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Chapter 11: Learning to act

This chapter develops the theory of reinforcement learning for action
selection. An agent can learn to optimize its actions through error-
driven learning algorithms, implemented in striatal circuits that receive
dopaminergic error signals. The theory is then generalized to consider
the cognitive costs of action selection (quantified using information
theory). A cost-sensitive learning algorithm can explain the origin of
habits and a range of other apparently suboptimal behaviors. It is also
compatible with data on the sensitivity of dopamine neuron activity
to cognitive cost. Finally, we discuss how action selection algorithms
balance exploration and exploitation during learning.

In the last chapter, we introduced simple algorithms for estimating
value functions. We now show how these algorithms can be “put
to work” in the service of action selection. Specifically, we study
policy optimization—the search for reward-maximizing mappings from
states to actions (or more precisely, distributions over actions). Policy
optimization can be done efficiently by following gradients. We will
also see how this leads to a neural implementation resembling what
is seen in the basal ganglia. The second part of this chapter expands
this picture to encompass the diverse ways in which animals learn to
select actions.

1 Policy optimization

Recall that a policy defines a distribution over action a conditional on
state s. We will use Vπ(s) to denote the value (expected discounted
future return) of state s under policy π:

Vπ(s) = E

[
∞

∑
t=0

γtrt|s0 = s, π

]

= ∑
a

π(a|s)E
[

∞

∑
t=0

γtrt|s0 = s, a0 = a, π

]
= ∑

a
π(a|s)Qπ(s, a), (1)

where rt is the reward received at time t and γ is a discount factor.
This definition is the same as the one given in the last chapter, only
conditional on actions selected according to π. The term Qπ(s, a) is
the state-action value function, representing the value of taking action
a in state s.

As we saw in the last chapter, the key to efficient reinforcement
learning (RL) algorithms is the assumption of Markovian dynamics,
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which allowed us to decompose the value function recursively (the
Bellman equation). We can do the same thing here by assuming that The state transition distribution from

the last chapter can be obtained by
marginalizing over actions: Tπ(s′|s) =
∑a π(a|s)T(s′|s, a).

the transition dynamics are Markovian conditional on actions, with a
transition distribution T(s′|s, a). Equipped with this assumption, the
environment is known as a Markov decision process (MDP).

We will make one additional assumption that is fairly innocuous
but necessary for some of the results below. Typically, RL algorithms
require for convergence that every state-action pair is sampled, which
means that every state is accessible from every other state. This is
known as irreducibility. Every irreducible MDP has a unique stationary
distribution, µπ(s) = limt→∞ p(st = s|s0, π), where s0 is the initial
state. In other words, the stationary distribution defines the probabil-
ity of visiting states after following π for long enough.

The policy optimization problem is to maximize the value, taking
the expectation over the stationary distribution:

π∗ = argmax
π

∑
s

µπ(s)Vπ(s). (2)

Solving this problem efficiently generally requires gradient-based
algorithms (see Chapter 9).

1.1 Policy gradient algorithms

In order to apply gradient-based algorithms, we need to assume that
the policy is a differentiable function of parameters θ, so that we can
write it as πθ(a|s). We then define the objective function as: To keep the notation light, we will

sometimes leave the dependence of π
on θ implicit.J (θ) = ∑

s
µπ(s)Vπ(s). (3)

To apply gradient descent, ∆θ ∝ ∇θJ (θ), we need the gradient of the
objective function with respect to the parameters, ∇θJ (θ). The policy
gradient theorem (Sutton et al., 1999) provides a useful expression for
this gradient:

∇θJ (θ) = ∑
s

µπ(s)∑
a

Qπ(s, a)∇θπθ(a|s). (4)

There are many ways to compute an unbiased estimate of the policy The expected difference between an
unbiased estimate and the true value is
0.

gradient. The most straightforward way is to compute a stochastic
gradient based on trajectories of states {st} sampled from the transi-
tion distribution Tπ (which will converge eventually to µπ):

∇θJ (θ) ≈ ∑
a

Qπ(st, a)∇θπθ(a|st). (5)

We can take this one step further and use the sampled actions {at}: Dividing by the policy compensates
for the fact that we are replacing a sum
with an average.∇θJ (θ) = ∑

a
πθ(a|st)Qπ(st, a)

∇θπθ(a|st)

πθ(a|st)
(6)

≈ Qπ(st, at)∇θ log πθ(at|st). (7)
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We thus have a fully online algorithm that can operate on sampled
state-action trajectories.

In practice, we typically don’t have access to Qπ(s, a), so we need
to estimate it. We can do this using a state-action version of the TD
algorithm we applied to state value estimation in the last chapter.
However, this runs into several problems. One is that it will generally
require function approximation over the state-action space, which is
computationally costly and may require many samples to estimate
accurately. Second, the policy gradient estimate has high variance
due to the fact that state-action values may differ considerably across
states even when this doesn’t affect the policy.

To get some intuition for this, consider what happens when you’re
trying to decide what to buy for dinner at two grocery stores. These
stores carry the same goods, but one store has higher prices (e.g.,
because it’s located somewhere with greater inflation). The optimal
policy is the same for both stores because the relative values are the
same (you’d prefer the same foods in both cases), but the absolute
values are different. In other words, there is an action-independent,
state-dependent component to the state-action values, which con-
tributes to the variance of the gradient. Ideally, we could remove this
component and thereby reduce the variance, accelerating learning.

1.2 Actor-critic algorithms

A natural way to remove the state-dependent component is by sub-
tracting the state values Vπ(s) from the state-action values. This
produces what are called advantages (Baird, 1994):

Aπ(s, a) = Qπ(s, a)− Vπ(s). (8)

Importantly, replacing Qπ(s, a) with Aπ(s, a) reduces variance with-
out distorting the policy gradient (it is still unbiased in expectation).
The next step is to obtain an unbiased estimate of the advantages.
This can be done with the TD errors themselves. Recall the definition
of the TD error for state value learning described in the last chapter: The only change here from the last

chapter is that now the value function is
policy-dependent.δ = r + γV̂π(s′)− V̂π(s), (9)

where V̂π(s) is an approximation of Vπ(s). When conditioning on
a state-action pair, the expectation of the first two terms is the state-
action value:

E[r + γV̂π(s′)|s, a, π] = Q̂π(s, a), (10)

an approximation of Qπ(s, a). Thus, the expected TD error for a
given state-action pair is equal to an approximation of the advantage:

E[δ|s, a, π] = Âπ(s, a). (11)
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This means we can use the TD error to define an unbiased policy
gradient approximation:

∇θJ (θ) ≈ δ∇θ log πθ(a|s). (12)

This algorithm is known as an actor-critic method (Barto et al., 1983)
because it relies on the interplay between an actor (the policy) and
a critic (the value function estimator). TD errors, generated by the
value function estimator, signal whether the current policy is produc-
ing higher or lower rewards than expected). In the next section, we
will see how this interplay might be realized in the brain.

2 Neurobiology of instrumental learning

Motor control in the brain has a peculiar anatomical arrangement
(Figure 1) where thalamic neurons controlling movement initiation
(via connections to premotor cortex) are under tonic inhibition from
the output nuclei of the basal ganglia, the globus pallidus internal
segment (GPi) and substantia nigra pars reticulata (SNr). Thus, in Although this description seems dizzy-

ingly complicated, it’s actually an
oversimplification!

some sense movements are always “ready to go” upon disinhibition
of the thalamus. This happens when GPi and SNr are themselves
inhibited by upstream structures in the basal ganglia: a “direct”
pathway from the dorsal striatum (caudate and putamen), and an
“indirect” pathway from the dorsal striatum through the globus pal-
lidus external segment (GPe). The direct pathway promotes action
production (disinhibition of the thalamus), whereas the indirect path-
way suppresses action production. This is why the direct pathway is
sometimes referred to as a “Go” pathway and the indirect pathway as
a “NoGo” pathway (Frank, 2005).

dSPNs
(Go/D1)

iSPNs
(NoGo/D2)

Ventral 
striatum
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VTA
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Figure 1: Simplified diagram of the
action selection circuit. Excitatory
connections are denoted by arrows;
inhibitory connections are denoted by
circles. VTA: ventral tegmental area
(other labels are defined in the text).
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Within the dorsal striatum, separate populations of medium spiny
neurons project to the direct and indirect pathways. These are labeled
the direct/indirect spiny projection neurons (dSPNs and iSPNs).
These neurons receive the same cortical inputs, and therefore play
a pivotal role in mapping state representations to action probabil-
ities. Some of their functional differences arise from their distinct
responses to dopamine inputs from the midbrain:

• The dSPNs express D1 dopamine receptors, whereas the iSPNs
express D2 receptors. Dopamine has opposite effects on these
neuron types, exciting dSPNs and inhibiting iSPNs (Surmeier
et al., 2007).

• Because D2 receptors have a higher affinity for dopamine (Rich-
field et al., 1989), the inhibitory effects of dopamine predominate
at low concentrations.

• Because D2 receptors saturate at relatively low concentrations
compared to D1 receptors (Richfield et al., 1987), the excitatory
effects of dopamine predominate at high concentrations.

• Dopamine signaling induces synaptic plasticity with opposite
signs, promoting potentiation in dSPNs and depression in iSPNs
(Calabresi et al., 2007; Shen et al., 2008). Plasticity at corticostri-
atal synapses follows a three-factor Hebbian rule (coincidence of
presynaptic and postsynaptic firing with dopamine).

2.1 Striatal policy parametrization

Abstracting away from some of the anatomical and physiological
details, we can synthesize most of these facts in a simple model,
where dSPNs and iSPNs push in opposite directions: The model described in this section is

heavily influenced by (but not identical
to) models described in prior work
(Collins and Frank, 2014; Mikhael and
Bogacz, 2016; Jaskir and Frank, 2023;
Pinto and Uchida, 2025).

π(a = j|s) ∝ exp
[
αGGj − αN Nj

]
, (13)

where Gj is the input to the dSPNs (“Go” neurons) tuned to action j,
and Nj is the input to the iSPNs (“NoGo” neurons) tuned to action
j. These inputs are modeled as linear combinations of cortical state
features, xd = fd(s), where fd(s) is the tuning function for cortical
neuron d: Note that these synapses are between

cortex and dorsal striatum, distinct
from the synapses between cortex
and ventral striatum parametrizing
the value function approximation, as
described in the last chapter.

Gj = ∑
d

θG
djxd, Nj = ∑

d
θN

dj xd. (14)

The policy parameters can thus be interpreted as corticostriatal
synaptic strengths.

The sensitivity parameters αG and αN reflect the modulatory in-
fluence of tonic dopamine ρ on dSPNs and iSPNs, respectively. The
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function relating ρ to sensitivity is based on the dose-occupancy
functions for D1 and D2 receptors, combined with their postsynaptic
effects, which we approximate as sigmoids (Figure 2):

αG = 1 + tanh(ρ), αN = 1 − tanh(ρ), (15)

where tanh(·) is the hyperbolic tangent function that maps tonic
dopamine levels to [−1, 1]. The specific mathematical assumptions
here are somewhat ad hoc; what’s important is that high levels of
tonic dopamine amplify dSPNs and suppress iSPNs, whereas low
levels suppress dSPNs and amplify iSPNs.

Figure 2: Sensitivity for Go and NoGo
components as a function of tonic
dopamine.

With this parametrization, we can write the policy gradient update
as:

∆θG
dj ∝ αGδxdyj, ∆θN

dj ∝ −αNδxdyj, (16)

where

yj = I[a = j]− πθ(a = j|s) (17)

can be interpreted as an action prediction error; yj is positive when ac-
tion j occurs unexpectedly, and is negative when action j is expected
but fails to occur.

In order to interpret the updates in Eq. 16 as 3-factor Hebbian
rules (presynaptic × postsynaptic × TD error), yj must correspond
to the postsynaptic (striatal) activity, and this must be the same for
both dSPNs and iSPNs. Thus, dSPNs and iSPNs should be nega-
tively correlated prior to a decision (since they push action selection
in opposite directions), but should be positive correlated after action
selection (to implement the policy gradient update in a biologically
plausible fashion). This is precisely what was found in an analysis of
SPN recordings (Lindsey et al., 2025). The same dataset (Markowitz
et al., 2018) provides specific evidence supporting the action predic-
tion error hypothesis: both cell types show higher activity following a
low probability action compared to a high probability action.

2.2 The role of opponency

Figure 3: A child with chorea. Repro-
duced from La Médecine Illustrée 1880.

The Go/NoGo model was originally motivated by clinical observa-
tions (Albin et al., 1989). “Hyperkinetic” movement disorders are
characterized by excessively fast movements, leading to control fail-
ures. For example, people with chorea (derived from the Greek word
for “dance”) experience rapid, intrusive movements (Figure 3). This
disorder often arises from Huntington’s disease, which is associated
with neurodegeneration in the striatum, particularly in the indirect
pathway (Deng et al., 2004). D2 receptor antagonists, which should
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have the effect of increasing activity in the indirect pathway (due to
dopamine’s inhibitory effect on iSPNs) are a standard treatment for
hyperkinesia.

In contrast, “hypokinetic” movement disorders are characterized
by excessively slow movements (bradykinesia), inability to initiate
movements (akinesia), and rigidity of movement. Hypokinesia is
a classic symptom of Parkinson’s disease, which is associated with
reduced striatal dopamine levels. Due to the higher affinity of D2

receptors, reduced dopamine levels leads to domination of action-
suppressing iSPNs. L-DOPA, a standard treatment for Parkinson’s,
increases striatal dopamine and rebalances the relative activity of the
direct and indirect pathways. In some cases, Parkinson’s patients ex-
perience overdoses of dopamine leading to hyperkinesia, supporting
the view that dopamine functions as a continuous knob that can shift
the overall propensity for movement.

These clinical observations have been buttressed by studies in ro-
dents which directly intervene on the two pathways. Stimulating
dSPNs produces hyperkinetic symptoms, whereas stimulating iSPNs
produces hypokinetic symptoms (Kravitz et al., 2010). Similar ef-
fects were observed in mice with genetic knockouts that selectively
impaired one of the pathways (Bateup et al., 2010).

In summary, the direct and indirect pathways exert opposing in-
fluences on movement control. Disrupting the balance between the
pathways can produce too little or too much movement. However,
the opponency is doing more than controlling the overall level of
movement—it’s also controlling the impact of rewards and punish-
ments on movement selection. A good illustration of this point comes
from a study by Yttri and Dudman (2016), who stimulated dSPNs or
iSPNs after movements that were either slower or faster than usual.
They found that pairing dSPN stimulation with a particular move-
ment speed reinforced that speed regardless of whether it was fast
or slow, whereas pairing iSPN stimulation with a movement speed
suppressed that speed, again regardless of whether it was fast or
slow.

Going beyond movement speed, we can see the implications of
opponency in action selection. For example, Kravitz et al. (2012)
trained mice to optogenetically self-stimulate either iSPNs or dSPNs
by pressing a trigger. Mice that received dSPN stimulation exhibited
a tendency to repeatedly press the trigger, whereas mice that received
iSPN stimulation exhibited a tendency to avoid pressing the trigger.
Similar results have been obtained when optogenetic stimulation of
dSPNs or iSPNs was paired with natural reward (Nonomura et al.,
2018).
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2.3 The role of the critic

In the last chapter, we presented evidence that the ventral striatum
(nucleus accumbens) is responsible for encoding an approximation
of the state value function, V̂. The parameters of this function ap-
proximator are the synapses linking cortical inputs to neurons in the
ventral striatum, updated by TD learning using the error signal δ

conveyed by dopamine. The same TD error, we have argued here,
is used to update the policy parameters (synapses linking cortical
inputs to the dorsal striatum). The mapping of the actor onto dorsal

striatum and the critic onto ventral
striatum was first proposed by Houk
et al. (1995).

This architecture has several empirical implications. First, it im-
plies a division of labor between ventral and dorsal striatum, where
it is principally dorsal striatum that tracks action preferences. This is
consistent with electrophysiology studies showing that action pref-
erence signals are prevalent in dorsal striatum (Samejima et al., 2005;
Pasquereau et al., 2007; Lau and Glimcher, 2008) but are typically
weak or absent in ventral striatum (Kim et al., 2009; Ito and Doya,
2015). Second, it implies that the ventral striatum, but not the dor-
sal striatum, should be active during classical conditioning, when
value learning (but not policy updating) is engaged, whereas both
regions should be active during instrumental conditioning (when
both value and policy updating are engaged). This is consistent with
evidence from human brain imaging (O’Doherty et al., 2004). Third,
it implies that the error signal is uniform across ventral and dorsal
striatum. This is consistent with recordings of dopamine neuron ax-
ons projecting to different parts of the striatum (Tsutsui-Kimura et al.,
2020), though other work suggests more regional heterogeneity (van
Elzelingen et al., 2022).

At the behavioral level, the actor-critic model implies a form of
state dependence. Let’s imagine a choice between two actions, a1

and a2, which have been rewarded the same number of times, but
in different states; action a1 was previously chosen in a “rich” state
(high reward availability), whereas action a2 was previously chosen
in a “poor” state (low reward availability). Because the rich state has
a higher value than the poor state, the TD error will be smaller in
the rich state. Thus, action a2 will acquire a stronger preference than
action a1, consistent with studies in several species (Pompilio and
Kacelnik, 2005; Pompilio et al., 2006; Aw et al., 2009; Palminteri et al.,
2015).

Another behavioral implication is learning about unchosen (coun-
terfactual) actions: all policy parameters are updated after receiving
feedback, even those parameters corresponding to unchosen actions.
The updates for these parameters are sign-reversed, because they
drive the policy away from the chosen action, consistent with experi-
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mental studies in humans (Biderman and Shohamy, 2021; Biderman
et al., 2023; Ben-Artzi et al., 2023). Specifically, getting rewarded for Biderman and Shohamy (2021) name

this effect the inverse decision bias.choosing a1 over a2 will make it less likely that a2 will be chosen
later, even if a1 is not in the set of available actions. Action a2 is more
likely to be chosen later if choosing a1 was instead unrewarded.

2.4 The role of tonic dopamine

In the Go/NoGo model, tonic dopamine influences both the relative
activation of the Go and NoGo components, as well as the effective
learning rates of each component. The relative activation controls risk
preferences, as discussed in the next section. The effective learning
rates control how much is learned from positive outcomes (driv-
ing the Go component) vs. negative outcomes (driving the NoGo
component). When tonic dopamine is high, the effective learning
rate for the Go component is large, and the effective learning rate
for the NoGo component is close to 0. When tonic dopamine is low,
the effective learning rate for the NoGo component is large, and the
effective learning rate for the Go component is close to 0.

One consequence of this pattern is that high tonic dopamine levels
should facilitate learning from positive outcomes, whereas low tonic
dopamine levels should facilitate learning from negative outcomes.
In support of this prediction, Frank et al. (2004) showed that Parkin-
son’s patients off dopamine medication are better at learning from
negative outcomes than from positive outcomes, whereas patients on
medication show the opposite pattern. Along the same lines, increas-
ing tonic dopamine using the stimulant methylphenidate induces
greater sensitivity to rewards and reduced sensitivity to cognitive
effort costs (Westbrook et al., 2020).

Willingness to exert effort may also be controlled through the rel-
ative activation of the Go and NoGo components, independently
of learning effects. Under high tonic dopamine, the Go component
is amplified and the NoGo component is suppressed, such that
the benefits of effort are weighed more heavily than the costs. This
prediction is broadly consistent with the literature on the effects of
dopamine depletion, which typically reduce willingness to exert
cognitive or physical effort. For example, rodents trained on “fixed
ratio” tasks can earn more reward (food pellets) by pressing a re-
sponse lever more frequently. The ratio schedule determines how
many presses are required to produce a pellet delivery. Because lever
pressing is effortful, rodents will only press at a higher rate if mo-
tivated by a higher ratio (i.e., more pressing is necessary to get the
same amount of reward). Dopamine depletion blunts this motiva-
tional effect: rodents not only press overall less frequently, but also
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show reduced sensitivity to the ratio schedule (Aberman and Sala-
mone, 1999). Similarly, dopamine-depleted rodents are less likely to
climb over a barrier to obtain a more desirable food reward (Salam-
one et al., 1994). However, dopamine depletion does not affect their
propensity to approach the same food in the absence of a barrier, in-
dicating that this effect is due to motivation rather than anhedonia—
i.e., they like the reward just as much with or without dopamine, but
the absence of dopamine reduces their willingness to work for the
reward.

One way to understand tonic dopamine’s motivational effects is
through the lens of average reward, an idea we encountered at the
end of Chapter 6 in the context of attention. Niv et al. (2007) posited
that tonic dopamine tracks average reward, which in turn defines the
opportunity cost of effort (i.e., how much reward is foregone if effort
is not exerted). According to this hypothesis, dopamine depletion re-
duces motivation by altering the signal used to compute the benefits
of effort exertion. This is consistent with the finding that dopamine
fluctuations on the timescale of minutes covary with both reward rate
and response vigor (Hamid et al., 2016).

In order for the average reward hypothesis of tonic dopamine to
be consistent with the TD error hypothesis of phasic dopamine, it
is necessary for average rewards to reflect a slow averaging of TD
errors (Gershman et al., 2024). This does not arise automatically The discounted and average reward

formulations are closely related, ap-
proaching one another as γ → 1
(Kakade, 2001).

for discounted value functions, but it does for a slightly different
formulation (Mahadevan, 1996), where the (undiscounted) value
function is defined as the state-dependent average reward relative to
the average reward:

Vπ(s) = lim
H→∞

1
H

H

∑
t=1

E[rt − r̄|s, π], (18)

Where r̄ is the average reward. The average reward reference point
is needed to ensure that the infinite sum doesn’t diverge. The corre-
sponding TD error is defined accordingly:

δ = r − r̄ + V(s′)− V(s). (19)

Thus, the TD error is referenced to the average reward. Importantly,
it can be shown that temporally averaging these TD errors into a
tonic signal yields an estimate of average reward (Wan et al., 2021).

Linking the TD error in Eq. 19 to the hypothesis that tonic dopamine
encodes the average reward (ρ ≈ r̄) is consistent with the antagonistic Autoreceptors are receptors that bind to

the release products of a cell, typically
inhibiting subsequent release (a form of
negative feedback control).

effect of tonic dopamine on phasic release via the action of autorecep-
tors (Grace, 1991; Benoit-Marand et al., 2001). One reflection of this
antagonism is the gradual decrease of phasic responses as reward
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rate increases (Kilpatrick et al., 2000), consistent with average-reward
TD modeling (Daw and Touretzky, 2002).

2.5 Risk sensitivity

Dopaminergic modulation of the direct and indirect pathways pro-
vides a mechanism for parametrizing risk sensitivity. Consider a
choice between a risky option that delivers reward R with proba-
bility P (otherwise 0) and a safe option that always delivers reward
S < R. The certainty equivalent is the value of S that would be re-
quired to make an agent indifferent between the risky and safe op-
tions. The risk premium is the difference between the expected payoff
for the risky option (RP in this case) and the certainty equivalent; it
quantifies how much an agent is willing to pay to avoid the risk—a
measure of their risk aversion. While humans are typically risk averse
for positive outcomes, they tend to be risk seeking for negative out-
comes, preferring risky over safe options with the same expected
value (Kahneman and Tversky, 1979).

To understand these patterns of risk sensitivity through the lens
of the Go/NoGo model, we will reformulate the model (following
Mikhael and Bogacz, 2016) to make its risk preferences more trans-
parent. We start by rewriting the net drive Dj = αGGj − αN Nj for
option j as follows:

Dj ∝ (αG + αN)(Gj − Nj) + (αG − αN)(Gj + Nj). (20)

Asymptotically, Gj − Nj ∝ µj, the expected reward for option j, and
Gj + Nj ∝ σj, the reward standard deviation. Plugging these into Eq.
20 gives:

Dj ∝ µj + βσj, β =
αG − αN

αG + αN . (21)

Thus, the asymptotic output of the direct and indirect pathways can
be viewed as a linear combination of mean and standard deviation
components. When αG − αN = 0, the agent is risk-neutral (λ = 0):
the action probability depends only on the mean rewards. When
αG < αN , the agent is risk-averse (λ < 0): the action probability
decreases with the standard deviation. Finally, when αG > αN , the
agent is risk-seeking (λ > 0): the action probability increases with the
standard deviation.

Recall that tonic dopamine is hypothesized to increase αG and
decrease αN . This means that λ will increase with tonic dopamine,
producing risk aversion at low levels and risk seeking at high levels.
This is consistent with numerous studies. Unmedicated Parkinson’s
patients (low tonic dopamine) are relatively more risk-averse than



chapter 11 12

healthy controls, and this difference is eliminated by dopaminer-
gic medication (Cherkasova et al., 2019). Medication can even cause
pathological gambling, which is reduced after cessation of medica-
tion (Dodd et al., 2005). In healthy humans, boosting dopamine with
L-DOPA increases risk-seeking (Rutledge et al., 2015; Rigoli et al.,
2016a). Pharmacologically blocking D2 receptors (effectively reduc-
ing αN) increases risk seeking (Burke et al., 2018), whereas activating
D2 receptors decreases risk seeking (Simon et al., 2011). Similarly,
optogenetically stimulating iSPNs can convert risk seeking to risk
aversion (Zalocusky et al., 2016).

Under the hypothesis that tonic dopamine tracks reward rate, we
can also make the prediction that risk seeking will increase with re-
ward rate. Evidence for this prediction comes from several studies.
Gilby and Wrangham (2007) found that risk-seeking in wild chim-
panzees (operationalized as engaging in risky hunting rather than
safe foraging) increases during periods of higher diet quality (greater
availability of ripe fruit). Humans likewise take more risks when
reward rate is high: people shift from risk aversion toward risk seek-
ing immediately following a meal (Symmonds et al., 2010), a shift
from low to high reward context (Rigoli et al., 2016b), and even after
a single prior gain (Thaler and Johnson, 1990) or incidental positive
outcome (e.g., a win by the local sports team; Otto et al., 2016).

2.6 Exploration

A fundamental problem in RL is the exploration-exploitation dilemma:
to maximize long-term reward, an agent needs to balance explor-
ing (gathering information about possibly low-reward actions) and
exploiting (choosing actions that are believed to be best based on cur-
rent estimates, which might be wrong). The optimal solution to this
problem is intractable, but many heuristics have been invented, some
with theoretical guarantees. One influential heuristic (Auer, 2002) Behavioral (Gershman, 2018, 2019)

and neuroimaging (Tomov et al., 2020)
studies provide evidence that humans
use an uncertainty bonus to guide
exploration.

is to choose options based on the sum of a mean reward estimate
µ̂j and an uncertainty bonus βσj. This looks a lot like Eq. 21, and it
is! However, the uncertainty bonus heuristic requires that β ≥ 0,
whereas Eq. 21 allows β < 0 (risk aversion) if αN > αG. Moreover,
this situation will tend to happen early during learning, when reward
rate (and hence tonic dopamine) is low.

To address this puzzle, we can appeal to another aspect of dopamine—
novelty responses. It has been argued that the elevated response of
dopamine neurons to novelty poses a challenge to RL theories of
dopamine (Horvitz, 2000; Kutlu et al., 2021), but it might actually be
part of the solution to the exploration-exploitation dilemma faced
by all RL algorithms (Kakade and Dayan, 2002; Wang et al., 2024).
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Generally speaking, novelty is a proxy for uncertainty, because agents
will be most uncertain about the value of novel stimuli. As the agent See the related discussion about uncer-

tainty and latent inhibition in the last
chapter.

gets more experience with the stimulus, uncertainty decreases along
with novelty. Thus, transiently boosting tonic dopamine (ρ) to novel
stimuli could be a way to implement an uncertainty bonus. This
would have the effect of differentially activating dSPNs more than
iSPNs (i.e., αG > αN), thereby yielding β > 0 (risk seeking). Impor-
tantly, the exploratory boost would diminish over the course training,
so that agents could eventually converge on their asymptotic risk
preference. Dopamine can also facilitate exploita-

tion by decreasing decision or sensory
noise (Gershman and Tzovaras, 2018;
Mikhael et al., 2021; Chen et al., 2024).

Consistent with this idea, pharmacologically elevating dopamine
(by inhibiting dopamine reuptake) increases novelty seeking in mon-
keys (Costa et al., 2014). The specific importance of D1 receptors is
supported by the finding that antagonizing D1 receptors reduces
novelty seeking (Peters et al., 2007). At the behavioral level, average
reward has been shown to increase novelty seeking (Gershman and
Niv, 2015), consistent with the average reward model of dopamine.
The same relationship is seen in a naturalistic setting: people are
more likely to try new restaurants if they live in areas where the aver-
age restaurant quality is high (Schulz et al., 2019). Furthermore, this
novelty preference is accentuated when the restaurant quality has
high variance, consistent with the use of an uncertainty bonus.

3 Policy compression

Figure 4: Performance degrades with
set size. On each trial, subjects had to
choose the correct action for a specific
stimulus (indicating the state). The
number of distinct stimuli in a block
is the set size. Each curve shows the
proportion of correct actions as a
function of trial in a learning block for a
given set size. Reproduced from Collins
and Frank (2012).

When the number of states is increased, human performance starts
to decline (Figure 4). Evidently there is a representational or memory
constraint on RL, which is not built into the model developed above.
One way to understand this constraint is that it reflects a limit on the
state encoding function f (s); if this produces representations (x) that
overlap across states, then there can potentially be confusion between
states. Alternatively, the mapping from representations to action
probabilities may be constrained (e.g., the policy weights θ can’t get
too large). More generally, we can quantify how state-dependent the
policy is using the mutual information between states and actions,
I [s; a]. We will refer to this quantity as the policy complexity to capture
the intuition that policies are more complex when they are more sen-
sitive to variations in the state (Gershman, 2020; Lai and Gershman,
2021).

Set size effects like the one shown in Figure 4 can be explained by
imposing an upper bound (capacity limit) C on policy complexity. The concepts applied here are derived

from rate-distortion theory, which we will
revisit in Chapter 13.

We can then study the achievable average reward for a given capacity
limit. This yields a reward-complexity frontier (Figure 5). Each policy
maps to a single point in the reward-complexity plane; policies below
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the frontier are suboptimal, and policies above the frontier are un-
achievable. The capacity limit corresponds to a vertical slice through
the reward-complexity plane. The point where it intersects the fron-
tier corresponds to the set of optimal policies for an agent with that
capacity limit.
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Policy complexity

Capacity limit

Suboptimal

Unachievable

Figure 5: The reward-complexity
plane. The curve show the reward-
complexity frontier, separating un-
achievable from suboptimal policies.
The circle shows the optimal achievable
average reward for a given capacity
limit (upper bound on policy complex-
ity).

We can write the capacity-limited reward optimization problem as
a Lagrangian (Tishby and Polani, 2010; Still and Precup, 2012):

π∗ = argmax
π

ρ(π)− λc(π), (22)

λ =
∂ρ(π)

∂c(π)
, (23)

where we have expressed the average reward ρ(π) as a function of
the policy, and c(π) is the complexity of π. The parameter λ ≥ 0 is a
Lagrange multiplier that monotonically decreases with the capacity
limit C (more precisely, it’s the slope of the reward-complexity fron-
tier at the point where it intersects the capacity limit). In the limit
C → ∞ (no bound on policy complexity), λ → 0 and we recover
average reward optimality.

The optimal solution to Eq. 22 can be written explicitly: This analysis is closely related to the
analysis of approximate inference in
Chapter 4.π∗(a|s) ∝ exp [Qπ(s, a) + λ log p∗(a)] , (24)

p∗(a) = ∑
s

π∗(a|s)p(s). (25)

Eq. 24 is remarkable for several reasons. One is that it takes the
form of a softmax policy, which is usually imposed as an ad hoc
parametrization to produce exploratory behavior (Sutton and Barto,
2018); here, it is derived from the capacity-limited optimization prob-
lem. Importantly, this policy produces stochasticity even asymptot-
ically and under perfect knowledge of rewards; it reflects cognitive
resource constraints rather than exploration (although it can induce
useful exploration as a side effect). Another remarkable aspect of the
policy is that it introduces a response bias p∗(a) into the softmax,
reflecting frequently chosen actions across all states. This bias only
appears when capacity is limited (λ > 0). Human behavioral studies
have shown that such a bias exists, and that the bias increases with
set size (Lai and Gershman, 2024), consistent with the idea that the
bias arises from a limited resource that is shared across states. For a
similar reason, choice stochasticity increases with set size (Lai and
Gershman, 2021). The specific functional form of perse-

verative bias in Eq. 24 was supported
by model-based analyses in Gershman
(2020).

Because the policy is continuously changing during learning,
the bias needs to be incrementally updated. This predicts a form
of perseveration or stickiness, where agents continue trying actions
they chose frequently in the past, independently of the reward his-
tory. Perseveration is a well-established phenomenon across many
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different tasks (e.g., Collier et al., 1952; Lau and Glimcher, 2005; Wor-
thy et al., 2013)—so much so that Thorndike (1911) elevated it to
a “Law of Exercise.” The reward-complexity analysis allows us to
test whether perseverative biases are “optimal” in the sense that the
policies lie close to the reward-complexity frontier. Several studies
have shown that attested policies are in fact quite close to the fron-
tier (Gershman, 2020; Lai and Gershman, 2024; Gershman and Lak,
2025), though there tends to be a fall-off for low-complexity policies, The fall-off is particularly pronounced

in patients with schizophrenia (Gersh-
man and Lai, 2021).

which might arises from differences in learning (e.g., learning rates,
as discussed in Gershman and Lai, 2021).

We can derive a learning algorithm for the capacity-limited opti-
mization problem by noting that it is equivalent to:

π∗ = argmax
π

E

[
r − λ log

π(a|s)
p∗(a)

]
. (26)

This means that a standard policy gradient algorithm can be used
to find the optimal policy, simply by adding a complexity penalty
(how much the state-dependent policy deviates from the action bias)
to the rewards. This predicts that phasic dopamine signals encoding
TD errors should be suppressed by policy complexity, as observed
empirically (Gershman and Lak, 2025).

4 Conclusion

The RL machinery developed in the last chapter was put to work in
this chapter for policy optimization. We showed how a biologically
plausible policy parametrization, based on opponency in the direct
and indirect pathways of the basal ganglia, could be used to learn
optimal actions. Tonic dopamine played an important role in this
architecture, governing both exploration during learning and asymp-
totic risk sensitivity. Finally, we showed how augmenting the reward
function with a complexity penalty enabled capacity-limited policy
optimization, which naturally explained behavioral stochasticity and
perseveration, as well as the sensitivity of dopamine neuron activity
to policy complexity.

Our treatment of RL so far has been somewhat narrow; the only
objective is to predict and maximize reward. However, there is evi-
dence that the brain is capable of learning richer representations of
the world, and to use these representations in the service of flexible,
goal-directed behavior. We will see in the next chapter how the same
RL machinery can be generalized to support learning these richer
representations.
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Study questions

1. Why might evolution have favored an actor-critic division in the
brain?

2. How can we reconcile hypothetical phasic dopamine encoding of
prediction errors with tonic dopamine encoding of average reward?

3. Novelty responses in dopamine neurons may function as “uncer-
tainty bonuses” for exploration. How does this mechanism help
resolve the exploration-exploitation dilemma, and how might it fail
under pathological conditions?
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