Computational Foundations of Cognitive Neuroscience

Chapter 1: Reverse engineering the brain

If the brain is a computer, what is it computing? This chapter argues
that the brain computes solutions to statistical decision problems. The
fundamental problem facing the brain is choosing utility-maximizing
actions under uncertainty about the state of the world. This runs into
tractability issues, necessitating approximate solutions, which can be
realized using an elementary set of neural building blocks.

How DOES THE BRAIN WORK? You've probably heard this question
many times, but what is it really asking? What kind of answer are we
looking for?

Asking how something works is fundamentally a question about
how it serves a function. The heart pumps, the stomach digests, the
brain thinks. Thus, the question is really asking: “How does the
brain produce thought?” To answer this question, we need to define
thought in a precise way. A widely accepted modern definition is
that thought is computation—the manipulation of representations for

some purpose. Philosophers have debated how exactly
to define computation, and how to

. gt determine whether the brain (or any
down in philosophical issues. Roughly speaking, representations other object) can be characterized as a

are about other things: the word “apple” is a representation of the computer. The definition here captures
a fairly standard (but not universal)

view. See Maley (2022) for further
I say “apple” a listener knows that I am referring to one of those discussion.

Let’s unpack this definition while trying not to get too bogged

concept APPLE or some particular apple in the sense that when

things. Similarly, a collection of neurons represents an apple in the
sense that a downstream neuron can interpret their activity pattern

in terms of information about the apple. The downstream neuron For a more nuanced treatment of
representation in neuroscience, see

then d thi ith this inf tion b ticipating i
can then do something wi is information by participating in a Baker et al, (2023).

computation (e.g., planning a reaching movement, comparing the
apple to other apples in memory, deciding whether to eat it, etc.).
Planning a movement might involve predicting what happens if we
grasp the apple in a particular way, but critically we don’t have to
grasp the actual apple to make this prediction—we might mentally
simulate grasping a representation of the apple. This illustrates how
mental computations are manipulations of representations. Finally,
it’s obvious that we don’t do these manipulations willy-nilly; they are
purposeful. Another way of saying this is that the manipulations are
part of algorithms that solve particular problems.

Drawing upon these ideas, the computational neuroscientist David
Marr articulated an influential framework for studying computa-
tional systems at multiple levels of analysis (Marr, 1982):

1. Computational level: What is the problem being solved by the

system?

2. Representational/algorithmic level: How is the problem solved
algorithmically?

3. Implementation level: How is the algorithm realized physically?

In motivating his levels of analysis, Marr famously declared, “Trying
to understand perception by studying only neurons is like trying to
understand bird flight by studying only feathers: It just cannot be
done.” This declaration has conceptual and methodological interpre-
tations. The conceptual interpretation is that there is no such thing
as perception defined only in terms of neurons—it’s a category er-
ror, because there is something about perception that is irreducibly
mental. Note that this is not the same as endorsing a Cartesian dual-
ism in which mind and brain are separate entities; rather, the point is
that cognitive processes like perception are defined in terms of mental
representations of objects, shapes, and so on. Neuroscience can study
how neurons implement these processes, but it cannot simply replace
them with neural descriptions.

If one looks really closely at the atomic structure of a transistor,
one won't recognize a computing unit, but of course digital com-
puters are made out of transistors. Likewise, there is nothing rec-
ognizable as “cognition” if one only looks at the details of neuronal
biochemistry. Marr’s levels allow us to adopt a level of abstraction at
which cognition comes into view.

The methodological interpretation is that in practice it’s virtually
impossible to make progress in cognitive neuroscience by pursuing a
purely bottom-up approach of “just looking” at neurons. This point
is vividly illustrated by the exercise of applying analogues of modern
neuroscience techniques to understanding a microprocessor (Jonas
and Kording, 2017), a case where we know how it works because we
designed it, and yet these techniques are largely useless in the ab-
sence of structured hypotheses about the microprocessor’s functions
and design principles. For example, Jonas and Kording identified
which “behaviors” (video games running on the microprocessor) are
disrupted by lesioning individual transistors (Figure 1), a common
approach to establishing causality in neuroscience. They write:

This finding of course is grossly misleading. The transistors are not
specific to any one behavior or game but rather implement simple
functions, like full adders. The finding that some of them are important
while others are not for a given game is only indirectly indicative of
the transistor’s role and is unlikely to generalize to other games.

The moral of the story is that we can make swifter progress by (i)
positing the computational problems that the brain is trying to solve,

CHAPTER 1

A more recent rendition of Marr’s
argument can be found in Krakauer
et al. (2017).

“The purpose of abstraction is not to
be vague, but to create a new semantic
level in which one can be absolutely
precise.” (Dijkstra, 1972)

See Gershman (2021) for a discussion
of the “innocent eye” fallacy in neuro-
science.

2

Lesions which impact single behavior

Lesion site vs behaviori‘- »
1565

.......... 1000 um

(ii) engineering algorithmic solutions to these problems, and (iii)
modeling how the brain could implement the algorithmic solutions
under biological constraints. This is the reverse engineering approach
to understanding the brain, structured according to Marr’s levels

of analysis. Importantly, the levels mutually constrain one another.
For example, we can eliminate certain algorithmic hypotheses that
have no plausible biological implementation, and we can eliminate
biological implementations of algorithms that lack psychological
plausibility.

Reverse engineering comes with its own risks. What if we invent a
“just-so” story about the brain, a wishful fantasy about its computa-
tional principles? My answer is that reverse engineering is subject to
the same empirical discipline as any other theoretical approach; we
have to always be asking, what can it explain? The theory is good if it
can explain a large number of phenomena with a small number of
principles. We’ll know we’re succeeding when the textbooks start to
get shorter rather than longer (Figure 2).

1 The computational level

At first glance, the brain seems to be solving many different kinds

of problems: perception, decision making, motor control, learning,
memory, language understanding, and so on. On further inspection,
these all appear to be variations on one kind of problem, namely a
statistical decision problem. This might sound like a radically narrow
construal of brain function, but it isn’t; the technical definition of a
statistical decision problem is general enough to encompass many, if
not all, specific functions carried out by the brain. Let’s take a closer
look at the technical definition.

CHAPTER 1 3

Figure 1: Lesioning a microprocessor
to identify the functions of individual
transistors: an exercise in futility?
Colors indicate different “behaviors”
(video games). Reproduced from Jonas
and Kording (2017).

Principles of Neural Science

3000 -

2500

n
[=]
o
(=]

1500

Number of pages
)
o
o

500

80 1990 2000 2010 2020
Year
Figure 2: A standard neuroscience
textbook gets longer with each edition.
If theorists are doing their jobs right,
this book should be getting shorter!

1.1 Decision theory

The basic setup of decision theory consists of two objects: an agent
and the world (Figure 3). The agent has a perceptual apparatus to
measure signals and rewards from the world, and a motor appara-
tus to produce actions operating on the world. In between these two
apparatuses is the agent’s brain, which computes probabilistic be-
liefs about the state of the world based on the sensory signals that

it receives. These beliefs are used to calculate the expected reward
for each possible action. Finally, the agent chooses an action, which
induces reward delivery and changes in the state of the world.

Belief: p(s|z)

Perception: P(zls)

LT

Action: 7(alz)

)

Reward: p(7]s, a)

v

More formally, the true state of the world is denoted by s, drawn
from p(s). For example (Figure 4), s might be the color of an apple,
drawn from the distribution of apple colors, p(s). Conditional on the
state, a signal x is generated from an observation distribution p(x|s).
In general, the state may not be fully observable (x can include states,
actions, and rewards whenever these are observed). In our example,
x corresponds to the activation of photoreceptors in the retina, and
p(x|s) corresponds to the process by which photons of a particular
wavelength travel from the apple’s surface to the photoreceptors,
where they interact with light-sensitive proteins (opsins). This pro-
cess is probabilistic due to several sources of randomness (e.g., the

distribution of opsins across photoreceptors, the stochastic absorption

of photons by opsins).

The agent samples an action a from its (possibly stochastic) pol-
icy mt(a|x), and then collects a reward r from a reward distribution
p(r|s,a). For example, I might ask you to report the color of the ap-
ple using a color wheel and reward you based on your accuracy. The
action generation process in this case is probabilistic due to motor

CHAPTER 1 4

Figure 3: Elements of the decision
problem.

All the variables (state, signal, action,
reward) can be multidimensional (e.g.,
indexed by space or time), discrete or
continuous, stochastic or deterministic.
Later we will explore more specific
models that make different assumptions
about the structure of these variables.
We will assume discrete variables in
what follows.

In Chapter 11, we’ll look at cases where
random action selection arises from
particular optimization problems.

CHAPTER 1

S

X
2 &’D\. E_
plals) 7(als) ' ‘

p(rls,a)

r Figure 4: Example decision problem
(color perception).

noise.

The agent derives utility u(r) from reward r. For example, r might
be money you earn from the task I give you, and u(r) is how much
you value the money, which depends on factors like your current
wealth level and the purchasing power of the money. This empha-
sizes the fact that utility is distinct from nominal quantities like dol-
lars, number of calories, etc. Generally speaking, utility is internally
generated. Where this comes from is a deep question. Singh et al.
(2010) take an evolutionary approach to the origin of utility. The basic
idea is that agents need to maximize fitness for survival and repro-
duction, but this is not easily measurable. Therefore, evolution has
equipped us with utility functions that serve as imperfect proxies for
fitness.

At first glance, the setup of decision theory seems too austere to
encompass everything that the brain does. What about language,
mathematics, logic, analogy? All of these are (at least in principle)
reducible to decision theory, provided we consider a rich enough
space of states, actions, and signals. For example, we can think of
language production as a decision problem where the state space
consists of referents (i.e., what the speaker is talking about), the ac-
tion space consists of utterances, and the signal space consists of
the speaker’s sensory inputs (potentially including the utterances of
other speakers). The listener needs to infer the referent of the speaker
based on the signals they observe, while the speaker needs to choose
utterances that convey the referent efficiently to the listener (Gibson
et al., 2019). This illustrates how we can conceptualize even high-level
cognition in terms of decision theory.

1.2 The optimal policy

There are different ways to think about what it means for a policy
to be optimal. An agent could choose a policy that maximizes the
worst possible utility (minimax optimality) or it could choose a pol-
icy that is not dominated by any other policy (i.e., no other policy
yields as good or better utility across all possible states, a property
known as admissibility). We will focus on Bayesian decision theory,
which turns out to be equivalent to these other notions of optimality

under certain conditions (see next section). The key idea in Bayesian A good general introduction to
Bayesian decision theory is Berger
(1985).

5

CHAPTER 1 6

decision theory is that the agent is trying to maximize its expected
utility 1(7r) = E[u(r)| 7] given its beliefs about the hidden state of the
world:

" = argmax (7). (1)
T
There are several sources of randomness going into the expectation.
First, the policy may be stochastic. Second, the agent doesn’t have
access to the hidden state. Third, the reward may be stochastic. The
agent’s expected utility is how much utility it believes it will gain
under some policy, averaging over these sources of randomness:

ia(m) =) p(x)) _m(alx) } p(slx) Y p(rls,a)u(r).)

X a

The term p(s|x) is the agent’s probabilistic belief about the hidden
state s given the signal x. It is commonly referred to as the posterior

distribution, to contrast it with the agent’s prior distribution p(s). We Although here the prior is taken to be
the ground truth state distribution,
in reality we rarely know this ground
truth. Our priors are typically subjective.
(S| x) — M (3) This causes discomfort for some people.
’ i) ’

can obtain the posterior from the prior via Bayes’ rule:

The first term in the numerator, p(x|s), is the likelihood of state s. In-
tuitively, this term expresses how well a hypothetical state “fits” the
data. The denominator is the marginal likelihood p(x) = Y5 p(x|s)p(s),
a normalizing constant which ensures that the posterior probabilities

sum to 1. The marginal likelihood is actually the thorniest part of Marginalization refers to summing
over one variable to get the marginal

Bayesian computation, because it is generally intractable when the
4 p ’ & y distribution of another variable.

state space is large. This leads to approximation techniques that we
will cover later.

1.3 Why be Bayesian?

In the previous section, we took Bayesian decision theory as our
standard for optimality. Why? This section briefly summarizes 3
arguments.

The logician’s argument. In Boolean logic, the truth value of a
proposition is represented by o (false) or 1 (true), and the truth value
of complex propositions can be calculated by combining elementary
propositions using algebraic operations (the Boolean algebra). For
example, if A and B represent the truth values of two propositions,
then AB gives the truth value of their conjunction (A and B are both
true) and A + B — AB gives the truth value of their disjunction (A
or B is true). We can also negate a proposition using 1 — A (A is
not true). The operations of Boolean algebra always yield values
of o or 1; truth values are known with complete certainty. What if

CHAPTER 1 7

you're unsure about the truth value of elementary propositions like
A and B? Is there a “soft” version of Boolean logic that correctly
represents and propagates some measure of “plausibility”? We’d like
this measure to be a real number (so that it can encode continuous
degrees of plausibility) and internally consistent (logically equivalent
propositions should have the same plausibility). We’d also like it to
recover Boolean logic as a special case when plausibility is maximal

or minimal (corresponding to complete certainty). It turns out that This result is known as Cox’s Theorem
(Cox, 1946). See Jaynes (2003) for an
accessible introduction.

only probabilities updated according to Bayes’ rule satisfy these
requirements. Thus, Bayesian probability theory can be viewed as a
natural extension of Boolean logic.

The decision theorist’s argument. You might be uncomfortable
with the idea that your beliefs, and hence your decisions, depend
on a subjective prior distribution. Wouldn't it be better if we could
devise a policy which was “objective” in some sense? One approach
is to identify policies which are never worse than any other policy
(this is the property of admissibility introduced above). It turns out
that every admissible policy corresponds to a Bayesian policy (i.e.,
a policy that maximizes expected utility under the posterior) for

some prior (not necessarily your subjective prior). Every minimax This result is known as the Complete
Class Theorem (Wald, 1947). Note that

. L. L. A . technically the corresponding prior may
means that Bayesian decision theory is in a sense inevitable for a be “improper” (doesn’t sum to 1).

policy is also equivalent to a Bayesian policy under some prior. This

decision maker who wants to avoid being dominated or avoid the
worst possible outcome.

The gambler’s argument. Suppose I offer you the following bet:
if it rains tomorrow, I'll give you $1, otherwise you get nothing. To
purchase this bet, you need to pay me $g. A Bayesian decision maker
will purchase the bet if g < b, where b is the posterior probability that
it will rain tomorrow. In this case, I can’t make any money off of you
in expectation. Now suppose that instead of posterior probability you
assign a possibly non-Bayesian plausibility to each event outcome.
If these plausibilities violate the axioms of probability (and hence
are non-Bayesian), then it is possible to construct a bet that you will
accept and yet you will be guaranteed to lose money. Thus, there is a This result is known as the Dutch Book

financial incentive to be Bayesian. Theorem (De Finetti, 1931).

2 The algorithmic level

Real agents have constraints on computation, memory, and data.
These constraints delimit what kinds of algorithms are realizable.

To reverse engineer the brain’s algorithms, we need to understand
both the requirements of different algorithms and the brain’s physical
constraints. The algorithmic level of analysis focuses on the former;
we will come to the brain’s physical constraints when we discuss the

implementational level.

2.1 Complexity, efficiency, tractability

We can characterize the requirements of an algorithm along several
dimensions:

1. Time complexity: how much computation is required?
2. Space complexity: how much memory is required?
3. Sample complexity: how much data are required?

Computer scientists use these dimensions to determine the efficiency
of algorithms: if any of the complexity measures cannot be expressed
as a polynomial function of the input size N (e.g., they scale expo-
nentially with N), an algorithm is considered inefficient (Arora and
Barak, 2009). A problem for which no efficient algorithm exists is
considered intractable.

To illustrate, suppose the state space consists of N variables,

s = (s1,...,8N), where each variable can take one of K discrete
values. Computing the normalizing constant for Bayes’ rule then
requires summing over KV possible configurations. This might oc-
cur, for example, in the setting where x corresponds to images and

s corresponds to the set of N objects in a scene, each of which could
belong to K possible categories. Naively trying to enumerate all pos-
sible states is inefficient because N appears in the exponent, and thus
the time and space complexity of exhaustive enumeration is exponen-
tial in the input size (N in this case).

Combinatorial problems of this kind are everywhere. We will en-
counter them again in the context of learning and decision making.
They cannot be efficiently solved by algorithms that rely on exhaus-
tive enumeration. More generally, exponential complexity frequently
arises in high-dimensional problems where some computation re-
quires exhaustive coverage of the space—the curse of dimensionality
(Bellman, 1957).

If a problem is intractable, it is unlikely that our brains evolved
to solve it. This suggests that we should only try to reverse engineer
the brain’s efficient solutions to tractable problems. To this end, we
will focus on algorithms with polynomial complexity that have been
shown to work in practice. Our strategy will be to identify behavioral
and neural signatures of these algorithms, and to investigate how
they could be implemented with neural machinery.

CHAPTER 1 8

A polynomial function of order N is
defined as f(x) = Zy:o wyx", with
coefficients (wy, ..., wy). The Cobham-
Edmonds thesis states that a problem is
tractable only if there exists an efficient
(polynomial-time) algorithm that can
compute a solution.

CHAPTER 1 9

2.2 Resource rationality

Efficiency is a rather weak constraint on the space of algorithms,
since often many different algorithms enjoy polynomial complexity
for a given problem. In some cases, we can make stronger inferences
by explicitly specifying the resource constraints as part of the objec-
tive function and then asking what algorithms optimize this objective
function. This is the essential idea of resource rationality (Lieder and
Griffiths, 2020).

To formalize this idea, consider an agent with capacity C, mea-
sured in resource units (e.g., time, memory, computation, informa-

tion), which it can’t exceed. The amount of resources consumed by ¢(7) includes not only the resource cost
of executing the policy, but also all the

implementing policy 7 is given by c¢(7r). The resource-rational polic
P &P y & y () p y antecedent computation (sensing, belief

optimizes expected utility subject to the resource capacity limit: computation, etc.) needed to compute
the policy.
" = argmax (7). (4)
me(m)<C

We ultimately aim to ground the resource constraints in terms of
biology (e.g., the brain’s energy budget). In some cases, we lack suf-
ficiently detailed knowledge about biological resource constraints, so
we fall back on more abstract and heuristic constraints as placehold-
ers.

One subtlety of resource rationality is that identifying the optimal
resource-rational agent is itself computationally demanding. If we
incorporate this cost into our analysis, then we would have a new op-
timization problem which itself requires optimization. This threatens
an infinite regress that defeats the point of resource rationality. One
way to get around the infinite regress problem is to assume that some
of this optimization is happening on an evolutionary or develop-
mental time scale, rather than in real time during task performance.
For example, we may have some heuristics that help us efficiently
find solutions to certain decision problems; these heuristics were not
necessarily discovered through one agent’s trial and error, but rather
through the collective experience of multiple agents. Resource ratio-
nality isn’t defined as an optimization procedure happening in one
agent’s head (although that might happen in some cases)—it is the
outcome of an optimization procedure that is the product of multiple
pathways (including biological evolution, cultural transmission, and
cognitive development).

Pushing the optimization problem beyond a single agent does not
completely solve the issue, because this optimization problem is itself
intractable (Rich et al., 2020). Thus, it is unlikely that the brain has
evolved to be fully resource-rational. In applying resource rationality,
the goal is not to claim that the brain has been fully optimized in this
way, but rather to show that the optimal solutions are able to explain

some of the things that the brain actually does.

2.3 Algorithmic design principles

We haven't discussed any particular algorithms yet, but as a preview
here are a few design principles which we will encounter throughout
the book:

* Divide and conquer. Break complex problems down into smaller
ones that are easier to solve.

¢ Use randomness. Rather than trying to exhaustively enumerate
the elements of some space, sample the elements from a probabil-
ity distribution.

¢ Follow gradients. Rather than searching blindly in some space,
follow the direction of steepest ascent on the function you want to
maximize (the objective function).

¢ Regularize. The natural objective function for Bayesian decision
theory is the expected utility. But directly optimizing this function
might lead to getting stuck in local optima (suboptimal solutions).
Moreover, we often don’t have direct access to expected utility, but
only an approximation of it, in which case the objective function
is a noisy version of the function we actually care about. We can
“smooth” the optimization landscape by adding terms of the ob-
jective function which make it better-behaved and more robust to
noise.

* Reduce redundancy. Compress signals so that they consume
fewer resources.

¢ Reuse computations. Rather than computing a new solution to
each problem, store solutions to past problems so that they can be
reused. This exploits patterns of similarity in the space of solu-
tions: if many problems can be solved the same way, just learn one
solution.

Much of the book will be devoted to explaining the logic of these
design principles and how the brain implements them.

3 The implementation level

There are many physical implementations of a given algorithm. You
can build a universal computer out of transistors, cells, ant colonies,
pasta, and so on. It is commonly believed that the brain’s elemen-
tary computing units are neurons. Each neuron implements a rela-
tively simple computation; wiring up many neurons together makes

CHAPTER 1 10

Bayesian inference can be approximated
efficiently using a combination of
sampling and gradients, as we will
explore later.

complex computation possible. The same idea is the foundation of
modern artificial neural networks. This section introduces the basic
primitives that we will work with in subsequent chapters.

Presynaptic
neuron
Soma

Axon

Dendrites > Synapse

Axon terminals

Postsynaptic)
neuron ™ '

The most important elements of a neuron are shown in Figure 5.

A neuron receives inputs from other cells along its dendrites. These
inputs come in the form of neurotransmitters released by the axon
terminals of other neurons, which then diffuse across the synapse
and bind to receptors on dendrites. Neurotransmitters are released
(probabilistically) when a neuron is strongly depolarized (an action
potential, also known as a spike), producing an electrical signal that
is propagated along the axon. Depolarization arises from integration
of electrical potentials at dendrites induced by opening of ion chan-
nels, which are controlled by the binding state of neurotransmitter
receptors. Action potentials are generated when the postsynaptic
potential exceeds a threshold.

The brain primarily uses two neurotransmitters: glutamate, which
causes excitatory potentials (by opening channels for positively
charged ions, typically sodium and calcium), and GABA, which
causes inhibitory potentials (by opening channels for negatively
charged ions, typically chloride). We will also encounter another class
of chemicals released from axon terminals, neuromodulators such as
dopamine, serotonin, acetylcholine, and norepinephrine (also known
as noradrenaline). As their name suggests, neuromodulators typically
modulate the response of neurons to neurotransmitters. The diversity
of modulatory effects will be discussed in later chapters.

The number of receptors on the postsynaptic membrane deter-
mines its sensitivity to presynaptic signals. Roughly speaking, we
can think of the total number of glutamate receptors as a summary of
synaptic strength (or “weight”). A postsynaptic neuron with greater

CHAPTER 1 11

In reality, each neuron is extremely
complex. We'll later consider possible
computational roles for some of this
complexity.

Figure 5: Schematic of a neuron and
synapse. Red dots show neurotransmit-
ters. Credit: Cindy Luo.

When discussing transmission of
signals across synapses, we will use
“postsynaptic” to refer to the receiving
neuron and “presynaptic” to refer to
the sending neuron.

CHAPTER 1 12

synaptic strength will be more likely to produce an action potential
given the same amount of presynaptic neurotransmitter release.
Synaptic strengths are modifiable, a process known as synaptic
plasticity. These modifications typically depend on a combination
of presynaptic and postsynaptic activity. The classic example of this
(Hebbian plasticity) is the strengthening of a synapse after the coinci-

dent firing of presynaptic and postsynaptic neurons. As we will see, “Neurons that fire together, wire
biologically realistic plasticity rules are more complex than this sim- together.” Although this phrase is

& Y . P Y . P i often attributed to Donald Hebb, it was
ple formulation, but nonetheless it captures a key feature of learning actually coined by Shatz (1992).

in the brain. In addition to synaptic strength, the overall sensitivity
of the neuron to inputs is modifiable, a process known as intrinsic
plasticity. For example, brief stimulation of a neuron can enhance its
propensity to generate spikes, whereas longer stimulation reduces
this propensity.

Despite their simplicity, these neural primitives can be used to im-
plement many of the algorithmic design principles described earlier.
We can divide and conquer by wiring up neurons into modules that
each solve a different part of a complex problem. The mapping from
state s to spikes is probabilistic (as discussed in the next chapter); this
can be used for sampling (e.g., for approximating Bayesian inference).
The synaptic weights can be adjusted through learning (synaptic
plasticity), and the plasticity rules can be constructed to approxi-
mately follow the gradient of some objective function (possibly with
the help of non-local information provided by neuromodulators).

The objective function can incorporate biases for simplicity (e.g., the
weights should be close to 0) and compression (e.g., responses of
different neurons to the same inputs should be non-redundant). The
gain and threshold parameters can also be adjusted (a form of intrin-
sic plasticity) to optimize simplicity and compression. Finally, the
learned weights can potentially be reused to solve multiple problems.
These ideas will be elaborated later in the book.

The neural primitives also let us think more concretely about what
the brain’s limited resources are at the level of cell biology. Spikes See Niven (2016) for a review of the
are metabolically expensive, so cells cannot spike with arbitrarily brain’s energy budget.
high rates for arbitrarily long periods of time. Maintaining a re-
liable response to inputs (i.e., a high signal-to-noise ratio) is also
metabolically expensive. Finally, maintenance of synaptic weights is
metabolically expensive, so there may be evolutionary pressure for
the weights to be close to o (another impetus for simplicity). These
metabolic costs imply that the brain should economize on the num-
ber of neurons, their average firing rate, the reliability of firing, and
the number of connections between neurons.

4 Conclusion

We started with the question, “How does the brain produce thought?”
Now we have the broad strokes of an answer. The brain is designed
by evolution to compute (approximately) resource-rational solutions
to statistical decision problems. It achieves this by using a number

of algorithmic design principles that achieve good performance with
low resource requirements. These principles can be implemented
with networks of simple neurons connected by plastic synapses.

Study questions

1. What are the advantages and disadvantages of the reverse engineer-
ing approach?
2. If priors are subjective, are Bayesian theories unfalsifiable?

3. How is it possible to find optimal resource-constrained policies
when the policy search is itself resource-constrained? And doesn’t
this threaten an infinite regress, where each optimization is nested
within an even more difficult optimization problem?

References

Arora, S. and Barak, B. (2009). Computational Complexity: A Modern
Approach. Cambridge University Press.

Baker, B., Lansdell, B., and Kording, K. P. (2022). Three aspects of
representation in neuroscience. Trends in Cognitive Sciences, 26:942—

958.

Bellman, R. E. (1957). Dynamic Programming. Princeton University
Press.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis.
Springer.

Cox, R. T. (1946). Probability, frequency and reasonable expectation.

American Journal of Physics, 14:1-13.

De Finetti, B. (1931). Sul significato soggettivo della probabilittexta.
Fundamenta Mathematicae, 17:298-329.

Dijkstra, E. W. (1972). The humble programmer. Communications of the
ACM, 15:859-866.

Gershman, S. J. (2021). Just looking: The innocent eye in neuro-
science. Neuron, 109:2220-2223.

CHAPTER 1

13

Gibson, E., Futrell, R., Piantadosi, S. P., Dautriche, 1., Mahowald, K.,
Bergen, L., and Levy, R. (2019). How efficiency shapes human
language. Trends in Cognitive Sciences, 23:389—407.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge
University Press.

Jonas, E. and Kording, K. P. (2017). Could a neuroscientist under-
stand a microprocessor? PLoS Computational Biology, 13:€1005268.

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., Maclver, M. A,,
and Poeppel, D. (2017). Neuroscience needs behavior: correcting a
reductionist bias. Neuron, 93:480—490.

Lieder, F. and Griffiths, T. L. (2020). Resource-rational analysis: Un-
derstanding human cognition as the optimal use of limited compu-
tational resources. Behavioral and Brain Sciences, 43:e1.

Maley, C. J. (2022). How (and why) to think that the brain is literally
a computer. Frontiers in Computer Science, 4:970396.

Marr, D. (1982). Vision: A Computational Approach. Freeman.

Niven, J. E. (2016). Neuronal energy consumption: biophysics, effi-
ciency and evolution. Current Opinion in Neurobiology, 41:129-135.

Rich, P, Blokpoel, M., de Haan, R., and van Rooij, I. (2020). How
intractability spans the cognitive and evolutionary levels of expla-
nation. Topics in Cognitive Science, 12:1382-1402.

Shatz, C.]. (1992). The developing brain. Scientific American, 267:60—
67.

Singh, S., Lewis, R. L., Barto, A. G., and Sorg, J. (2010). Intrinsically
motivated reinforcement learning: An evolutionary perspective.
IEEE Transactions on Autonomous Mental Development, 2:70-82.

Wald, A. (1947). An essentially complete class of admissible decision
functions. The Annals of Mathematical Statistics, pages 549-555.

CHAPTER 1

14

	The computational level
	The algorithmic level
	The implementation level
	Conclusion

