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Chapter 10: Learning to predict

Learning to predict significant future events is a fundamental task
facing all animals. In this chapter, we study reward and punishment
prediction as a paradigmatic predictive learning problem. Using clas-
sical (Pavlovian) conditioning as a case study, we show how simple
reinforcement learning algorithms can explain many aspects of how
animals learn to predict reward/punishment. These algorithms rely
on the gradient-based optimization principles introduced in the last
chapter. They can also be generalized to compute full posterior dis-
tributions over parameters, rather than just point estimates, thereby
explaining the sensitivity of animals to uncertainty. Finally, we show
how reinforcement learning algorithms can be implemented in the
basal ganglia, where dopamine provides the critical error signal for
learning.

The last chapter introduced a general framework for learning algo-
rithms in the brain. We now leverage this framework to understand
how the brain learns to predict future reward. The technical study of
this problem in engineering is known as reinforcement learning (RL),
which forms the basis of many impressive Al achievements, such
as training autonomous robots (Tang et al., 2025) and systems that
play human-level Atari games (Mnih et al., 2015). We will show how
similar algorithms appear to be used by the brain. We will also see in
Chapter 12 how variations of these algorithms can be applied to learn
more general predictions beyond reward.

To contain the scope of our treatment, we will focus on “pure” re-
ward/punishment prediction in this chapter, deferring consideration
of control (how to intervene on the environment to maximize reward
and minimize punishment) until the next chapter. Fortunately, pure
prediction has been extensively studied in animals, using experi-
mental protocols where animals are exposed to reward-predictive
stimuli without being able to control the stimuli or rewards. The
most famous of these protocols is classical conditioning, which we will
describe in the next section. This will provide a rich empirical testbed
for thinking about what kinds of algorithms the brain might use to
predict reward. We will then connect these algorithmic ideas with
neurobiology, exploring how RL algorithms could be implemented in
basal ganglia circuits under the supervision of dopamine signaling.

1 Classical conditioning

In a standard classical conditioning protocol (see Table 1 for exam-
ples), an animal is exposed to a neutral stimulus (the conditioned

See Sutton and Barto (2018) for a
general introduction to RL.

In the interest of brevity, we will hence-
forth refer primarily to reward predic-
tion, even though some phenomena
concern punishment. Although an over-
simplification, we can for now think of
punishment as negative reward.

Also known as Pavlovian conditioning
due to the pioneering contributions of
(Pavlov, 1927).



stimulus, or CS) followed by an appetitive (good) or aversive (bad)
stimulus (the unconditioned stimulus, or US). Most protocols em-
ploy delay conditioning, where the onset of the US coincides with the
offset of the CS. The key variable is the conditioned response (CR) to
the CS onset. The CR typically increases over the course condition-
ing. Importantly, this increase is not due merely to repeated stimulus
exposure, because it does not occur if the relative timing of the CS
and US is randomized (i.e., there is no stable temporal relationship
between the two stimuli); this implies that the temporal relationship
between the stimuli is fundamental to the emergence of the CR. The
CR is thought to reflect the reinforcement of the CS by its temporal
relationship with the US.

A concrete example of classical conditioning (pigeon autoshaping)
is schematized in Figure 1. The CS is a keylight which predicts the
delivery of food (the US) into the hopper. With repeated pairings,
the pigeon begins to peck at the keylight (the CR). Note that food
delivery is independent of pecking.

What are animals learning during classical conditioning? A nat-
ural hypothesis is that the CR reflects a prediction about upcoming
reward. This hypothesis can explain several aspects of conditioned
responding. All other things being equal, the CR rate is greater when
the CS-US delay is shorter (except for very short delays, at which
point anticipation may not be useful) and when the reinforcement
rate (the CS-conditional US rate) is greater (Harris and Carpenter,
2011). This suggests that the CR is closely tied to the expected rate
of reinforcement in the near future following the appearance of the
CS. Another aspect compatible with a predictive view is the fact that
prediction errors drive learning: an unexpected US following the CS
tends to increase the CR, whereas the omission of an expected US
following the CS tends to decrease the CR. The role of prediction er-
rors in learning is particularly striking when one examines protocols
with multiple simultaneously presented CSs (known as compound
conditioning). For example, the CR to a CS is weaker if that CS is
paired with a previously reinforced CS, compared to reinforcing the
CS alone. In both cases, the CS was reinforced the same number of
times, but in the former case the previously reinforced CS “blocks”
the new CS ostensibly because it already adequately predicts the
US—there is no prediction error to drive learning.

It will be useful to establish some standard notation for describ-
ing these kinds of experiments. We’ll use uppercase letters (A, B, C,
etc.) to denote CSs; compound CSs will be denoted by concatena-
tions (e.g., AB denotes the compound presentation of A and B). A
reinforced CS will be denoted by A+, and an unreinforced CS will be
denoted A-. A test stimulus (typically presented without reinforce-
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Another common protocol is trace
conditioning, where the CS offset and
US onset are separated by a “trace”
interval. Some protocols also present
the US at some point during (or even
before) the CS.

CS us CR
Tone  Food Salivation
Tone  Shock Freezing

Light  Air puff Eyeblink
Taste Nausea Taste aversion

Lever  Food Approach
Light  Food Approach
Tone  Shock Suppression

Table 1: Examples of classical condition-
ing protocols.
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Figure 1: Pigeon autoshaping.

This blocking effect is called “Kamin” (or
forward) blocking, after Kamin (1968).



ment) is denoted by B? and the resulting test CR is the variable of
interest. Thus, the compound condition of the Kamin blocking exper-
iment can be described as A+/AB+/B?, which can be compared with
a control condition A+/B+/B? (i.e., only single-CS training).

Another striking example of how prediction error drives learning:
the overexepectation effect. Two CSs are reinforced separately (A+/B+),
then reinforced in compound (AB+), and finally the response to each
one is tested individually (A? B?). This protocol produces a reduction
in the CR compared to a protocol in which the compound reinforce-
ment phase is omitted (Rescorla, 1970). In other words, conditioned
responding is lower despite the animal receiving more reinforce-
ments! Why? Intuitively, animals come to predict a regular amount
of reinforcement to each individual CS, and then predict twice as
much when the two CSs are presented together (under the assump-
tion that reward predictions summate across the elements of a com-
pound). The receipt of the same amount of reinforcement produces
a negative prediction error, driving a reduction in the predictions for
each CS. In the next section, we will formalize these intuitions.

2 The Rescorla-Wagner model

The empirical observations described above can be captured by a
simple model due to Rescorla and Wagner (1972), which we will refer
to as the Rescorla-Wagner model. We will describe it in a slightly
simplified form here. A CS configuration is represented by a vector
x, where x; = 1 denotes the presence of CS d and x; = 0 denotes its
absence. In neural terms, we can think of x as the activity of neurons
tuned to different CSs. A US is denoted by r (typically binary). The
US prediction 7 is a linear function of the CS vector:

P=) waxg, (1)
q

where w; is an associative strength (or synaptic weight, in neural
terms) between CS d and the US, typically initialized to 0. The weight
is updated based on the prediction error r — :

Awg = nxq(r —7), (2)

where 17 € [0,1] is a learning rate. Intuitively, the weight is increased
when the prediction error is positive (more reward was received than
predicted) and decreased when the prediction error is negative (less
reward was received than predicted). It is also essential for credit (or
blame) assignment that the CS be present in order for its weight to
change.

Despite its simplicity, the Rescorla-Wagner model can explain a re-
markably wide range of classical conditioning phenomena. Consider
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Imagine you're a barista who is reg-
ularly tipped $1 by customer A and

$1 by customer B. When you see both
customers arrive, it’s natural to as-
sume that you'll receive $2 total. If you
only receive $1, this suggests that your
predictions were too high (a negative
prediction error) and therefore you
should reduce them. The next time one
of the customers arrives, you'll predict a
reduced tip.



the Kamin blocking effect: if CS A has already been paired with the
US, then w4 ~ 1. This means that during the compound conditioning
phase 7 = w4 +wp =~ 14 0, and as a consequence the prediction
error is approximately o, preventing learning of a non-zero weight for
CSB.

The same principles can be applied to understanding the overex-
pectation effect. After separate reinforcement of A and B, each weight
is approximately 1. When presented in compound, the US predic-
tionisthen? = wy + wg = 1+ 1 = 2. Whenr = 1 is received
during the compound conditioning phase, the prediction error is
r—#~1—2 = —1. This leads to a decrement of both w4 and wg.

Reflecting on the these and other successes of the Rescorla-Wagner
model, the most important principles it embodies are:

® Learning driven by prediction errors.
e Additive combination of weights.
¢ Credit assignment based on CS presence.

As we will see in this chapter and in the next few chapters, these
are fairly robust principles of learning in animals—BUT, they do not
exhaustively describe the principles of animal learning. We will ex-
plore two (not mutually exclusive) ways in which this gap can be
addressed. One is to search for more general principles that encom-
pass both the original principles and their violations. Another is to
posit the coexistence of several learning systems in the brain.

Before we come to the shortcomings of the Rescorla-Wagner
model, let’s try to gain a deeper appreciation of its successes, by
deriving it from first principles as an optimization algorithm. This
will allow us to see how it is connected to the optimization picture
developed in the last chapter. A simple way to formalize the prob-
lem facing the animal is to define a loss function based on predictive
accuracy, such as L(?,7) = (r — #)2. Taking the gradient of the loss
with respect to the weights yields VL « x(r — ). Thus, the Rescorla-
Wagner update (Eq. 2) can be derived as gradient descent on the
squared error loss.

3 Learning in the absence of stimuli

As we saw above, animals don’t learn in the absence of prediction
errors. Or do they? Consider this small variation on the standard
conditioning protocol: prior to CS-US pairings, the CS is presented
repeatedly by itself. These CS-alone trials retard subsequent acqui-
sition of the CR, a phenomenon known as latent inhibition (Lubow,
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Latent inhibition is also sometimes
known as the CS pre-exposure effect.



CHAPTER 10 5

1973). The challenge posed by this effect is that if the weight is initial-
ized to o, so the US prediction is initially o when the CS-alone trials
occur, then the prediction error will also be 0. The Rescorla-Wagner
model predicts no learning in this case, and yet the animal is clearly
learning something.

Another challenge for the Rescorla-Wagner model stems from
the requirement that learning only occurs for present stimuli. But
consider a small variation on the Kamin blocking protocol: switch
the order of A+ and AB+ training, so that AB+ comes first. After
AB+ training, the animal produces a CR in response to B, but this
response is reduced after A+ training—a phenomenon known as
backward blocking (Miller and Matute, 1996). This can’t happen in the
Rescorla-Wagner model, because xp = 0 during A+ training, and
therefore Awp must equal o.

There are many other examples of “retrospective revaluation” ef-
fects where learning about one CS affects later responses to an absent
CS. In the Kamin blocking protocol, presenting A by itself after com- Presenting a CS by itself after condition-
pound training (A+/AB+/A-) has the effect of “unblocking” B (Blais- ing is known as extinction.
dell et al., 1999). Similarly, presenting A by itself after the compound
training phase of the overexpectation protocol (A+/B+/AB+/A-) has
the effect of rescuing the CR to B (Blaisdell et al., 2001).

To address these and related problems (see Gershman, 2015), we
turn to a probabilistic view of the learning problem facing animals.

4 A probabilistic view

Gradient descent on the squared error loss is a point estimation pro-
cedure; it ignores uncertainty about the weights. We can derive a
different normative analysis by computing a full posterior over the
weights given the CS/US history. To do this, we need to specify a
set of assumptions about the animal’s internal model of the world.
Suppose the animal’s internal model assumes that the US is a noisy
linear combination of CS features:

r=Y wixgs+e, (3)
1

where € ~ N(0,0?). Suppose further that the animal’s internal It is possible to generalize this model
to a time-varying weight vector (Dayan

5 L L. . and Kakade, 2001; Gershman, 2015), but
N (0,0%). Under this linear-Gaussian internal model, the posterior we omit this for simplicity.

model also assumes that the weights are Gaussian-distributed: w; ~

is also Gaussian, with mean @ and covariance matrix %, updated

recursively according to: These updates are a special case of the
Kalman filtering equations, named after
Kalman (1960). The learning rate vector
7 corresponds to the Kalman gain.

Aw =1(r—7) 4)
AL = —yx'E, (5)



where # is now vector-valued with CS-specific learning rates (and x
now appears projected onto the covariance matrix):

Xx
xTEx + 02

n= (6)
Notice the similarity of the posterior mean update (Eq. 4) to the
Rescorla-Wagner update. In fact, if the covariance is the identity
matrix, £ = I, then the two are equivalent apart from a time-varying
learning rate. In general, the covariance will not be diagonal, and this
has important implications for classical conditioning.

Let’s first consider the case where there is a single CS, so X is a
scalar. Each time the CS is presented, X decreases. This has the effect
of also decreasing the learning rate, because

1

= ——-:
1+xgr)3

(7)

Intuitively, the animal becomes more confident (the posterior vari-
ance shrinks) as it collects more data, which makes it more resistant
to learning from future observations. Latent inhibition is a natural
consequence of these dynamics.

In the case of compound conditioning, Eq. 5 implies that the off-
diagonals of the covariance matrix will become negative. Intuitively,
this reflects the zero-sum nature of the linear model: the associative
strengths must add to 1, so increasing the weight for one CS requires
that the weight for the other be decreased. This naturally produces
many retrospective revaluation effects, because the learning rates for
absent stimuli will be negative. In the backward blocking protocol
(AB+/A+), for example, the strengthening of the weight for A during
the second phase will lead to a weakening of the weight for B due to
np < 0 during A+ training.

5 Long-range prediction

So far, we have been assuming that the computational problem facing
the animal is predicting the next US, but this neglects the fact that
animals are not completely myopic—they care about events farther in
the future. Consider the case of second-order conditioning, where one
CS (A) is first trained and then another CS (B) is paired with A such
that the onset of A coincides with the offset of B. Animals acquire a
CR to B even though it is never paired with the US. Apparently the
animals treat A as a kind of proxy for future reinforcement.

The models we’ve introduced so far have no mechanism for ex-
plaining second-order conditioning. What’s needed is a represen-
tation of long-range predictions. This is where we appeal to the RL
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This expression can also explain why
partial reinforcement (making the
CS a less reliable predictor of the
US) typically slows learning (Jenkins
and Stanley, 1950; Gottlieb, 2004), by
increasing 02 and thus reducing 7.



concepts that we alluded to at the beginning of the chapter. We start
by redefining the computational problem as the goal of predicting
expected discounted return, or value:

Vi = E[rs + yreg1 + Yreo + 0], 8)

where we have introduced the time index t. The parameter v € [0,1)
is the temporal discount factor, which reflects the animal’s preference
for obtaining rewards sooner rather than later (in keeping with stan-
dard RL terminology, we will refer to rewards here rather than to
USs). The expectation averages over stochasticity in the reward se-
quence.

At first glance, this seems like a totally impossible problem. How
can an animal estimate an expectation of an infinite series? Indeed,
the problem is impossible unless some additional structure is as-
sumed. The key move in RL theory is to assume that the rewards
are conditionally independent given an underlying state s: the ex-
pected reward in state s is given by R(s). The state evolves according
to a Markov process with transition probability T(s'|s), where we've
adopted the notational convention of writing transitions as s — s’
With these additional assumptions, we can express the value in a
recursive form known as the Bellman equation:

V(s) = R(s) +“YZT(S'IS)V(S')~ ©)

where we have redefined the value as a function of the state because
it is now also Markovian. The principal benefit of the Bellman equa-
tion is that it allows us to derive a learning procedure for estimating
the value function. Let V(s) denote the value function approxima-
tor. The Bellman equation stipulates that the temporal difference (TD)
prediction error

S=r+V(s') = V(s) (10)
is on average o when the approximation is exact, V. = V. When
5 > 0, the value function has been underestimated and V (s) should
be increased; when § < 0, the value function has been overestimated
and V(s) should be decreased. More systematically, the TD learning
algorithm updates the value function approximator according to:

AV (s) =nd, (11)

where 7 is a scalar learning rate. We can understand this update as
gradient descent on a TD loss function:

L(V(s), V() = [V*(s) = V()2 = &%, (12)
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This form of exponential discounting
can alternatively be understood in the
following way: if at each time step you
might die with probability 1 — v, then
the probability of surviving H time
steps is 7. Eq. 8 is thus equivalent to
the expected undiscounted return over
a stochastic horizon H drawn from a
geometric distribution.

A process is Markovian if it is mem-
oryless: the probability of the next
state depends only on the current state,
not the preceding state or observation
history.

Here we assume that s’ is sampled from
the transition distribution T(-|s).
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where the target V*(s) = R(s) + yV(s') is “bootstrapped”—it relies
on the estimator for the next state. Nonetheless, the algorithm will
still converge to the correct values when provided with sufficient
experience (Sutton and Barto, 2018).

Eq. 11 represents the simplest TD learning algorithm, with value
estimates stored in a look-up table. For environments with many
states, this is not an efficient strategy, since the animal would need to
experience each state multiple times to obtain a good estimate (i.e.,
there’s no generalization across states). To address this shortcom-
ing, we can replace the look-up table with a function approximator
parametrized by w, and then optimize these parameters using gradi-
ent descent on the TD loss (Eq. 12).

To build a bridge to the discussion of classical conditioning, we’ll
take each state to be represented by a feature vector x = f(s) for
some encoding function f (e.g., where each feature represents a
single CS presence/absence), and the function approximator to be
linear, V(s) = ¥ wyx,. Gradient descent on the TD loss leads to the
following update:

Awg = 17x40. (13)

We have arrived at an equation that is remarkably similar to the
Rescorla-Wagner learning rule. In fact, the two learning rules are
identical in the “myopic limit” (¢ = 0), where the animal only
cares about predicting immediate reward. TD learning with linear
function approximation thus shares all of the key properties of the
Rescorla-Wagner model, but goes beyond it by estimating long-range
predictions. This allows TD learning to capture phenomena like
second-order conditioning, because the future reward term 7V (s')
is greater than o during B—A training even though the immediate
reward (r) is o.

You might think that something is amiss here—shouldn’t the cor-
rect long-range prediction be that B inhibits the arrival of reward

following A? And you would be right! The elevated value estimate If A and B share some features, then
B’s unique features will need to have

.. . . . negative weights to counteract the
ditioned inhibition), depending on our assumptions about how the positive weights learned for the shared

for B is transient, and will eventually become o or even negative (con-

stimuli are represented. This is consistent with the finding that in- features on A-alone trials.
creasing the number of B— A shifts the pattern of responses from
second-order conditioning to conditioned inhibition (Yin et al., 1994).

6 Putting it all together

We’ve seen that two different generalizations of the Rescorla-Wagner
model can capture a diverse range of phenomena. We can combine
the complementary advantages of these generalizations by defining



a probabilistic model for the value function approximator (Gersh-
man, 2015). As above, we assume that the weights are Gaussian-
distributed. We also assume that the true values are noisy linear
combinations of state features x:

V(s) =) waxs+e, (14)
a

with e ~ N(0,03). To keep things simple, we’ll assume determin-
istic rewards and transition dynamics. We can then use the Bellman
equation to write down the distribution on rewards:

r=V(s)—qV(s)+é
=w'x— 'wax’ + €
=w'h+§g (15)

where & ~ N(0, (1+9?%)¢2) and h = x — yx’. Because this is another
linear-Gaussian system, we can again apply the Kalman filtering
equations to obtain the posterior mean and covariance matrix up-
dates:

Aw =né (16)
AT = —yh'Z, (17)

where 7 is once again a vector. These updates are very similar to Egs.
4 and 5. The main difference is that the prediction error (r — 7) is
replaced by the TD error in the mean update, and & replaces x in the
covariance update. Both reduce to the original updates when y = 0.
This model can explain phenomena that none of the other models
described above can explain on their own. For example, consider
the following variation on a second-order conditioning protocol.
After second-order conditioning, the first-order CS (A, which was
previously paired directly with the US) is extinguished by presenting
it alone. This causes a reduction not only in responding to A but
also in responding to the second-order stimulus B (Rashotte et al.,,
1977). TD learning cannot explain this, because (like the Rescorla-
Wagner model) it doesn’t update value estimates for absent stimuli.
The probabilistic version of TD learning, in contrast, can explain this
effect by virtue of the fact that the onset of one coincides with the
offset of the other, and therefore the covariance update implies that
they will have positive covariance. Decreasing the weight for A will
thereby decrease the weight for B.

7 The neural architecture of reinforcement learning

Representations of value can be found in multiple brain areas (e.g.,
Hampton and O’Doherty, 2007; Ottenheimer et al., 2023), but the
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This expression relies on the fact that
a linear transformation of a Gaussian
random is also Gaussian.

Neither the Rescorla-Wagner model
nor its probabilistic variant can explain
second-order conditioning to begin
with, let alone the effects of post-
training extinction.



striatum (a subcortical structure that is part of the basal ganglia) is
thought to play a pivotal role in the transformation of stimulus fea-
tures (represented by cortical inputs) to value estimates. In particular,
the ventral subdivision of the striatum, the nucleus accumbens, con-
tains neurons whose activity is sensitive to both US and CS delivery
during classical conditioning (Roitman et al., 2005; Day et al., 2006).
An example neuron is shown in Figure 2, firing in response to the
CS+ and the delivery of a sucrose reward, but not to the CS-.

Lesions of the nucleus accumbens (in particular, its “core” region
that is functionally and anatomically distinct from its “shell”) impair
both the acquisition (Parkinson et al., 2000) and expression (Car-
dinal et al., 2002) of conditioned responding. Local antagonism of
NMDA receptors, which are typically necessary for the induction
of long-term potentiation, also impairs acquisition (Di Ciano et al.,
2001), indicating the necessity of synaptic plasticity in the nucleus
accumbens for classical conditioning.

If cortical inputs to the striatum encode the feature vector x =
f(s), and striatal neurons encode V(s), then (under the linear func-
tion approximation assumption) corticostriatal synapses correspond
to the weights w. The weight updates should therefore follow the
learning rules described above. In particular, we can understand
the TD update (Eq. 13) as a form of “predictive Hebbian learning”
(Montague et al., 1996), where weights are updated in proportion to
the coincidence of presynaptic activity with a prediction error sig-
nal (Eq. 10). The question is then where this prediction error comes
from. Considerable evidence suggests that phasic (fast timescale) sig-
naling via the neuromodulator dopamine conveys prediction errors
(Gershman et al., 2024), as we review next.

7.1 Dopamine signaling of prediction errors

Prediction errors of the form required by TD learning (Eq. 10) have
several signatures that are also exhibited by dopamine neurons in the
midbrain (Figure 3). First, they increase in response to unexpected
reward, such as at the beginning of conditioning or in the absence of
a preceding CS. Second, predicted rewards elicit no response at the
time of reward, but do elicit a response at the onset of the earliest
reward-predicting CS. Third, the omission of an expected reward
causes a suppression of dopamine activity.

Beyond these qualitative characterizations, the activity of dopamine
neurons appears to quantitatively conform to a prediction error. At
the time for reward, the value estimate should approximately equal
a weighted average of recent rewards, with the weights decaying ex-
ponentially. To see this, note that at the time of reward (which we de-
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Figure 2: Responses of a single neuron
in the nucleus accumbens following
classical conditioning. Reproduced
from Day et al. (2006).
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Figure 3: Activity of dopamine neu-
rons during classical conditioning. “R”

indicates reward delivery. Reproduced
from Schultz et al. (1997).



note by s,), the prediction error is given by 6 = r — V(s,), under the
assumption that the second term in the prediction error definition,
vV (s'), is negligible (due to the fact that the next reward will happen
far in the future). Letting V;, denote V(s,) after n conditioning trials
and r, denote the reward received on trial n, we have:

Vn =nrp+ (1 - U)anl
=nrn+ (1= n)ru1+ (1= 1) Vo
=1 Y (1—n)fr s (18)
k=0

where we have assumed that Vy = 0. This implies that if dopamine
quantitatively reports a prediction error, then we should be able to
predict activity at the time of reward on trial # as a linear function of
past rewards:

n
On =1y — 2 btk (19)
k=0

with a log-transformed regression coefficient given by:
log by = klog(1 — ) + const. (20)

which is a negative linear function of trial lag k. Bayer and Glimcher
(2005) fit a lagged regression model to recordings from dopamine
neurons, confirming that the coefficients do indeed decay exponen-
tially (Figure 4).

Other experiments have verified that dopamine activity matches
the functional form of a prediction error, namely the difference be-
tween observed and predicted reward. Eshel et al. (2015) showed that
the activity of dopamine neurons quantitatively matches the predic-
tions of a subtractive model (Figure 5); this holds true across a range
of reward magnitudes in both the presence and absence of a CS. The
same data were not well-matched by alternative models assuming
division rather than subtraction. Further work by Eshel et al. (2016)
showed that a subtractive model also quantitatively accounts for the
parametric suppression of dopamine neuron responses by different
levels of reward expectation.

As discussed above, prediction errors play a crucial role in ex-
plaining many learning phenomena. We can interrogate these ex-
planations by looking directly at the prediction errors putatively
signaled by dopamine. The explanation of Kamin blocking, for ex-
ample, hinged on the absence of prediction errors during compound
training. This suggests that dopamine responses should be simi-
larly suppressed during compound training. To test this, Waelti et al.
(2001) first paired one CS with reward (A+) and another without re-
ward (B-). They then trained new stimuli in compound with each
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Notice that the learning rate 7 deter-
mines the slope of the exponential
decay.
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Figure 4: Log-transformed lag regres-
sion coefficients. Based on regression
coefficients taken from Bayer and Glim-
cher (2005).
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Figure 5: Dopamine neuron activity re-
ports the difference between observed
and predicted reward. Reproduced
from Eshel et al. (2015).
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pretrained CS (AX+ and BY+). When subsequently tested on X and
Y by themselves, animals produced a stronger CR to Y than to X—
the classic Kamin blocking effect. During compound conditioning, e By
dopamine neurons showed substantial responses to reward following
the BY compound, but not following the AX compound (Figure 6),

consistent with the absence of a positive prediction error when a new

CS is reinforced in compound with a pretrained CS.

The role of dopamine in blocking is causal: artificially stimulating — "gﬂ T T 3 o
dopamine neurons during compound training “unblocks” learn- e e
. . R . i . Figure 6: Dopamine responses during
ing (Steinberg et al., 2013), consistent with the hypothesis that this compound training. Reproduced from
produces a positive prediction error capable of driving learning. Waelti et al. (2001).
Stimulating dopamine neurons can also offset the reductions in con-
ditioned responding during extinction (when a previously trained CS
is presented in the absence of reward) or when the reward is reduced

by shifting from sucrose to water.

7.2 Stimulus representation

We have glossed over an important detail about the mapping of

: T+ 3 : 3 Complete Serial . . .
classical conditioning experiments onto TD learning. The Rescorla- Compound . Microstimuli

Wagner model is a trial-based model, but TD learning is typically N N
Stimulus L

Reward l

applied to these experiments at finer-grained timescale; it can model

the effects of different temporal arrangements on both conditioned

responding and neural activity. This requires making assumptions —L —A
1) I ) —
about how the temporal arrangements are represented by the feature _

g N N—
vector (x). g8 —I— —
A standard assumption, known as the complete serial compound £ T
(CSC), breaks each stimulus down into a contiguous set of binary ¢ . n
temporal features. Only one feature is active (x; = 1) during each 0
time interval relative to the stimulus onset (Figure 7). This represen- —n
tation allows the function approximator to learn value estimates for Figure 7: Stimulus representations.
each interval (specifically, the weight w,; will converge to the value of Reproduced from Ludvig et al. (2012).
the interval during which feature d is active). With the CSC represen- o, Odor 0
Q
tation, dopamine signals should propagate backwards over time from 30
. . . N
the US to the CS, as the weight for each feature is progressively up- Day1
dated. Decisive evidence for this was presented by Amo et al. (2022), Day2 __/\/\
as shown in Figure 8. Deys _/\/\
There are, however, practical problems with the CSC: a large num- Dava NI
. . ; ay
ber of such features is needed to approximate the value function well,
, . . — =N~
and they don’t afford any temporal generalization. For example, if Days = < —
0o 2 4

an animal is trained with one CS-US interval and then tested on a !
Time - odor (s)

- ) . Figure 8: Gradual backward shift of
tation will abruptly drop after the expected US time. In contrast, the dopamine response over the course

animals show a gradual decline in conditioned responding when of classical conditioning. Reproduced
from Amo et al. (2022).

slightly longer interval, the weights learned for the CSC represen-



tested on longer intervals (Figure 9). This suggests that animals use a
representation which allows some degree of temporal generalization.

An alternative microstimulus representation was proposed by Lud-
vig et al. (2008). Each microstimulus corresponds to a radial tuning
function with a particular preferred time interval (Figure 7). These
correspond closely to time cells found in many areas of the brain
(Figure 10). Like time cells, the tuning width of microstimuli grows
wider with teh preferred interval, reflecting the decline in temporal
resolution for longer intervals—a property mirrored in behavior by
weaker temporal control for longer intervals (see for example the
broader temporal generalization gradient in Figure 9).

Dopamine neurons fire more strongly in response to cued rewards
delivered after a longer delay (Figure 11). This finding is incompat-
ible with the CSC, which predicts independence of the delay after
sufficient training. In contrast, the microstimulus model predicts this
phenomenon (Gershman et al., 2014), due to the fact that their de-
clining temporal precision causes value estimates to get smeared out
in time. This suppresses the value at the time of reward, making the
prediction error larger.

7.3 Three-factor plasticity rules at corticostriatal synapses

Let’s now return to the plasticity rule implied by dopamine (Eq. 13).
It asserts that a sufficient condition for plasticity at corticostriatal
synapses is the coincidence of pre-synaptic (cortical) activity with the
prediction error (putatively dopamine). It is true that both are neces-
sary, but it turns out that they are not sufficient—post-synaptic (stri-
atal) activity is also necessary (Pennartz et al., 1993). Corticostriatal
synapses thus obey a 3-factor Hebbian learning rule: pre-synaptic
activity x post-synaptic activity x dopamine (Reynolds and Wickens,
2002).

As we'll see in the next chapter, 3-factor Hebbian rules can be de-
rived from policy learning (updating action probabilities to improve
reward), a process thought to occur in dorsal striatum. However, this
doesn’t help explain the discrepancy between the TD learning model
and the plasticity rules in nucleus accumbens (ventral striatum). One
way to resolve the discrepancy is to posit that the value function is
parametrized non-linearly, such as:

V(s) = (dexd> , (21)
d

where « is a nonlinear transformation parameter. Under this assump-
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Figure 9: Conditioned responding on
trials where the US is omitted. Top
panel shows data from animals trained
with a 5-second CS-US interval; bottom
panel shows data from animals trained
with a 15-second CS-US interval. Timed
responding gradually emerges across
trials. Adapted from Drew et al. (2005).
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tion, the gradient of the TD loss is given by:

a—1
VoL « x6 (Z wdxd) . (22)
d

The third term is monotonically increasing in V(s) for « > 1. This
means that the weight update now depends on the post-synaptic
activity—a 3-factor learning rule.

There is some evidence for a nonlinear transformation in nucleus
accumbens: when synaptic inputs arrive synchronously, medium
spiny neurons (the principal cells in the striatum) combine their in-
puts supralinearly due to activation of NMDA receptors and voltage-
dependent calcium channels (Carter et al., 2007). This is precisely the
setting in which synaptic plasticity is expected to occur, as discussed
in the last chapter.

7.4 A neural implementation of probabilistic TD learning

Earlier we showed how the TD learning algorithm could be gener-
alized to track the full posterior distribution over weights, allowing
it to explain phenomena like latent inhibition and learning about
absent stimuli. Here we show how this probabilistic version can be
approximated using the combination of two mechanisms: variance
normalization of prediction errors, and pre-processing the inputs to
the striatum using a recurrent neural network.

It will be useful to reparametrize the probabilistic TD algorithm
slightly (Gershman, 2017). Let « = 2k be a vector of “associabilities”
(unnormalized learning rates) and let A = x " Zx + 07 denote the
marginal predictive variance (the overall expected error). The learn-
ing rate vector # is given by the ratio of these two quantities. With
these expressions, we can write Eq. 16 as:

Aw = af, (23)

where § = 6/ is the TD error normalized by the predictive variance.
Several studies have suggested that the activity of dopamine neurons
is variance normalized (i.e., that dopamine neurons report é rather
than ¢). First, dopamine neuron responses are lower to the same
rewards following a CS associated with a wider range of reward
magnitudes (Tobler et al., 2005); a wider range effectively increases
variance. A more direct experimental test (Figure 12) has shown that
high variance decreases the reward sensitivity of dopamine neurons,
even when the magnitudes and ranges are held fixed (Rothenhoefer
et al,, 2021).

We now turn to the computation of the associability vector «.
Rather than representing the covariance matrix X explicitly, we can
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(« > 1) power-law nonlinearities are
widely observed in cortex, though less
well-studied in subcortical structures
like the striatum. These nonlinearities
can arise from noise in the subthreshold
regime (see Chapter 2), where the
average membrane potential is close to
but below the firing threshold, so that
firing is fluctuation-driven (Miller and
Troyer, 2002).
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represent it implicitly using a recurrent network (Dayan and Kakade,
2001; Gershman, 2017). Let y be the activity of a recurrent network
with feedforward inputs h and a recurrent weight matrix B. The
linear firing rate dynamics are given by:

Ty =—y+h+By, (24)
where 7 is a time constant. These dynamics converge to:
y® = (=B)"h, (25)

where I is the identity matrix. If B is initialized to o and updated
according to an “anti-Hebbian” rule,

ABo —hy' +1—B, (26)

then asymptotically (I — B)~! = E[Z]. Thus, y® = E[«]. We can then
apply the update Aw = y®4, which is just the standard TD update,
but using the transformed inputs (y) and the normalized TD error (9).
One candidate for the implementation of the recurrent transfor-
mation is the orbitofrontal cortex, which sends input to the nucleus
accumbens (Eblen and Graybiel, 1995). Neurons in this area are sen-
sitive to stimulus covariance. For example, when two stimuli are
sequentially paired prior to reinforcement (a procedure known as
sensory preconditioning), the responses of orbitofrontal neurons to
the two stimuli become correlated (Sadacca et al., 2018). Lesioning
this region impairs the ability of animals to produce a CR to A after
undergoing B+ training (Jones et al., 2012). This pattern of results
can be reproduced by the probabilistic TD model described above.
When the onset of B coincides with the offset of A, the model learns
a positive covariance, such that presenting B by itself also activates the
representation of A, allowing it to be reinforced even when absent.

8 Conclusion

Several core principles emerge from this chapter. First, learning from
prediction errors is a common algorithmic motif across several dif-
ferent models. Second, credit assignment is based on the active rep-
resentation of stimuli (both those that are present and those that are
linked to the present stimuli). Third, learning is sensitive to uncer-
tainty. Fourth, the prediction target for learning is likely long-range
(not just immediate upcoming reward). These principles can be real-
ized neurally using fairly simple mechanisms, including variants of
Hebbian plasticity rules and recurrent firing rate dynamics.

These principles are only part of the story. In the next chapter, we
will invoke some new principles to explain how animals adapt their
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actions to maximize reward. And we’ll see in Chapter 12 how brains
are capable of learning in ways that go beyond simply predicting
future reward.

Study questions

1. In what sense can temporal difference learning be viewed as a gen-
eralization of the Rescorla-Wagner model? How does the discount
factor o expand the predictive horizon of learning?

2. Why does the probabilistic Kalman filter model naturally account

for latent inhibition, while the Rescorla-Wagner model does not?

3. How might nonlinear integration in medium spiny neurons help
align neural plasticity with reinforcement learning theory?
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