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Chapter 12: Predictive maps

There’s more to life than reward. And even if you're only trying to
maximize reward, there are situations where it’s still useful to know
about more than just reward. These knowledge representations are
useful (in the sense of reward maximization) to the extent that they
can be deployed efficiently for action selection. This chapter studies
the flexibility-efficiency trade-off entailed by different representations
and the algorithms that operate on them. We develop a generalization
of the value function concept that predicts a multiplicity of different
targets (future states or features). This predictive map enables more
flexibility than the value function alone, with only a modest efficiency
loss. Evidence suggests that this predictive map is represented in

the hippocampus and updated by dopaminergic temporal difference
errors or a temporally asymmetric learning rule. A low-dimensional
representation in entorhinal cortex may regularize learning toward
predictions that are smooth across the state space.

The reinforcement learning (RL) models described in the last two
chapters focus on learning representations (value functions and poli-
cies) that facilitate optimal prediction and behavior with relatively
little computation. In the simplest case, value functions and policies
are stored in look-up tables, requiring no computation beyond find-
ing the right entry for a given state-action pair. In a more complex
variation, these functions are neural networks, still relatively cheap.
The trade-off is that these representations are relatively inflexible: if
the world changes, the representations may need to be relearned.

For example, a TD learning agent can estimate a tabular value
function V(s) by interacting with the environment. This may be a
very time-consuming process if the state space is large, because the
agent will have to sample each state many times. Critically, a local
change in the environment has non-local changes on the value func-
tion (Figure 1) because the value of each state depends on the values
of other states (through the Bellman equation; see Chapter 10). As a
consequence, the states may need to be comprehensively resampled
in order to update the value function. In settings where experience is
scarce, relearning may be prohibitively costly. Importantly, animals
don’t always need to relearn. They are sometimes capable of rapid
adaptation. How do they do it?

This chapter will discuss one approach to this problem (another
will be discussed in the next chapter). We will show how the concept
of a value function can be generalized to encompass predictions of
many different targets (not just cumulative reward). These “general-
ized predictions” can be used to support rapid adaptation. We will
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Figure 1: Gridworld illustration of
how local changes have non-local
effects on the value function. The
goal is shown as an X and the agent
is shown as a circle. Black squares

are walls. The shading of the other
squares shows the value function. The
two gridworlds differ only by the goal
placement.

Under uniform sampling of states,
an accurate estimate requires a total
number of samples that is at least
quadratic (and possibly worse) in the
number of states (Samsonov et al.,
2024).
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review behavioral and neural evidence for generalized predictions, as
well as for generalized prediction errors that drive learning.

1 Latent learning

To build some intuition, let’s return to the phenomenon of sensory

preconditioning introduced in Chapter 10. In the first stage of training, Notice that this is essentially the same
one CS (B) is preceded by another CS (A) in the absence of reward. design as second-order conditioning,

. . . i L. except that the A-B trials are confined
Subsequently, B is paired with reward. Finally, a test (again in the ab- to the first phase.

sence of reward) reveals conditioned responding to A, despite never
being paired with reward. In Chapter 10, we noted that a probabilis-
tic version of TD learning could explain the sensory preconditioning
phenomenon, due to the posterior covariance matrix that guides
indirect credit assignment.

One problem with this account is that it requires the offset of A
to coincide with the onset of B in order to learn a positive covariance
(the basis of the sensory preconditioning effect in the model). If A
and B are simultaneously presented, the model learns a negative co-
variance; this is what underlies retrospective revaluation phenomena
like backward blocking discussed in Chapter 10. Contrary to this
model prediction, sensory preconditioning still occurs with simul-
taneous presentation (Rescorla, 1980). Moreover, some studies find
that sensory preconditioning is stronger with shorter interstimulus
intervals (e.g., Hoffeld et al., 1958; Lavin, 1976), again at odds with
the probabilistic TD model’s predictions.

Intuitively, sensory preconditioning reflects the formation of pre-
dictive links between arbitrary stimuli, which should be stronger
when the temporal separation between stimuli is small. These links
can then be mobilized to support reward prediction and action selec-
tion. To formalize this idea, we will describe an alternative model—
the successor representation (SR)—which doesn’t involve Bayesian
machinery like covariance matrices. Instead, it is based on learning
long-range state predictions. Collectively these state predictions form
a predictive map of the environment.

The predictive map can explain a broader class of “latent learn-
ing” phenomena where an animal is exposed to mazes, stimulus
sequences, or other environments in the absence of reinforcement;
subsequent tests reveal that the animal has acquired knowledge
about the structure of these environments. For example, Tolman
(1948) described experiments in which rats were allowed to freely ex-
plore a maze; after a week, the animals started receiving food when
they reached a particular location of the maze. These animals learned
to find the food much more quickly compared to the learning curves
of naive animals, indicating that they acquired knowledge about the



structure of the maze which they could use to guide their reward-
seeking.

Another striking form of latent learning is observed in contextual
fear conditioning experiments, where a shock is paired with a context
(e.g., a particular box). If the shock is delivered immediately after
placing the animal in the context, a subsequent test of conditioned
fear (freezing in the context) is weaker compared to the same proce-
dure with a time delay between context entry and shock delivery—a
phenomenon known as the immediate shock deficit (Fanselow, 1990).
One way to think about this phenomenon is that the additional time
is required for the animal to explore the box and form a predictive
map, which then allows the shock delivery to propagate across the
whole state space.

2 The successor representation

Our starting point is the following decomposition of the value func-
tion (Dayan, 1993):

V(s) = LM (s, 9RE), 0
where
M7 (s,5) = E [0 v'L[s; = §]|so = s, 71] (2)

is the SR, a matrix that keeps track of the expected discounted num-
ber of times an agent visits state s’ on a trajectory starting in state s.
It can be thought of intuitively as a kind of “predictive map” spec-
ifying where the agent will be in the near future (with a predictive
horizon set by the discount factor 7). An agent currently occupy
state s can inspect the corresponding row of M to see what the future
holds in store.

Eq. 1 says that the value of state s is a linear combination of im-
mediate expected rewards in other states (s') weighted by the fre-
quency of visiting each state in the near future starting from s. This is
a powerful result: given the SR, values can be computed by a linear
operation on the reward function.

The SR obeys a Bellman equation analogous to the one for values:

M7 (s,8) =T[s = 3]+ ) T"(s,s')M"(s,3). (3)

This means that TD learning can be used to update an estimate of the
SR, M, from observed state transitions (s — s'):

AM™(s,8) & X[s = '] + yM"(s',3) — M (s,3). (4)
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In matrix form, the SR can be computed
analytically: M™ = (I —4T7)71,
where [ is the identity matrix and

T (s,s') = Y, (a|s)T(s'|s,a) is the
state transition matrix.



The right-hand side is the TD error applied to long-range state pre-
diction. The immediate rewards can also be learned by a simple
error-driven update after observing reward r in state s:

AR(s) <7 — R(s). (5)

The key feature of this model is the separation of state prediction
and reward prediction. This allows the model to flexibly reuse state
predictions when the reward changes.

Let’s now examine how this model handles sensory precondition-
ing. After the initial stimulus-stimulus training, M™ (A, B) = 7',
where ISI is the interstimulus interval between stimuli A and B.

This formalizes the idea that the predictive link between stimuli
diminishes with temporal separation. When B is paired with reward,
the reward expectation is propagated to A via the predictive link,
V7 (A) = 9SIR(B). Thus, the SR model explains the key features of
sensory preconditioning.

A similar approach can be used to explain other forms of latent
learning. For example, context pre-exposure in a contextual fear con-
ditioning paradigm provides the SR with data to form a predictive
map of the environment, such that the delivery of shock (a change
to the reward function coincident with the agent’s current location)
is propagated to other states in the environment. This is why elimi-
nating this pre-exposure attenuates conditioned fear to the context:
upon return to the context, the animal is likely placed in a location
different from the one that coincided with the shock, so it will only
produce a fear response if the shock expectation has been propagated
across the state space.

Latent learning is fundamentally at odds with the “model-free”
algorithms described in Chapters 10 and 11, which provide no mech-
anism for learning in the absence of reinforcement (the exception
is the probabilistic TD model, though arguably this is not purely
model-free). The SR account is not fully model-based, since one
cannot in general recover the transition function from the SR. The
account of sensory preconditioning and latent learning depends on a
partial model (the reward function) combined with a model-free rep-
resentation of state predictions (the SR). Below we will discuss fully
model-based approaches to RL.

3 The flexibility-efficiency trade-off

The SR lies somewhere in between pure model-free and pure model-
based algorithms in terms of its flexibility-efficiency trade-off. Com-
pared to model-free algorithms, it is (as we’ve already seen) more
flexible in its ability to adapt to changes in the reward function. Be-
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Note that reward estimates can be
learned more quickly than value or SR
estimates, because they don’t rely on
bootstrapping future predictions, as in
the TD update.

Note that the policy 7 is irrelevant for
Pavlovian protocols, but we retain it for
notational consistency.

Here “model-free” is used to denote
any algorithm that does not use a
model of the environment, which
in this setting corresponds to the
transition and reward function.



cause it represents the full pairwise predictive map over states, the
computational complexity of state evaluation (Eq. 1) is linear in the
number of states. Thus, it is potentially less efficient compared to

a model-free algorithm with a lower-dimensional representation,
though this is not a fundamental limitation once we consider feature-
based generalizations of the SR (Section 7). Model-based evaluation
achieves maximal flexibility, since it can adapt to any change in the
reward and transition functions, but at the cost of higher computa-
tional complexity (depending on how exactly values are computed;
see next chapter).

One implication of using the SR for state evaluation is that it
should be differentially sensitive to changes in the transition function
compared to the reward function. This is because the SR achieves
its efficiency by compiling transition information in long-range state
predictions. A change in the transition function induces non-local
changes in the SR, analogous to the non-local changes induced in the
value function. In contrast, changes to the reward function induce
local changes, because this information is represented separately.
Model-based evaluation should be equally sensitive to both transition
and reward function changes, whereas model-free evaluation should
be equally insensitive.

Momennejad et al. (2017) tested these predictions in a human RL
task. The experiment consisted of three phases (Figure 2): learning,
relearning, and test (in extinction). At the end of Phase 1 (learning)
and Phase 3 (test), participants provided a continuous valued rating
indicating which of the two starting states they preferred. Revalua-
tion was greater in the reward revaluation condition compared with
the transition revaluation condition, consistent with the prediction
of SR-based evaluation. Nonetheless, humans were not completely
insensitive to changes in the transition structure, indicating that they
may rely partially on model-based evaluation in this task. One hy-
pothesis is that they rely on SR-based evaluation for an initial ap-
proximation, which can be refined through additional model-based
computation.

4 A predictive map in the hippocampus

If the SR account is correct, we should be able to find predictive maps
in the brain. One place to look is the hippocampus, because lesions
of the hippocampus impair several forms of latent learning (e.g.,
Port et al., 1987; Talk et al., 2002; Wiltgen et al., 2006), and stimulus-
stimulus predictions are encoded in hippocampal activity during
latent learning (Garvert et al., 2017; Wang et al., 2020).

There is a long tradition of thinking about the hippocampus as
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Figure 2: Comparing transition and
reward revaluation procedures. (Top)
Experimental design. Circles denote
states and arrows denote transitions.
(Bottom) Behavioral results. Reval-
uation score denotes the change in
preference rating after versus before
the relearning phase. Adapted from
Momennejad et al. (2017).

The evidence for hippocampal depen-
dence of latent learning is controver-
sial, with some studies failing to find
deficits following lesions (Kimble and
BreMiller, 1981; Ward-Robinson et al.,
2001).

Although we focus on the hippocampus
in this section, we note that there is
evidence for predictive maps in other
regions, such as visual cortex (Ekman
et al., 2023). See Chapter 3 for more
discussion of predictive representations
in the brain.



representing some form of “cognitive map” (O’Keefe and Nadel,
1978), originally motivated by the discovery of place cells in the hip-
pocampus tuned to an animal’s location. It later became evident

that place cells were not simply registering an animal’s location. For
example, when rats repeatedly traverse a linear track, place cells
gradually expand their tuning in the direction opposite of travel
(Mehta et al., 2000). In other words, a cell that initially responded
when the rat was in a particular location on the track eventually be-
gan to respond to earlier locations. Another example comes from a
study of rats in a circular water maze, where the rats needed to find
a submerged platform to escape the water (Hollup et al., 2001). Place
fields (tuning functions) were concentrated near the platform location
(i.e., a disproportionate number of place cells were tuned to locations
near the platform). Both of these studies illustrate asymmetries in
the structure of place cell tuning that can’t be explained by a purely
spatial account.

The predictive map offers a different account of these phenomena
(Stachenfeld et al., 2017). Assume that each state corresponds to a lo-
cation, and the place field for a single cell corresponds to one column
of the SR estimate, M (-, §); we will refer to this as the SR field tuned
to location 3 (Figure 3). An SR field is a retrospective representation in
the sense that activity is maximal for states leading to 5. A row of the
SR, M (s, -), corresponds to the population code for state s. This is a
predictive representation in the sense that activity is maximal for cells
tuned to states leading from s.
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Figure 3: Place field corresponding to a
single column of the SR. Reproduced
from Gershman (2018).

Figure 4: Real and simulated place
fields in a random foraging paradigm.
(Top) Typical place field, reproduced
from Moser et al. (2015). (Bottom)

SR place fields, reproduced from
Stachenfeld et al. (2017).
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Place cells are traditionally identified using a random foraging
paradigm in which rats are placed in a box and food pellets are ran-
domly distributed, which induces the rat to explore the whole box. In
this setting, with no systematic asymmetries in the direction of travel,
SR fields will resemble classical place fields—approximately symmet-
ric around the preferred location (Figure 4; though see Section 7 for
further nuances on this point). If rats are instead trained on the linear
track or circular water maze, systematic asymmetries in the direction
of travel will bias the SR fields backwards in the direction of travel
(reflecting the retrospective nature of the representation; Figure 5)
and concentrate them near the platform (reflecting the shift in tuning
toward frequently visited locations). Thus, the predictive map can
explain both classical and non-classical aspects of place fields.

Mehta et al. (2000) ) Simulated SR place cells Figure 5: Real and simulated place
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The SR depends on the discount factor y, which controls the pre-
dictive horizon. Thus, in principle one could have multiple predictive
maps with different choices of v, yielding a multi-scale representa-
tion. This could be useful for adaptively solving tasks with diverse
temporal demands—i.e., where some tasks require longer-range
prospection than others. In fact, the hippocampus contains multiple
maps at different scales, arranged topographically along its dorsoven-
tral axis (Kjelstrup et al., 2008), where more dorsal neurons have
smaller place fields. This gradient can be captured by changing v, as
shown by Stachenfeld et al. (2017).

5 Learning the predictive map with dopamine

Since we’ve already shown that the SR can be estimated using TD
learning, a natural hypothesis is that dopamine provides the TD
errors needed for this learning mechanism. This “generalized predic-
tion error” hypothesis can resolve a number of puzzles concerning
dopamine (Gardner et al., 2018).

The picture of phasic dopamine developed in the last two chap-
ters conceptualizes it purely in terms of reward prediction. However,
there are phenomena that seem to contradict this conceptualization.
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For example, some dopamine neurons respond to prediction errors
not only in the amount of reward but also in the identity of reward,
such as different flavors with similar desirability (Takahashi et al.,
2017). At the population level, dopamine neurons encode information
about reward identity that diminishes over the course of learning,
consistent with a prediction error signal (Stalnaker et al., 2019). If
states correspond to reward identities, then the TD update in Eq. 4
can capture the sensitivity of dopamine neurons to sensory predic-
tion errors. If dopamine neurons are tuned to different states, then
reward identity will be encoded at the population level as long as the
sensory prediction errors are non-zero.

The generalized prediction error hypothesis can also explain the
results of experiments in which dopamine activity was manipulated.
For example, Sharpe et al. (2017) attenuated the sensory precondi-
tioning effect by inhibition of dopamine neurons, demonstrating the
necessity of dopamine signaling for stimulus-stimulus learning. This
finding is consistent with recordings of dopamine release specifically
in response to sensory prediction errors during sensory precondition-
ing (Costa et al., 2025).

If the hippocampus encodes the SR and dopamine is used to up-
date the SR, then it stands to reason that dopamine inputs to the
hippocampus should be critical for the acquisition of predictions. The
evidence for this hypothesis is suggestive but somewhat indirect. The
over-representation of high-reward locations in the hippocampus can
be attenuated by inhibition of dopamine inputs to the hippocampus
(Mamad et al., 2017; Krishnan et al., 2022). It’s also well-established
that hippocampal plasticity depends on dopamine signaling (Tset-
senis et al., 2023). What's still lacking is direct evidence that sensory
prediction errors encoded by dopamine drive plasticity of the hip-
pocampal predictive map.

6 A recurrent neural network implementation

Rather than relying on an exogenous error signal, another possibility

is that mechanisms endogenous to the hippocampus could compute

and learn the SR. In this section, we will focus on one implemen-

tation of this idea proposed by Fang et al. (2023). Let x; denote an

input to a linear recurrent neural network (RNN) with recurrent

synaptic connectivity matrix (2, where ();; denotes the strength of the

synapse connecting neuron i to neuron j. Assuming a time step of

At =1, the firing rate dynamics of the recurrent units (with activity

z) can be written in discrete time as: Both x and z are row vectors.

Zir1 = Xt + vz Q), (6)

8



where the discount factor 7y plays the role of a synaptic gain. If x; = x
is a constant one-hot encoding of the state (i.e., x(s) = 1 whenever
the system is in state s, otherwise x(s) = 0), and the connectivity
matrix corresponds to the state transition matrix, 3 = T7, then at
steady state the recurrent units will converge to the row of the SR
corresponding to x (i.e., the predictive map for state s encoded by x):

tli_)n; zp = xM™ = M™(s,). (7)
Intuitively, the RNN is progressing the predictions forward at each
iteration and adding up the results.

The question now becomes how to learn () such that it corre-
sponds to T”. This requires that a learning rule associate consecutive
states together and normalize the synaptic strengths so that they de-
fine a valid probability distribution. A learning rule satisfying both
requirements is given by:

AQ ozl 2z —2] 12,0 8

The first term implements a form of temporally asymmetric potentia-
tion, similar to spike-timing dependent plasticity (see Chapter 9). The
second term is a form of anti-Hebbian depotentiation that ensures
normalization. Importantly, the update rule uses only information
local to a synapse, and converges to the transition matrix asymptoti-
cally. Fang et al. (2023) showed that the update rule still works with
more biologically realistic assumptions and can recover quantitative
features of recorded place fields.

The idea that recurrent synapses learn a transition matrix is ap-
pealing for another reason, explored further in the next chapter.
While the steady state response corresponds to long-range predic-
tion, the initial response corresponds approximately to the next-state
prediction. Thus, the same network could potentially serve as a sim-
ulator of the transition model, supporting model-based planning and
imagination (see next chapter).

7 Successor features

The SR is tabular—it assumes that the state space can be discretely
enumerated. Learning a tabular representation requires experiencing
each state many times. This is clearly prohibitive in large or continu-
ous state spaces. To address this problem, we develop a feature-based
generalization of the SR along the same lines as feature-based value
function approximators. In Chapter 10 we introduced a feature vector
x = f(s) generated by a population of tuning functions defined over
s. If expected rewards can be represented as a linear function of the
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This is actually an old idea, originating
in the early neural network literature
(Sutton and Pinette, 1985) and later
revisited by Russek et al. (2017).

Anti-Hebbian depotentiation has been
observed at hippocampal inhibitory
synapses (Lamsa et al., 2007), though
these are different from the recurrent
synapses (putatively in the CA3 sub-
region) that would most naturally
implement the RNN architecture.
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features, R(s) = Y_; wyx4, then the value function can be represented
as a linear function of successor features (SFs), ™ (s):

V() = Lawaj(s),  ¢7(s) =E [0 f(st)lso =5, 7). (9)

SFs are analogous to value functions, but accumulating general fea-
tures rather than just reward. This allows an agent to generalize
across states, and even across tasks (as explained below). SFs also
obey a Bellman equation:

P(s) = f(s) +r 9" (s, (10)
s/
and hence can be estimated using TD learning;:

AP (s) o f(s) + P (s") — 7 (s)- (11)

The weights can likewise be updated using an error-driven update
(essentially the Rescorla-Wagner model discussed in Chapter 10):

AW o f(s)[r —m). (12)

If different subpopulations of dopamine neurons signal TD errors

for different features, this model may explain how a single canonical (T P :

computation (the TD update) is compatible with the diversity of ‘ i :‘

feature sensitivity across dopamine neurons (Engelhard et al., 2019). . . .

i K . Figure 6: Tuning functions of bound-
De Cothi and Barry (2020) have proposed a particular choice of ary vector cells.Reproduced from Lever

features based on studies of the hippocampus and adjacent struc- et al. (2009).

tures. An influential theory (Hartley et al., 2000) posits that place

cells are constructed by taking weighted combinations of boundary

vector cells (Figure 6), which are tuned to the distance and angle to a

boundary. Such cells have been identified in subiculum (Lever et al., Functionally similar border cells have
been identified in the entorhinal cortex

2009), classically considered an output region of the hippocampus, (Solstad et al,, 2008).

though it also provides reentrant input back into the hippocampus
via the entorhinal cortex. De Cothi and Barry (2020) showed that the
SFs corresponding to boundary vector cells closely resemble hip-
pocampal place fields. Notably, they capture the elongation of place
fields along environmental boundaries (Muller et al., 1987), a fact that
is not captured by the tabular SR model of place fields. SFs defined
over boundary vector cells can also capture the stretching or com-
pression of boundary-adjacent place fields when the environment

is enlarged or shrunk along the corresponding axis (O’Keefe and
Burgess, 1996).

8 Spectral regqularization by entorhinal grid cells

The entorhinal cortex provides the principal input to the hippocam-
pus. It contains another important class of neurons, grid cells, which
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respond periodically across space, organized into hexagonal grids
(Hafting et al., 2005). One hypothesis about the function of these cells
is that they help stabilize place fields (Bush et al., 2014). This hypoth-
esis is motivated by the fact that place cell activity is driven primarily
by sensory inputs (in addition to boundary vector cells), and is thus
vulnerable to accumulating corruption by sensory noise. For exam-
ple, place fields are gradually destabilized when a rat navigates in
darkness (Zhang et al., 2014). Grid fields, in contrast, can persist in
the darkness (Hafting et al., 2005), possibly because they can make
use of proprioceptive velocity information (i.e., sensing self-motion
based on signals from motor effectors). Thus, grid cells are well-
designed to serve a stabilization function. This is consistent with the
observation that entorhinal input is not necessary for the appearance
of place fields, but entorhinal lesions disrupt the precision and sta-
bility of place fields (Hales et al., 2014). We will now formalize how
grid fields could be used for stabilizing the predictive map through a
form of spectral reqularization (Stachenfeld et al., 2017).

Spectral regularization takes its name from the spectrum of a ma-

trix (the set of eigenvalues). When ordered from smallest to largest, Recall the eigendecomposition of a
matrix: M = ®AP !, where each

. . ; . . column of & is an eigenvector and A is
mensionality of the matrix—i.e., how many eigenvectors we would a diagonal matrix with eigenvalues on

the decay of eigenvalues provides information about the intrinsic di-

need to accurately reconstruct the matrix. If the spectrum has a fast the diagonal.
decay, this means its intrinsic dimensionality is low and we only need

to retain the eigenvectors with the largest eigenvalues. Applied to the

SR (and to SFs), this occurs when the predictive map varies smoothly

over the state space, which will generally be true for any environ-

ment in which states can be accessed from other states with a small

number of steps.

The “regularization” part of spectral regularization refers to al-
gorithms that bias an estimator towards the low-dimensional recon-
struction derived from the eigendecomposition. For example, we
could modify the SF update (Eq. 11) to include a bias term:

AP (s) o< (L=m)[f(s) + 1™ (") = ™ ()] +m[§"(s) — ¢ (s)], (13)

where 9" (s) is the low-dimensional reconstruction, and 1 € [0,1] is
a regularization parameter. The update will pull $™(s) more strongly
towards 1™ (s) when 7 is close to 1. Stachenfeld et al. (2017) showed
that this form of regularization is effective at improving the conver-
gence speed of learning by suppressing noise.
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Connecting this back to grid cells, we can show that the eigenvec-
tors of the predictive map are grid-like (Figure 7). If the environment
has a toroidal topology (i.e., it is topologically equivalent to a donut)
with uniform transition probabilities, then it can be shown that the
eigenvectors of the SR are periodic. Obviously real environments are
not truly toroidal, but quasi-periodic eigenvectors are still obtained
in sufficiently large open spaces. Thus, the eigenvectors capture the
essential periodic nature of grid fields. Importantly, they exhibit sys-
tematic distortions when barriers are introduced. For example, in a
hairpin maze, the eigenvectors (like grid fields) align with the arms
of the maze and tend to repeat across alternating arms (Figure 8).

Another feature of grid cells that is captured by this framework
is their multi-scale structure: the spatial scale is organized into a
small number of discrete modules, arranged topographically along
the dorsoventral axis of the entorhinal cortex (Figure 9). This mirrors
the topography of the hippocampus dorsoventral axis. Although the
entorhinal topography is discrete and the hippocampal topography is
a continuous gradient, they may be linked through a continuous gra-
dient in connection strengths. Theoretically, these strengths should
match the eigenvalues of the corresponding eigenvector fields. Un-
like the eigenvectors (which are invariant to the discount factor ),
the eigenvalue spectrum decays more quickly with higher discount
factors, reflecting the fact that less spatial precision is required to re-
construct maps when 7 is large. This implies that the neurons with
the largest spatial scales in the entorhinal cortex (large eigenvalues)
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Figure 7: Real and simulated grid
fields in a random foraging paradigm.
(Top) Typical grid field, reproduced
from Moser et al. (2015). (Bottom) SR
eigenvector grid fields, reproduced
from Stachenfeld et al. (2017).

Grid fields Eigenvectors
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Figure 8: Fragmented grid fields and
eigenvectors. (Left) Grid fields in a
hairpin maze, reproduced from Derdik-
man et al. (2009). (Right) Eigenvectors
of the SR, reproduced from Stachenfeld
et al. (2017).

Stachenfeld et al. (2017) showed that
discrete modular organization also
arises from the eigenvector decompo-
sition, due to the discrete nature of the
eigendecomposition.



should be preferentially connected to the neurons with the largest
spatial scales in the hippocampus (large discount factors), consistent
with anatomical data (Strange et al., 2014).

wo 0ot

How are the eigenvectors computed? One possibility is that they
are computed by a hippocampus-to-entorhinal feedback pathway.
Such a pathway has been identified (Butola et al., 2025), consistent
with the degradation of grid fields following hippocampal inacti-
vation (Bonnevie et al., 2013). In this scenario, the entorhinal cortex
might implement one of several neural algorithms for eigendecom-
position (Cichocki and Unbehauen, 1992). Alternatively, Stachenfeld
et al. (2017) showed how the eigenvectors could be directly com-
puted from state transitions by stochastic gradient descent. This has
the computational advantage of only relying on feedforward input,
although it may be less compatible with experimental evidence.

9 Multi-task learning

We earlier argued that the SR confers flexibility across different re-
ward functions, at least when the transition function is stable. How-
ever, there’s a snag: the SR is policy-dependent, and the optimal
policy typically changes when the reward function changes. Because
the SR can’t easily adapt in response to policy changes, the resulting
value estimates will be suboptimal. The same issue applies to SFs.
Computer scientists have developed techniques to address this

problem. To set the stage, we first extend SFs over state-action pairs:

Y7 (s,a) = E [Li20 7' f(st)[s0 = 5,00 = arr] . (14)
This allows us to represent the state-action value function as:
Q"(s,a) = ) watpy (s,a)- (15)
d

Now suppose that we have a new reward function parametrized by
the vector w’. Barreto et al. (2020) showed that a deterministic policy
n'(als) = T[a = a'(s)] can be constructed that improves upon (or
matches) the policies optimized for earlier tasks, by choosing the
action that maximizes the state-action value across all previous tasks:

a'(s) = argmaxmax Q™ (s, a), (16)
a 1
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Figure 9: Grid fields for cells recorded
at different positions along the
dorsoventral axis of the entorhinal
cortex. Reproduced from Stensola et al.
(2012).

The tuning function f(s) can also be
generalized to f(s,a).

The improvement guarantee requires
that the new weight vector is within the
span of the weight vectors for previous
tasks—i.e., there exists a vector a such
that w’' = ¥; a;w;.
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where i indexes previous tasks. This algorithm, generalized policy
iteration (GPI), assumes that the SFs for different policies, {¢™(s,a)},
are stored in memory and reused to solve new tasks. Does the brain
do something like this?

First, we can examine the behavioral implications of GPI. Tomov
et al. (2021) designed a human RL task in which three different re-
sources could be collected and redeemed for particular prices. The
resource levels correspond to the features, f(s), and the prices cor-
respond to the weight vector, w. The critical question was what
people would do when tested on a new set of prices (w’). The task
was designed such that different patterns of behavior would be pre-
dicted under GPI compared to pure model-based and model-free
algorithms. GPI favors collecting resources that were encountered
frequently in previous tasks, provided that they have relatively large
positive weights in the test task. This was also true of people in the
experiment, who failed to pursue the optimal policy, which required
them to visit a state with relatively less of a resource that was fre-
quently encountered during training.

Next, we can more directly ask whether past predictive maps are
stored and reused in the brain. Using brain imaging of humans, Hall-
McMaster et al. (2025) showed that neural activity associated with
training policies was reactivated during generalization to new tasks.
Furthermore, the strength of reactivation predicted the probability of
reuse. Surprisingly, the reactivated neural activity in this study was
not found in the hippocampus, but rather in visual and prefrontal
areas. As noted earlier, there is evidence for predictive maps in visual
cortex (Ekman et al., 2023), and action-coding signals can be found
there as well (Monaco et al., 2020). There may not be a simple divi-
sion of labor between feature representations in sensory areas and
predictive representations in downstream areas.

10 Prioritized replay for offline updating

Another role for memory in learning and generalization arises in

the context of “offline” updating, where learning is applied to pre-

dictions for previously experienced states and actions. Suppose we

have an estimate of the state-action value function, O™, which we

just updated after a state-action-reward sequence. Because the values

are interdependent, we would ideally like the newly updated value

estimates to propagate across the state-action space. The simplest

approach is to sample random state-action pairs (s,a) and use the

Bellman equation to determine the updated value: This is known as a Bellman backup.

Intuitively, it propagates information

Q”(s, a) — R(S) +r Z T(S/ ‘S, a) me,lx QH(S/, LZ/). (17) backward along the chain of events.
s/ a
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Repeating this update for different state-action pairs (an algorithm
known as value iteration) is guaranteed to converge to the correct val-
ues under the optimal policy 7r* (Sutton and Barto, 2018). However, it
has two major drawbacks. First, it requires a model (T and R), which
might not be available (see next chapter). Second, it might be very in-
efficient to do this repeatedly for every state-action pair if the space is
vast (e.g., chess). We can address the lack of a model by replacing Eq.
17 with a stochastic approximation based on samples e = (s,4,s,7)
drawn from memory, leading to a form of TD learning:

AQ™(5,0) o<+ ymax O (s, a') — O7(5,a), (18)

where for simplicity we are assuming a tabular approximation. Sam-
pling from memory also has the advantage that it focuses updating
on parts of the state-action space that the agent is likely to visit (as-
suming the past is representative of the future).

The particular way in which memory is sampled can have a big
impact on the speed of learning. Mattar and Daw (2018) showed this
by deriving the optimal prioritization strategy and comparing it to
uniformly sampling memory (Figure 10).

Open field Linear track
© I r‘ e
-~
No replay
200 -

E 0 Random replay
; E i ] = Prioritized replay
S o 100 A J
Ey
> 8 i i
Z o

% 9 : . : . . . . .

0 10 20 0 10 20
Episode Episode

The optimal prioritization strategy is defined by the expected value
of backup (EVB):

EVB(k) = V7 (s) — V"(s), (19)
where s is the agent’s current state, k indexes memories {ey }, and 71,
is the new policy after applying a backup to the retrieved memory.
The EVB quantifies the improvement in the policy that could be
attained by applying a backup to a particular memory. The optimal
prioritization strategy schedules these updates based on decreasing
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We will use “backup” to refer generi-
cally to both TD updates and Bellman
backups. In this case, the TD update is
known as Q-learning.

Figure 10: Learning speed under
different memory prioritization
strategies for two environments.
Reproduced from Mattar and Daw
(2018).
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EVB. Mattar and Daw showed that the EVB can be expressed in the
following way:

EVB(s, k) = Gain(k) - Need(s, k), (20)
where
Gain(k) = V™ (s) — V™ (s) (21)
is the improvement local to the retrieved state, and
Need(s, k) = M™ (s, sx) (22)

is how often the memory is “needed” in the sense of how often the
retrieved state will be revisited in the future, quantified by the SR.
Thus, in this setting the predictive map serves to guide memory
retrieval.

Mattar and Daw used this model to explain patterns of place cell
reactivation, which tends to happen during periods of quiescence
or sleep. The main idea is that place cell reactivation reflects the
retrieval of past memories, allowing us to directly examine the pre-
dictions of the optimal prioritization strategy. For example, the model
explains why place cells tend to be reactivated sequentially based
on the sequence of experienced states, but critically makes different
predictions about whether the sequence will be in forward or reverse
order depending on the situation (Figure 11). If the agent encounters
an unexpected reward, the gain term will be greatest for the current
state’s predecessors, leading to backward replay. This is precisely
what is observed on the linear track (Foster and Wilson, 2006). In the
absence of a prediction error, the need term dominates, leading to
forward replay (states expected in the near future have higher need).
This is why forward replay tends to be observed before an animal
starts a run on the linear track (Diba and Buzséki, 2007).

Model Diba & Buzséki (2007) Figure 11: Frequency of forward vs.
o 087 1,000 reverse replays. Reproduced from
§ - [ Before run o [ Before run Mattar and Daw (2018).
a 06 F W After run 2 800 W After run
— c
[ (3
Y & 600
’§ 0.4+ S
) 2 400}
5 E
g 02f z
3 L
2 200
2
0 ||
Forward Reverse Forward Reverse

replay replay replay replay
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11 Conclusion

Predictive maps enable the brain to (partially) escape the inflexibility
that curses model-free algorithms. We have shown how a canoni-

cal RL computation (TD learning of values) can be generalized to
construct predictive maps. These maps can also be constructed us-
ing a recurrent neural network architecture. Behavioral and neural
evidence for predictive maps supports the claim that these repre-
sentations are used for evaluation, decision making, and multi-task
generalization. In the next chapter, we venture towards the pinnacle
of flexibility: the use of mental models to plan and simulate.

Study questions

1. In what ways does the SR provide a better account of latent learning
than the probabilistic TD learning model?

2. Why might there be multiple predictive maps in the brain (and even
within the hippocampus)?

3. How might you incorporate predictive maps into the kind of policy
gradient algorithms described in the last chapter?
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