goal-directed planning, and
for mental simulation. We have not exhausted all the uses of internal
models, but we focused on these because we know the most about
their underlying neural mechanisms. In particular, we showed how
path integration exemplifies an elementary form of model-based rea-
soning, how it can be implemented in a continuous attractor network,
and how it can be repurposed for conceptual state spaces with ap-
proximately Euclidean topology. Going beyond path integration, we
saw how forms of dynamic programming and tree search could be
implemented neurally. It’s possible that the brain has evolved to use
all of these algorithms in different situations, though we are just at
the beginning of understanding how the “meta-control” problem of
choosing algorithms is solved neurally.

Study questions

1. What are other ways that model-free and model-based systems
might interact?

2. What do you expect would happen to sequential choice behavior if
the hippocampus is lesioned?
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3. What are some computational trade-offs between online planning
vs. offline simulation?
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