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Chapter 13: Simulation and planning with
mental models

The pinnacle of flexibility is achieved through the use of mental models
that support simulation and planning. This chapter discusses evidence
for mental models in the brain. Building on the last few chapters, we
formalize the function of mental models in terms of model-based solu-
tions to sequential decision problems. Some model-based algorithms
use offline simulation to provide synthetic data for training model-free
algorithms. Other model-based algorithms use online simulation to
evaluate different courses of action at decision time. The brain appears
to implement both kinds of algorithms. Unifying these two approaches
is the idea that the brain can imagine answers to “what if?” questions,
liberating itself from the prison of pure experience.

The predictive maps introduced in the last chapter (the successor
representation and its feature-based generalization) confer some
flexibility upon agents, consistent with patterns of behavior such
as latent learning, and their underlying neural mechanism in the
hippocampus. However, predictive maps are still fundamentally
constrained in certain ways. They compile the detailed transition
structure of the environment into an actionable format that permits
linear value computation. In doing so, they sacrifice the ability to
use the transition structure to support an even greater degree of
flexibility.

This chapter will review evidence that animals are capable of flex-
ibility beyond the reach of predictive maps. We will focus on spatial
navigation, which provides the most well-studied examples, and
which carries ecological significance for many species. Experiments
indicate that even animals with relatively simple nervous systems,
such as ants, are capable of tracking their spatial location and us-
ing this information for charting a path toward specific landmarks.
In some cases, animals are able to use their knowledge of the envi-
ronment to plan detour and shortcut routes. We will consider what
kinds of neural mechanisms could support these computations.

1 Spatial navigation

The desert ant Cataglyphis, despite its small brain (less than 1 million
neurons), is capable of incredible navigational feats. While foraging,
the ant will typically follow a circuitous path until it finds food.
Rather than retracing its steps, it orients toward its nest and follows

Compare with around 70-100 million
neurons in a mouse brain.



a more or less straight path home—a hole 1 mm in diameter, which
might be over 100 m away (Figure 1).

A clever experiment illuminates one aspect of the ant’s navigation
algorithm. If the ant is displaced far from its nest after finding food
(so that it can’t rely on visual landmarks), it will orient in the direc-
tion where its nest would have been had it not been displaced, and
follows a straight-line path that terminates close to the counterfactual
location of the nest (Wehner and Srinivasan, 1981). Moreover, ants
trained with consistent food locations follow straight-line outbound
paths from the nest back to those locations (Collett et al., 1999). These
“food vector” memories appear to last the ant’s entire lifetime.

It has been asserted (controversially) that desert ants, as well as
certain foraging bees and wasps, accomplish these navigational feats
by using a “cognitive map” (or mental model) of space similar to
the kind of cartographic map used by human navigators (Gallistel,
1990). According to this interpretation, ants keep track of their 2D
location relative to the nest, and then use this to chart a “homing”
vector back to the nest. The hypothesized algorithm for keeping
track of position—path integration—is essentially identical to the dead
reckoning algorithm used by human sailors for thousands of years.
The core idea is that position is the integral of velocity over time, so
that a position vector can be computed by adding up movements
over time. The same algorithm is used by many animals, including
some mammals (Etienne and Jeffery, 2004).

Path integration exemplifies an elementary form of model-based
reasoning: what happens to my location when I move? In terms of
the sequential decision framework studied in the last few chapters,
we can identify this knowledge with a representation of the transi-
tion function, with locations as the state and movement vectors as
the actions. In the next section, we describe path integration formally,
and then turn to how this might work in mammalian brains. Despite
its usefulness, path integration is also limited in certain ways: it ap-
plies specifically to spatially organized state spaces, where movement
velocity has a unique effect on state transitions, and it relies on id-
iothetic (self-generated) cues rather than more abstract knowledge
of environment structure. Despite these limitations, access to a path
integration system can be harnessed by more powerful algorithms
as a forward simulator even in the absence of overt movement (i.e., a
form of imagination), opening the door to online planning and offline
learning abilities. As we’ll see, path integration can sometimes be
applied to more general “conceptual” state spaces that can be repre-
sented in an approximately Euclidean form (i.e., a low-dimensional
manifold in a metric space).
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Figure 1: Foraging (solid line) and
return (dotted line) trajectories of the
desert ant Cataglyphsis. F = food, N
= nest. Reproduced from Miiller and
Wehner (1988).

Small errors accumulate over time, so
animals need to correct their positional
estimates using landmarks and other
sources of information.
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1.1 Path integration

Lets; € IR? denote the agent’s 2D spatial position at time t. The
agent’s action a; € IR? is a velocity vector, which specifies the instan-
taneous change in position:

St = dat. (1)

If the position variable is initialized to [0, 0] at time 0, the path inte-
gral of velocity yields position in the reference frame centered at the

initial position:

ot
St :/ ﬂ;d?. (2)
J0

For the foraging ant, the initial position is the nest, so that the in-
tegrated position is represented in nest-centered coordinates. Once
food is found, the ant can chart a path home by aligning its move-
ment direction with the homing vector, —s;. Once the homing vector
is close to [0, 0], the ant knows that it’s in the vicinity of the nest (up
to noise in the integrator). In addition, it can store the food location
in memory, so that it can return to it from the nest by aligning its
movement direction with the vector pointing at the stored location.

1.2 Continuous attractor network

While the preceding section provides a useful abstraction, the brain

needs to implement these computations with neurons. A stan- Our treatment is similar to previous
continuous attractor models (e.g., Burak

dard implementation uses a network of recurrently connected neu- X
and Fiete, 2009).

rons with population activity x and recurrent weight matrix W. Its

continuous-time firing rate dynamics are given by: To keep the notation light, we’ve
dropped the time index here.

™ = —x+ $p(Wx + Ga), (3)

where ¢(-) is a non-linearity (e.g., a rectified linearity, to prevent
firing rates below 0), T is a time constant, and a is the velocity drive

acting through the feedforward matrix G, which implicitly encodes You can think of g;, the ith row of G,
) g 1% y 8
as a vector pointing in the preferred

the preferred movement direction 6; for each neuron i. Each neuron omth :
movement direction for neuron i.

also has a preferred position 5;, which governs the “difference of
Gaussians” connectivity profile:

Wij = K(5; — 5, — gj), )
K(s) = exp[—a[is||*] —exp[—BlIs]?], (5)

where « and S control the relative strength of excitation and inhi-
bition. With this connectivity profile, neurons that prefer nearby
positions excite one another. The inhibitory term produces surround
suppression, whereby neurons with preferred positions just outside



the neighborhood of a given neuron send inhibitory input. The shift
term g; skews the flow of activity in the direction that the agent is
moving.

This network will form stable “bumps” of activity at particular
positions. Stability means that the bumps will be restored following
small perturbations of the activity state—the bumps are “attrac-
tors” in dynamical systems terminology. The set of attractors forms
a continuous manifold in position space: smooth changes in position
generate locally Euclidean changes in neural activity. Thus, this kind
of network is referred to as a continuous attractor network.

We can think of the network’s activity as organized on a sheet,
where neurons are placed topographically based on their preferred
location. Each patch of the sheet contains neurons covering all pre-
ferred directions. When the animal is stationary at a particular lo-
cation, a periodic grid of neurons is activated on the sheet (Figure
2), similar to the entorhinal grid cells introduced in the last chapter.
The periodicity comes from the center-surround interactions between
nearby neurons on the sheet. To avoid edge effects, some models
assume periodic boundary conditions, where neurons near the edge
of the sheet wrap around to the opposite edge (Figure 3).

A non-zero velocity drive causes the activity bump to translate
on the sheet. For grid cells, this means that individual neurons fire
periodically as an animal traverses space, while maintaining their
phase relationships (as observed empirically; Yoon et al., 2013). The
critical question is whether these activity dynamics carry a stable rep-
resentation of the animal’s position that is updated correctly based
on the animal’s motion. In other words, can downstream neurons
accurately decode position from the pattern of activity? One way to
do this is using the phase of neural activity relative to the starting
point of the traversal: position can be decoded linearly from phase up
to the period of the grid. Geometrically, this corresponds to identi-
fying a position on a ring wrapping around the torus representation
of the sheet (see Figure 3). Using this readout, Burak and Fiete (2009)
showed with simulations that the total positional error accumulated
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Figure 2: Activity on the neural sheet.
The center-surround kernel, K(x), is
shown on the bottom. Reproduced from
Burak and Fiete (2009).

Note that the sheet does not correspond
to the true anatomical arrangement of
neurons in the brain; it’s a conceptual
device to facilitate visualization.

Figure 3: Neural connectivity with
periodic boundary conditions. (Left)
Neural connectivity wraps around the
neural sheet. (Right) The connectivity
is topologically equivalent to a torus.
Reproduced from McNaughton et al.
(2006).

Phase here refers to the phase of the 2D
center of the bump on the sheet (ie.,
the attractor phase). The activity of the
population does not itself have a fixed
phase, since the neurons do not fire
synchronously.



over 20 minutes (covering around 260 meters) is less than 15 centime-
ters.

At first glance, it seems strange to use a periodic representation of
space to keep track of position. If position can only be identified up
to the grid period, this representation will be useless for any environ-
ments that are larger than the grid period. Critically, the entorhinal
cortex contains multiple modules, as described in the last chapter.
Each module has a different period, giving rise to a multi-scale repre-
sentation of space. By combining the modules, positional information
can be tracked over very large spaces (Fiete et al., 2008). To under-
stand why, let’s examine a simplified problem: representation of 1-D
position.

Let Ay denote the period of module k. The attractor phase in mod-
ule k can be written as 8y = § mod Ax, where 3 is the animal’s po-
sition estimate and “mod” refers to the modulo operator. The phase
vector 6 = (04, ...,0k) collects together the phases from K different
modules. This phase code is an example of a residue number system,
which can uniquely represent a number of positions that is exponen-
tial in the number of modules. In the (admittedly contrived) setting
where the periods are whole numbers and share no common factors
(i.e., they are co-prime), then one can apply the Chinese remainder
theorem to prove that any number in the range o to [ Ay — 1 can
be uniquely represented with the phase code (Fiete et al., 2008). For
example, over 1 million positions could be represented with only 5
modules. The vast capacity of this representation means that any
excess capacity could be utilized for error-correcting redundancy,
thereby conferring robustness in the face of spiking noise.

In summary, this section has shown how path integration can
be implemented in a velocity-driven continuous attractor network,
thought to exist in the entorhinal cortex. Returning to our main
theme, the purpose of this exercise was to show how an ecologically
significant form of model-based knowledge (what happens to my
position when I move?) can be implemented in biologically plausible
neural circuitry.

1.3 Connection to predictive maps

In the last chapter, we suggested that grid cells might provide a low-
dimensional basis (specifically, an eigendecomposition) of the predic-
tive map (successor representation) in the hippocampus, possibly in
the service of regularization. While this proposal seems fundamen-
tally different from the idea that the grid cells encode a transition
model for path integration, the transition function and the successor
representation share the same eigenvectors.

CHAPTER 13 5

Another computationally useful prop-
erty of this representation is that each
phase can be updated in parallel when
the animal moves; no interaction is
needed between the modules. This
allows distributed tracking of position.

Further evidence that the entorhinal
cortex is important for path integration
comes from the finding that lesions to
this area impair the ability of rats to
find their way back to a starting refuge
using only self-motion information
(Parron and Save, 2004).

Technically, this requires the tran-
sition matrix to be diagonaliz-

able, a condition satisfied when

the Markov chain is reversible:
T7(s'|s)u™(s) = T™(s|s")u™(s"), where
u’" is the stationary distribution of the
Markov chain.



When the velocity drive is close to o, or random exploration gen-
erates isotropic velocity signals (i.e., the agent moves in any direction
with equal probability), the neural activity “relaxes” towards the
eigenvectors. Thus, a low-dimensional predictive representation,
as described in the last chapter, is intrinsic to the network dynam-
ics. When the velocity drive is non-zero/anisotropic, the popula-
tion activity bump tracks position by integrating velocity, mirroring
movement-driven transition dynamics. To summarize, the same
network has different modes of operation: exploration-driven (low-
dimensional predictive representation) and velocity-driven (path
integration).

1.4 Shortcuts and detours

Having access to a spatial model enables more than tracking position
and computing homing vectors. An agent can also plan shortcuts
and detours, by using the same path integration mechanism in its
imagination rather than during actual movement. Before describing
how such mental navigation can be implemented, let’s look at a few
empirical examples.

In a classic demonstration of shortcutting behavior, Tolman et al.
(1946) first trained rats to take an indirect route from a circular plat-
form to a goal location containing food. After this initial training, rats
were placed back on the circular platform, but this time they could
choose from several alleys radiating from the platform (Figure 4). The
key finding was that rats preferred the alley leading directly to the
food. This finding is closely related to the homing behavior discussed
above: essentially, the rats are “homing” toward the goal location.

Unfortunately, Tolman’s experiment had two major problems.
First, a light bulb was suspended above the goal location throughout
training and testing; the rats could have used this as a beacon, rather
than relying on a cognitive map of space. A similar confound also
afflicted many later studies of shortcut behavior. Second, the shortcut
doesn’t require any flexible planning or spatial reasoning; the rats
simply have to run in a single direction until they reach the food.
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Figure 4: Tolman shortcut experiment.
(Left) Training apparatus. (Right) Test
apparatus. “H” indicates the goal
location. Adapted from Tolman et al.

(1946).

S

Figure 5: Sato shortcut experiment.
Red line shows the wall that was
removed in the shortcut test. The
dashed black line shows the path rats
took during training; the solid black
line shows the path rats took during the
shortcut test. Adapted from Sato et al.
(2018).



Later work addressed these problems. Roberts et al. (2007) showed
that rats still take shortcuts in enclosed mazes, where they can’t make
use of distal cues as beacons. Sato et al. (2018) developed a “lattice
maze” where rats could take circuitous paths to a goal. After train-
ing, a shortcut was created by removing one of the walls in the lattice
(Figure 5). Rats were more likely to take the shortcut than a longer
detour path, demonstrating that they are capable of flexible shortcut-
ting behavior.

A fascinating (and under-appreciated) example of shortcutting
behavior comes from a study by Zanforlin and Poli (1970), who took
advantage of rats’ natural tendency to burrow underground tunnels.
They first trained rats to follow an S-shaped tube between boxes, and
then observed as the rats burrowed tunnels (Figure 6). Strikingly,
of the rats that successfully reached the goal box, the paths they
burrowed were shorter than the S-shaped training tube.

Another example of flexible mental navigation is the ability to
adapt in response to novel obstacles. Tolman and Honzik (1930) stud-
ied a maze with multiple possible paths to a goal (Figure 7). When
they blocked one of these paths, rats tended to take the shortest path
that would get them to the goal.

We now turn to the computational question: how does the brain
do it? It’s not enough to compute the direction of the goal, because
in many of these cases animals have to move away from the goal in
order to take the shortest path. What's needed is the ability to look
ahead in a cognitive map, until a sufficiently short path is found.
Tolman (1948) pointed out that rats often pause at choice points
(intersections) in a maze, looking in each direction before moving
again. He dubbed this behavior vicarious trial and error, based on
the hypothesis that the rats are mentally simulating different paths
(sometimes to unseen goals), testing whether each path is successful
until a successful one is found. Many years after this hypothesis
was formulated, Johnson and Redish (2007) provided direct neural
evidence for such simulation, showing that place cells swept ahead of
the rat’s actual position at choice points (Figure 8).
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Hippocampal sweeps are temporally organized by the theta
rhythm (6-10 Hz), starting a little behind the rat’s current position
and ending slightly ahead of it about 100-160 milliseconds later, at
the end of a theta cycle (Foster and Wilson, 2007). These sweeps pref-
erentially project in the direction of the rat’s current goals, extending
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Figure 6: Burrowing rats (sometimes)
take shortcuts. Out of 10 rats in the
experiment, 5 burrowed from box A to
box B, and one missed it by 10 cm. Four
of these tunnels are shown, along with
the S-shaped tube used during training.
Reproduced from Zanforlin and Poli
(1970).
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Figure 7: Schematic of Tolman detour
maze. Red lines show two block loca-
tions. Based on apparatus described in
Tolman and Honzik (1930).

Figure 8: Decoded spatial position
from hippocampal ensembles at a
choice point. Note that the rat is not
moving; thus, the decoded position is
imagined. Reproduced from Johnson
and Redish (2007).



farther for more distant goals (Wikenheiser and Redish, 2015), and al-
ternating between different possible paths on consecutive theta cycles
(Kay et al., 2020). With more experience, rats stop exhibiting vicari-
ous trial and error, but hippocampal sweeps continue to be observed,
except now only projecting in the direction of the animal’s eventual
destination—mirroring the animal’s stereotyped behavior.
Mechanistically, a path integration system could implement these
forward sweeps by applying velocity drive to the integrator. In a
cluttered environment, the velocity drive would need to point not
directly at the goal but rather at locally accessible subgoals. Indeed,
hippocampal sweeps appear to be chunked based on significant
landmarks or choice points (Figure 9). One proposal for how this
might work (Erdem and Hasselmo, 2012) uses head direction cells
(neurons tuned to specific head directions) to supply the directional
component of velocity drive. The resulting sweeps produce a form
of locally linear look-ahead; by chaining these sweeps together, the
simulation can eventually reach a goal (Figure 10).

Tolman Maze Training Trials Tolman Maze Test Trials
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120
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80

The question remains how the head direction cells know what
direction to activate. Erdem and Hasselmo (2012) proposed that
the head direction cells are guided by a representation of reward
signals at particular locations; critically, this signal diffuses through
the cognitive map, such that a short linear look-ahead can contact
it and subsequently project further look-aheads in that direction.
This provides the key mechanism for shortcut discovery, since the
diffusion will tend to concentrate along shorter paths.

The “reward map” is thought to be implemented in the prefrontal
cortex, where neurons tuned to both location and reward have been
identified. The relatively large place fields of these neurons (com-
pared to hippocampal place cells) may lend themselves to reward dif-
fusion (Hok et al., 2005). Prefrontal place cells are coordinated with
the hippocampal theta rhythm during navigation (Tang et al., 2021),
and are predictive of subsequent hippocampal place cell activation
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Figure 9: Cross-correlation between
positional probabilities decoded

from hippocampal activity. White
lines indicate landmarks in the maze.
The “pinches” in the cross-correlation
indicate that positional probabilities are
more strongly correlated within than
between landmarks. Reproduced from
Gupta et al. (2012).

Entorhinal neurons tuned to speed
(speed cells) might provide the speed
component of velocity drive (Kropff
et al., 2015).

Figure 10: Linear look-ahead in the
Tolman shortcut maze. Dashed lines
show simulated trajectories. Repro-
duced from Erdem and Hasselmo
(2012).



during deliberation (Hasz and Redish, 2020).

The linear look-ahead + reward diffusion model has some intrigu-
ing similarities with modern planning algorithms, which have been
instrumental to the design of high-performance artificial intelligence
systems. For example, AlphaGo (Silver et al., 2016) uses a value func-
tion approximator to guide look-ahead. The values are estimated
with a form of temporal difference learning (see Chapters 10 and 11).
In an environment with a single goal, this produces a diffusion-like
propagation of information. An important difference is that general
planning algorithms do not typically assume that the state space is
Euclidean (an assumption necessary for linear look-ahead). Below we
will discuss algorithms applicable to more general state spaces. But
first we will look at examples where non-Euclidean state spaces can
be treated in a Euclidean way.

1.5 Mental navigation in non-Euclidean state spaces

A Euclidean state space is geometrically self-consistent in the sense
that if you add together a sequence of translations and end up where
you started, then the sum of the translations must equal o—a loop
closure property. This is the basis of the desert ant’s homing behavior:
following the homing vector ensures that its path integrator returns
to o, coinciding with arrival at its nest. Non-Euclidean state spaces
don’t necessarily obey loop closure. For example, the Earth is only
locally Euclidean (the ground looks flat over short distances); over
longer distances, the curvature of the Earth starts to matter, and the
homing vector will not necessarily get the ant back to its nest, even if
the path integrator returns to o.

The brain needs to plan in many state spaces that are not obvi-
ously Euclidean (e.g., imagine you're adjusting the knobs in a shower
to control water temperature and pressure). The question is whether
we can represent these spaces in a way that is at least approximately
Euclidean. If we can, then we can harness the path integration capa-
bility of the entorhinal cortex for planning. This might be the case
for some “conceptual” state spaces. Constantinescu et al. (2016) used
functional MRI to identify brain areas in humans that exhibited grid-
like periodicity in their responses to changes in a conceptual space
(the neck and leg lengths of a bird silhouette). By associating par-
ticular points in this “bird space” with unique outcomes (Christmas
symbols), humans could be trained to plan morphs that achieve spe-
cific outcomes (Figure 11). The entorhinal cortex was among several
areas that exhibited grid-like periodicity over bird space.

Another example comes from a study of monkeys performing a
1-D mental navigation task (Figure 12). They were trained to move
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In 2015, AlphaGo became the first
program to beat a professional Go
player without a handicap. A few years
later, it beat the top-ranked Go player in
a 3-game match.
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Figure 11: A conceptual space and
associated outcomes. (Left) Example
birds and outcomes. (Right) Euclidean
representation. Reproduced from
Constantinescu et al. (2016).
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through an abstract space of landmarks using a joystick, and could
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eventually perform this task with high accuracy. When they moved
the joystick, movement through the space was invisible (they couldn’t
see the sequence of landmarks intervening between the start and end
points); nonetheless, neurons in entorhinal cortex exhibited periodic
firing patterns, with bumps that aligned to the expected timing of
landmark arrivals.
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These studies suggest that the periodic structure of grid cells in
entorhinal cortex extend beyond spatial navigation, reflecting a com-
mon underlying principle. One way to formalize this principle is to
optimize a recurrent neural network that transforms neural state rep-
resentations by running the dynamics forward (Whittington et al.,
2020), as in Eq. 3. By mapping the state representations to obser-
vations, the network can be trained to match its predictions with
these observations. In open-field environments this produces grid-
like periodic representations. These representations form an abstract
structural code in the sense that they can be reused in any task that
shares the same underlying spatial structure.

Strictly speaking, the forward dynamics of recurrent neural net-
work do not necessarily correspond to path integration, because
there’s no guarantee that the loop closure property will be satis-



fied. Iyer et al. (2024) addressed this by training neural networks
with an explicit loop closure loss (penalizing them for violations of
this property). This resulted in networks that were geometrically
self-consistent, such that we could more properly interpret their dy-
namics as a form of approximate path integration. Moreover, the
networks reproduced grid-like representations for several different
domains (an example is shown in Figure 13). The training procedure
is admittedly artificial, but perhaps points the way toward the kinds
of inductive biases that the brain might use to discipline its learned
representations.

2 General planning algorithms

We now turn to general planning algorithms that don’t make Eu-
clidean assumptions about the structure of the state space.

2.1 Dynamic programming

The key idea behind dynamic programming is the decomposition of
a complex problem into a series of sub-problems by harnessing the
recursive structure of the complex problem. In a Markov decision
process (see Chapter 11), the recursive structure is represented by the
Bellman optimality equation:

Q*(s,a) = R(s) + 7 L T(sls,a) max Q* (s, '), ®)

which decomposes the optimal value function Q* (i.e., the value
function under the optimal policy) into the sum of the immediate
reward and the expected reward at the next state. This optimality
equation can be used to define a simple dynamic programming al-
gorithm known as value iteration (Sutton and Barto, 2018). Start by
initializing estimates Q* (s, ) arbitrarily, and then iterate over states,
applying a “Bellman backup” each time:

Q"(s,a) = R(s) + 7 L T(s'[s, a) max Q*(s', a'). 7)
o
This algorithm will converge to the true optimal values.

Friedrich and Lengyel (2016) developed a biologically plausible
implementation of dynamic programming, similar to value itera-
tion. Here we present their model in a slightly simplified form. They
posited a population of neurons tuned to different state-action pairs,
(si,a;), where i indexes neurons. Using a rate-based approximation,
the membrane potential dynamics are modeled as linear and recur-
rent:
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leg length

neck length

Figure 13: Grid-like representation
learned for the bird space. Reproduced
from Iyer et al. (2024).

Here we have assumed discrete states,
but an analogous equation applies to
continuous states.

A similar approach can be used with
function approximation, but we omit
this for brevity (see Friedrich and
Lengyel, 2016).
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T = —p(t) + Y Wiix;(£) + Ii(t), 8
j
where T is the membrane time constant, y;(t) is the membrane po- [x]+ = x if x > 0, otherwise [x] = 0.
tential of neuron i, x;(t) = [y — 6]+ is the firing rate of neuron i (a

rectified linear function of the membrane potential, with threshold

6), and I;(t) = R(s;) is the input current representing the expected Friedrich and Lengyel express the
expected reward as a function of the

reward for the state encoded by neuron i. The recurrent weights are ' ‘ :
state-action pair, but for consistency we

parametrized as the sum of excitatory and inhibitory components: use R(s) instead of R(s, a).
Wii = Wi+ Wit )
Wi = 9T(s' = sj|s = s;,a = a;) (10)
Wit =i = j] = T[s; = sj]. (11)

The excitatory component encodes the transition function (with post-
synaptic neurons representing the current state and pre-synaptic neu-
rons representing the next state). The inhibitory component encodes
the mutual exclusivity between different actions for the same state: if
the actions are different and the states are the same, this component
is negative. Friedrich and Lengyel showed that the firing rates of the
population converge to a fixed point that will (under suitable condi-
tions) correspond to the optimal value function, up to a constant that

depends only on the firing threshold 6 and the discount factor +y: The summation is taken over all neu-
rons coding for state s.
0
V*(s) = X, — —, 12
(s) Z Bl g (12)
its;j=s

where V*(s) = argmax, Q*(s,a). The optimal policy is to choose the
action coded by any of the currently active neurons that correspond

to the current state, for example by choosing the action coded by the
most active neuron: a*(s) = argmax; x;I[s; = s.

Figure 14 illustrates the model behavior on a sequential movement
selection task studied by Sohn and Lee (2007). Monkeys were trained
to execute a hand movement (selecting a visual target with a cursor)
in order to move to the next state. If they made no mistakes in the
sequence, they were given a juice reward; otherwise, they had to
start over. Although in principle the monkeys could solve this task
in an online manner (paying attention only to the current stimulus,
without planning), their response times suggested that they were
planning ahead. In particular, their response times were longest
when the number of remaining movements (NRM) was large.

Figure 14 shows activity recorded from the pre-supplementary
area (pre-SMA), a frontal cortical region known to be involved in
motor planning (Nachev et al., 2008). For example, neurons in pre-
SMA respond when a monkey needs to change the direction of a
forthcoming arm movement (Matsuzaka and Tanji, 1996). Disruption
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of pre-SMA activity impairs the ability to alter upcoming action
sequences (Kennerley et al., 2004). Thus, pre-SMA is a plausible
site of goal-directed value computation. Sohn and Lee found that
neurons respond earlier and more strongly when the NRM is small,
a pattern recapitulated by the Friedrich and Lengyel model. The
effect of NRM on neural response latency arises in this model from

spreading activation, which is needed to propagate value information

through the network. The effect of NRM on response amplitude
arises from discounting. Friedrich and Lengyel also showed that
the model could closely mirror the NRM-dependent response times
by assuming that movements are generated whenever the relative
activity of the corresponding neurons crosses a threshold.

2.2 Tree search

Dynamic programming is a powerful and widely applied family

of algorithms, but it suffers from a major limitation. Because it’s
designed to compute optimal values for every state-action pair, it
becomes intractable for large state-action spaces. This is why mod-
ern Al systems like AlphaGo, which are designed to work on the
extremely large state spaces of games like Go, do not use dynamic
programming. Instead, they use “rollouts” of simulated state-action
sequences initiated from the current state. These rollouts can be un-
derstood as search through the decision tree rooted at the current
state, hence the name tree search for this general family of algorithms.
Unlike dynamic programming, tree search algorithms estimate the
value function locally, so they don’t suffer from unfavorable scal-

ing with the size of the state space. On the other hand, this locality
means that action policies are not guaranteed to be globally consis-
tent over the entire state space. Moreover, the stochastic nature of the
rollouts introduces finite sampling errors when the transitions and
rewards are not deterministic, and the estimates can also be biased
due to finite truncation of the rollout when the planning horizon is

CHAPTER 13 13

Figure 14: Neural activity and model
predictions during sequential move-
ment selection. (Left) Activity in the
presupplementary motor area (pre-
SMA) as a function of the number of
remaining movements (NRM). The inset
shows the state transition structure:
colored lines denote correct actions,
black lines denote incorrect actions, and
the grey square denotes the goal state.
The numbers on each state indicate

the corresponding NRM. (Right) Firing
rates of value neurons generated by

the model. The black line shows the
reward input, which was fitted to the
data. Reproduced from Friedrich and
Lengyel (2016). The neural data is taken
from Sohn and Lee (2007).

The linear look-ahead algorithm de-
scribed above can be viewed as a kind
of rollout specialized for spatial tasks.

See Daw and Dayan (2014) for fur-
ther discussion of different trade-offs
involved in the design of tree search
algorithms.
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infinite (i.e., the task doesn’t have a terminal state). pruning
The trick to making tree search algorithms efficient is designing -

the rollout policy to selectively search promising parts of the decision

tree (or equivalently pruning unpromising parts; see Figure 15). A

simple heuristic is to myopically prune sub-trees (rooted at the cur-

rent state) whenever an unfavorable outcome is encountered. There

is some evidence that humans follow this heuristic, relinquishing

truncation

high-payoff paths that require traversing a large loss (Huys et al.,
Figure 15: Tree search heuristics. Each

. . . . L. node represents a state, and each edge
value function (e.g., via TD learning) to guide the rollouts. This is a represents an action. Reproduced from

2012). A more sophisticated, non-myopic heuristic uses a learned

key design feature of systems like AlphaGo. Evidence from experi- Mattar and Lengyel (2022).
ments in which human subjects are asked to externalize their rollouts

(by trying out paths before committing to one) suggests that they can

adopt non-myopic heuristics, taking into account both the long-term

value and their own uncertainty when selecting rollouts (Fan et al.,

2025). Monte Carlo tree search algorithms
(Browne et al., 2012), widely used in

o ) . . modern Al, construct rollouts stochas-
limited-depth rollouts (truncation, as shown in Figure 15) and then tically by following an exploration

Another trick that exploits a value function estimate is to execute

add the accumulated reward to the value estimate of the final state. policy.
This works because the Bellman equation can be expanded in the

fOHOWing way: This is also known as partial evaluation
in computer science.

V(s) = E[r + 912+ - Y g + XV (sxi1) [s1 = 8], (13)

where K is the rollout depth. In other words, the value function for
depth K + 1 “completes” the partial value estimate at the current
state estimated using the rollout. Humans typically plan 3-6 steps
ahead (at least on games such as chess, although professionals can
sometimes plan more deeply; De Groot, 1978); planning depth can
vary adaptively with task demands (Eluchans et al., 2025) and exper-
tise (Van Opheusden et al., 2023). Which plans humans ultimately
select depends on both their depth-limited rollout and the estimated
value at the end of the rollout (Keramati et al., 2016).

Chunking (Figure 15) is a heuristic that simplifies the planning
problem by abstracting away the fine structure of the decision tree.
This is familiar to anyone planning a complex activity like a vaca-
tion: planning initially unfolds at a high level (e.g., how to rent a car
or buy plane tickets), before figuring out the low-level details (e.g,.
what muscles to move in order to open a door or type on a com-
puter). One way that chunks form is through repetitive action or state
sequences (Dezfouli and Balleine, 2013; Tomov et al., 2020). These
sequences may get chunked together into a single unit; a hierarchi-
cal planning algorithm can operate on this unit rather than on the
low-level states/actions. One consequence of this chunking is that
humans forego optimal paths if they can reuse a chunk in a good but



suboptimal path (Huys et al., 2015).

3 Using simulation for learning

We’ve now seen several ways in which “model-free” algorithms (like
TD learning) can assist “model-based” algorithms like tree search—
by guiding rollouts and completing partial evaluations. This form

of interplay is based on the idea that the model-based planner ulti-
mately controls behavior, whereas the model-free learning algorithms
operate in the background and provide input to the planner. We
could alternatively flip this on its head, handing control to the model-
free algorithm and allowing it to call upon a model-based system

for assistance. This is the essential idea underlying architectures like
Dyna (Sutton, 1991), which uses a model to simulate synthetic data
that is fed into a model-free learning system (Figure 16). All interac-
tions with the environment are controlled by the model-free system.

The principal advantage of this architecture is that action selec-
tion is very efficient, since it doesn’t require any planning. Instead,
model-based knowledge is compiled (via simulation in the back-
ground) into an efficiently actionable form such as cached values or
a computationally cheap function approximator. One implication of
this architecture is that the model-based system can generate syn-
thetic data which the model-free system has never experienced—i.e.,
a form of learning from imagination.

Consider for example the experimental design shown in Figure 17.
Human subjects were first taught a simple one-step transition model
(Phase 1), and then taught about rewards at each terminal state
(Phase 2). In Phase 3, the state space was expanded, with the for-
merly terminal states now serving as initial states. Finally, in Phase 4,
subjects were returned to the original initial states and asked to judge
which state is better. By comparing these judgments to the same
judgments after Phase 2, we can calculate a “revaluation score” that
quantifies how much Phase 3 training altered their value estimates.
The critical feature of this design is that subjects never experience an
unbroken trajectory through the state space—what a conventional
TD learning algorithm would require to correctly estimate values. Yet
they were still able to update their values based on the Phase 3 train-
ing. However, if they were placed under cognitive load during Phase
3 (simultaneously performing a secondary task), the revaluation score
was significantly attenuated. This is consistent with the hypothesis
that they were running simulations during Phase 3.

Even more direct evidence for offline simulation comes from an-
other experiment, using the same setup, where a rest interval is inter-
posed between Phases 3 and 4 (subjects sat quietly in a room listen-
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The same idea appears in modern Al
systems like Dreamer (Hafner et al.,
2025).

Model-free
system

selection H

Real
experience

Simulated

ﬂ experience

Model-based
system

Action

Environment

Figure 16: The Dyna architecture.
Reproduced from Gershman et al.

(2014).
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Figure 17: Experimental design for
A Phase 1: . . . .
L. studying simulation-based learning.
Pre-training
: Reproduced from Gershman et al.
B (20 trials)
(2014).

2 Phase 2:
Step 1 training
1¢ (20 ttrials)

Phase 3:
Step 2 training

O
B
O
D
E 10¢ (30 trials), Load / No load
F
<
B

2¢ Phase 4:
Step 1 test
(10 trials)
No feedback

ing to music, without any specific task). This rest interval rescued the
revaluation score from its attenuation under load, putatively by giv-
ing people more opportunity for offline simulation. Importantly, the Other experiments have shown that

cognitive load selectively impairs

. . . L. . . . . model-based computation (Otto et al.,
decision time, because cognitive load during Phase 4 did not impair 2013).

subjects in these experiments were probably not using planning at

their performance.

Another source of evidence for offline simulation is a functional
MRI study using a similar design (Momennejad et al., 2018). This re-
vealed reactivation of state representations in the hippocampus dur-
ing a rest interval, specifically in a condition where values needed to
be updated (significantly less reactivation was observed in a control
condition where values were unchanged). The degree of reactivation
was significantly correlated with the revaluation score, again only in
the condition where values need to be updated.

A variation of the learning-by-simulation idea was explored by
Jensen et al. (2024). They trained a recurrent neural network to maxi-
mize cumulative reward by outputting actions conditional on a set of
inputs which included the most recent state, action, and reward. The
key innovation was to endow the agent with a “cognitive” action—
simulating a rollout using a learned world model. These rollouts
were then fed back into the network as additional inputs, thereby
influencing the policy. Because the simulation action is treated in the
same way as all the other actions, the agent can learn to adaptively
decide when and how much to simulate. Like humans, the agent
spent more time simulating when it was farther from a goal and
before the first action of a trial (Figure 18).

Jensen et al. (2024) used the same model to capture aspects of hip-
pocampal place cell sequences (using data from Widloski and Foster,
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Human RNN Figure 18: Adaptive simulation. (Left)

RNN agent 2 0 — Goal dist =2 7 200 — Goal dist =2 Agent architecture. (Middle) Human
— £ = Goal dist = 3 E == Goal dist = 3 : 3 . : g
Input—/ ,' SO\ Polioy z o Coaldivoa 3 — Goal st -4 thmklng time on a maze navigation
. A i, 150 Goal dist =5 = 100 Goal dist =5 task. (Right) Recurrent neural network
Rollou £ 2 7 A
World model] D 2 \ £ \ (RNN) thinking time (number of
£ £
T s T rollouts x 120 ms/rollout). Adapted
1 3 5 1 3 5
—J from Jensen et al. (2024).

2022). Consistent with the data reviewed above, hippocampal se-
quences (forward sweeps) are interpreted as rollouts of the transition
model under the learned policy. This interpretation is supported by
the several facts: sequences tend to (i) avoid passing through walls;
(ii) reach the goal; (iii) predict the next physical movement specifi-
cally when the sequence reaches the goal; and (iv) increase the rate at
which the goal is reached over multiple sequences.

4 Conclusion

Model-based reasoning is often thought to be the pinnacle of cogni-
tion, underlying our most impressive feats of flexibility. Elements of
an internal world model can be seen not only in humans but even in
much simpler creatures like ants and wasps. This chapter reviewed
several ways in which an internal model can be used: for homing
behavior (in spatial navigation tasks), for goal-directed planning, and
for mental simulation. We have not exhausted all the uses of internal
models, but we focused on these because we know the most about
their underlying neural mechanisms. In particular, we showed how
path integration exemplifies an elementary form of model-based rea-
soning, how it can be implemented in a continuous attractor network,
and how it can be repurposed for conceptual state spaces with ap-
proximately Euclidean topology. Going beyond path integration, we
saw how forms of dynamic programming and tree search could be
implemented neurally. It’s possible that the brain has evolved to use
all of these algorithms in different situations, though we are just at
the beginning of understanding how the “meta-control” problem of
choosing algorithms is solved neurally.

Study questions

1. What are other ways that model-free and model-based systems
might interact?

2. What do you expect would happen to sequential choice behavior if
the hippocampus is lesioned?
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3. What are some computational trade-offs between online planning
vs. offline simulation?
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