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Despite significant advances in neuroscience, the neural bases

of intelligence remain poorly understood. Arguably the most

elusive aspect of intelligence is the ability to make robust

inferences that go far beyond one’s experience. Animals

categorize objects, learn to vocalize and may even estimate

causal relationships — all in the face of data that is often

ambiguous and sparse. Such inductive leaps are thought to

result from the brain’s ability to infer latent structure that

governs the environment. However, we know little about the

neural computations that underlie this ability. Recent advances

in developing computational frameworks that can support

efficient structure learning and inductive inference may provide

insight into the underlying component processes and help pave

the path for uncovering their neural implementation.
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Introduction
Animals perceive complex objects, learn abstract con-
cepts and acquire sophisticated motor skills, often from
limited experience. Efficiently making these inferences is
paramount for survival, such as when determining wheth-
er a looming shadow indicates a predator, learning when
and where to re-hide a food cache, or deciding to abandon
a rich foraging niche in anticipation of a natural calamity.
Inferences from sparse data depend upon background
knowledge that restricts the potentially unlimited ways of
parsing and interpreting the world. The brain likely
makes these inferences by efficiently exploiting regulari-
ties in the environment to learn and use latent structured

relations. In essence, these structures are possible gener-
ative models that capture, at an abstract level, the rela-
tionships and causal processes underlying observations.
Learned structure constraints can then be applied to solve
related but novel tasks, such as parsing ambiguous sen-
sory input and generating novel actions. How hidden
structure is learned and used to support inductive leaps
that go beyond the available data is an important question
in contemporary neuroscience.

For more than a century, the challenge of determining how
structure learning and inductive inference can be efficient-
ly performed was tackled by statisticians [1], linguists [2],
computer scientists [3] and cognitive scientists [4–7].
However, insights about the neural implementation of
structure learning have been rare despite some excellent
attempts [8,9]. Presumably this is because it is challenging
to design experiments with the necessary task complexity,
to ascertain that animals acquire and use specific structures
and then to probe the underlying neural computations of
structure learning and use. Nevertheless, if the need to
learn structures that can support inductive inference was a
selective pressure in the evolution of neural circuit func-
tion, then probing neural dynamics in this computational
regime may be important for our understanding of brain
function. Here we provide an overview of a computational
approach to structure learning and inductive inference
from contemporary cognitive science, and discuss what
this framework offers to studies of the neural implementa-
tion of structure learning.

Structure learning in animal cognition
To gain an intuition for the advantage of knowing the
appropriate generative structure of the environment,
consider an entertaining anecdote about Richard Feyn-
man. While bored at Los Alamos when he worked on the
Manhattan Project, Feynman passed his time by picking
the locks on filing cabinets [10]. By tinkering with the
sophisticated three-disk Mosler combination locks that in
principle could support one million combinations, Feyn-
man uncovered certain regularities in the locks’ design
that greatly constrained the space of working combina-
tions. Using this knowledge, he entertained himself by
breaking into the cabinets of his colleagues whenever he
needed a particular document. A similar insight into
hidden regularities was the basis of Alan Turing’s
code-breaking exploits during World War II.

Feynman’s use of a few observations to discover con-
straints that solved an otherwise irresolvable problem is a
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striking example of the power of the human mind to learn
about the workings of the world that go beyond the
available information. Although it is accepted that the
ability to abstract structured relationships in the environ-
ment is at the core of human intelligence, whether
animals perform similar cognitive feats or whether they
are instead ‘competent without comprehending’ remains
contentious [11,12]. Nevertheless, an influential view
posits that these remarkable, domain-general human
cognitive abilities arose as an elaboration of more primi-
tive, perhaps domain-specific cognitive systems [7,13,14].
Consistent with this claim, analyses of complex domain-
specific behaviors in expert animals — e.g. rapid acquisi-
tion of social hierarchies in fish [15]; numerosity, tool use
and intuitive physics in non-human primates [16–19] and
corvids [20–22]; causal reasoning in rodents [23]; spatial
navigation using schemas of interconnected locations
[24,25!] or even full cognitive maps [14] in rodents;
and recognition and use of natural or artificial syntax in
songbirds [26,27] — have provided evidence of animals’
reliance on rich ‘internal’ models of environmental struc-
ture that may resemble hierarchical symbolic abstractions
central to human cognition.

Because inferring a generative structure amounts to
abstracting general principles from examples, a key pre-
diction of structure learning is that learning similar tasks is
facilitated — a phenomenon known as ‘transfer learning’
or ‘learning to learn’ [28]. For example, a neophyte
violinist who is a proficient pianist will become a skilled
string instrumentalist quicker than someone new to mu-
sic. Although the required movements of playing a key-
board differ from bowing a violin, experienced musicians
know the principles of meter, rhythm, melody and har-
mony that they transfer to playing novel instruments.

Transfer learning is a widespread test for determining
whether an animal has acquired structured abstractions.
In a recent study, that also attempted to find a representa-
tion of the inferred task structure in neural activity,
McKenzie et al. trained rats to learn a rule [25!]. The rats
were trained that for any pair of presented objects (flower
pots scented with different odors), only one is rewarded
and that the identity of the rewarded object in a pair
remains the same independent of their placement in a
given arena but changes between arenas. McKenzie
et al. found that learning which pot to approach with the
first pair of odors, X and Y, took twice as long compared to
the subsequent odor pairs of A and B, and C and D,
indicating transfer learning. Although these results support
the notion that model organisms induce the structure of
behavioral tasks, caution is warranted. In principle, transfer
learning can be achieved without induction of an abstract
rule: a simpler solution, such as the learning of a good way
to group perceptions, can facilitate performance in a
similar but novel environment. Thus, the development
of more sophisticated behavioral frameworks and formal

approaches to verifying the specific form of structured
knowledge an animal uses to solve a task are important
challenges for the field (see below).

Modeling structure learning to generate
insight into component processes
Any effort to understand the neural implementation of
cognition requires that the underlying cognitive processes
be identified and exposed in specifically-tailored behav-
ioral tasks. These component cognitive processes can
sometimes be intuited, such as evidence integration in
perceptual judgments [29]. However, the algorithmic
steps necessary for the acquisition of and reasoning with
hierarchically structured abstractions of the environment
are not immediately apparent. A rigorous approach has
thus been developed within the broader framework of
probabilistic models of cognition, which views human
behavior in complex environments as solving a statistical
inference problem. This approach starts with a rational
analysis [30] of cognition — a normative characterization
of how probabilistic reasoning should be performed given
the available data and prior inductive constraints. The
architecture of these normative characterizations specifies
the requisite cognitive processes and their interactions,
providing an explicit computational description of how
cognition might be performed.

Within the probabilistic reasoning framework, nonpara-
metric hierarchical Bayesian models (NPHBMs) incorpo-
rate the view that animals rely on structure learning, but
accommodate uncertainty about the relationships and
causal processes underlying observations by entertaining
multiple (or even an infinite number of) candidate world
structures. Most structured relationships in the environ-
ment can be represented as graphs, with entities or events
modeled as nodes and relationships between them as
edges, and the ability to organize knowledge accordingly
is thought to be central to most of cognition (Figure 1).
Notably, the proper form of the graph that best describes
a particular latent structured relationship can be efficient-
ly discovered by NPHBMs; the graph can also be grown,
in an informal sense nonparametrically, to accommodate
new observations.

For graphs, the NPHBM approach translates the subject’s
uncertainty about the specific structure that best
describes the observations into a space of discrete hy-
potheses at every level of abstraction. Interestingly,
higher order abstractions can often be learnt before low-
er-level details, a phenomenon known as the blessing of
abstraction [31,32]. For example, when children are pre-
sented with a few novel concepts and labels, they acquire
a bias not only that individual categories like chairs tend
to be organized by shape, but that categories of solid
objects in general are as well [33]. One reason why higher-
levels might be easier to learn is because the higher-level
hypothesis space tends to be smaller and pools evidence
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from lower levels. Once higher abstraction is acquired,
the lower-level hypothesis space becomes constrained,
permitting rapid learning about related, but novel
situations.

Probabilistic inference over structured forms thus permits
knowledge to be simultaneously acquired at multiple
levels and distributed according to the known relationships
between entities or events. This is further highlighted by
the ability of NPHBMs to provide a normative account for
how new, sparsely observed properties should be general-
ized. For example, learning that a heritable disease afflicts a
particular family member enables — via belief propagation
over the ancestry tree — inference about other relatives at
risk for the same illness. Overall, the power of NPHBMs
compared with other contemporary computational
accounts of cognition thus stems from their ability to
discover the proper form of structured relationships, to
infer the specific structure for a given set of observations,
and to make predictions about how to generalize new,
sparsely observed properties — all through rational statis-
tical inference.

Probabilistic models of structured relationships are an
attractive solution to the problem of structure learning
because they allow multiple hypotheses to be considered
in parallel. However, as the complexity of the task and the
number of observations increases, the space of possible
structures quickly explodes, making the search for the
right one intractable. One solution to this issue is to use
prior knowledge to constrain the hypothesis space [34].
For example, the existence of a prior expectation for
which temporal scale is relevant for causality can greatly

reduce the number of hypothetical cause-effect relation-
ships entertained by the model, and recent experimental
evidence provides support for the existence of such priors
in humans [35]. More generally, making the search for
the right structure tractable tends to require a combina-
tion of smart priors on whatever relevant aspects of the
structure the animal knows about, and smart search
algorithms, which do not exhaustively search all possible
structures but follow some efficient approximate search
ordering [36].

NPHBMs have gained particular recognition as norma-
tive accounts over the past decade due to their ability to
capture some of the most impressive feats of human [5]
and animal [37] cognition. In a recent example, Lake et al.
(2015) compared the ability of NPHBMs and state-of-the-
art artificial neural network approaches to humans’ ability
to grasp novel concepts — specifically, unfamiliar char-
acters [38!!] (Figure 2). Using a dataset of a handful of
examples each for 1623 different characters — exactly the
data-limited case that mandates the sharing of statistical
information across exemplars — Lake et al. demonstrated
that NPHBMs can both recognize and generate charac-
ters on par with humans. Central to their model’s success
was its ability to discover latent causal relations in the
stroke-by-stroke process of generating written characters
and compose these causal processes to recognize and
generate new characters. This and other examples high-
light the power of combining structure learning and
statistical inference to enable such feats of cognition as
transfer learning, one-shot learning and compositionality.

Toward the neural implementation of
structure learning
NPHBMs have achieved human-level performance on a
range of cognitive tasks including acquisition of novel
concepts [38!!], causal learning [39], parsing motion in the
environment [40] and others (for a review see [5]). Al-
though the extent to which this normative approach
provides an adequate framework for cognition continues
to be debated [41], the utility of such an abstract frame-
work for systems neuroscience may come from the
insights it offers into the component processes that might
underlie the learning and use of latent structure.

Is it plausible that neural circuits implement approxima-
tions of the computational components of NPHBMs:
structured hierarchies that can be grown nonparametri-
cally, probabilistic inference over structured representa-
tions, and prior constraints on the space of structures an
animal might consider? The hierarchical design of neural
circuits, and the ability of animals to learn novel hierar-
chical abstractions of their environment has long been
appreciated by neuroscientists [42,43] and is becoming an
area of growing interest [44]. Of particular note, action
planning in complex environments is increasingly
thought to depend on hierarchical processing of subgoals
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Nonparametric hierarchical Bayesian models are a popular method of
growing and inferring generative structures of the world.
Three example domains in which hierarchical structure supports
generative or inferential processes (after [62]). In language sentences
are parsed to semantic meaning, in vision whole objects can be
decomposed into a hierarchy of progressively more primitive parts and
in action selection the specific sequence of movements that lead to a
distant goal can be planned. These hierarchies can be generative,
such as the planning of a movement sequence, or inferential, such as
the inference of the probable goal of an observed movement
sequence.
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that can be separated significantly in time (for an excel-
lent review see [45]) — although identifying the exact
structure of subgoals in a particular task remains a chal-
lenge even with great control over experimental design
[46]. Importantly, the existing experimental evidence in
object categorization, face recognition [47], language
processing and action planning [48] suggests that the
different layers of an acquired hierarchy tend to be
embedded in spatially segregated circuits. Although a
complex hierarchy can be embedded in a local circuit,
spatial segregation of different levels of structured ab-
straction presents key experimental advantages because
learning using the discrete hypothesis spaces at each level
can be perturbed and observed.

The notion that information in neural circuits may be
represented in the form of probability distributions has
likewise received attention and theories for how circuit
computations can operate on probability distributions
have been forwarded [49]. Of the proposed frameworks,
Monte Carlo, or stochastic sampling-based approximation
is particularly well-suited to support not only inference
but also probabilistic learning [50], and can be extended
to problems in which learning operates on richly struc-
tured abstractions. For a discrete hypothesis space at each

level of the structured abstraction, sampling-based repre-
sentation would amount to representing an individual or
restricted set of hypotheses — a notion consistent with
the emerging view that humans and animals may ap-
proach many complex settings by evaluating a small
number of hypotheses at any given time [48,51]. Indeed,
one could begin to correlate ensemble dynamics with
different levels of hierarchy that an animal is evaluating
with specific hypotheses (symbols) — inferred from a
combination of behavioral readouts and computational
modeling. If this proves possible in several cognitive
domains then the task of investigating the neural basis
of inductive inference is more tractable.

How might one identify neural representations of spe-
cific symbols in such structured abstractions? This is
difficult even if one assumes that the behavioral task
provides a means to assess what the encoded structure
must be at specific time points, and even if there are
stable symbolic variables related to the creation and use
of this structure. Such variables are likely to be encoded
at the level of neural ensembles rather than single cells
(although see Wallis et al. for examples of how even
single unit recordings can provide windows into what are
likely to be more complex population representations of
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A generative model of handwritten characters that demonstrates the power of nonparametric hierarchical Bayesian models (reproduced from
[38!!]).
(a) New character types are generated by choosing primitive actions (color coded) from a library (i), combining these subparts (ii) to make parts
(iii), and combining parts with relations to define simple programs (iv). New character tokens are generated by running these programs (v), which
are then rendered as raw data (vi). (b) Pseudocode for generating new types c and new token images I(m) for m = 1, . . ., M. The function f(", ")
transforms a subpart sequence and start location into a trajectory.
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abstract task parameters [52]). Further, although it is
possible that stable variables are encoded in the form of
stable neural ensemble activity patterns [53], recent
experimental and theoretical work suggests this need
not be the case; stable variables can also be represented
by dynamically varying patterns of ensemble activity
[54!!,55,56]. An attempt by McKenzie et al. to extract
hierarchies of neural representation in the context of
transfer learning supports the existence of a hierarchy of
neural manifolds, although its relationship to the task
structure remains unclear [25!]. Luckily for the field,
identifying stable low-dimensional  trajectories and
manifolds in high-dimensional space using a combina-
tion of large-scale recordings and population analyses is
becoming increasingly tractable.

One of the key features distinguishing NPHBMs from
other approaches is the ability to grow structures non-
parametrically as needed to accommodate additional
observations. As the complexity of the task increases,
the potentially intractable search for the right structure is
constrained by a prior on relevant aspects of the structure.
There are intriguing hints of such processes in animal
behavior and physiology across species.

The prediction that the structured abstraction of the
environment should grow nonparametrically has recently
been tested in a study of spatial representations in the
hippocampus. By exposing rats to a track of increasing
lengths, Rich et al. (2014) investigated the process by
which hippocampal place cells represent environments of
different sizes [57!!]. Consistent with a process that grows
the inferred structure of the environment with task com-
plexity, Rich et al. found that the number of neurons
recruited was logarithmically related to the track length.
This finding supports the view that neural circuits may
not only represent acquired structured abstractions of the
environment but also flexibly grow them according to task
demands.

Recent efforts to use closed-loop brain computer inter-
faces (BCIs) to study behaviorally relevant neural dynam-
ics have investigated the constraints that neural manifolds
place on learning. These studies fit with the thesis that
neural manifolds are key components of learned struc-
tures. In an intriguing recent study, Sadtler et al. (2014)
trained non-human primates on a task that required the
animals to alter the neuronal dynamics of their primary
motor cortices to move a cursor on a screen to one of eight
targets [54!!]. The closed-loop nature of the task allowed
Sadtler et al. to specify how neural activity changes
mapped to cursor movements. Remarkably, primates
could easily learn to change their neuronal dynamics
along the intrinsic manifold, but showed difficulty learn-
ing to think with activity patterns outside of it. Restriction
of network dynamics to specific manifolds could be one of
the neural instantiation of structured priors, and BCI

techniques could help expose the specific priors animals
might possess.

Although these recent studies provide an encouraging
start, they also highlight the challenge of uncovering the
neural implementation of sophisticated mental represen-
tations of structured knowledge that is not directly acces-
sible to the experimenter. For significant further progress
to be made, experimenters must be able to correctly infer
the specific structured abstraction an animal is using to
solve a task. One solution is to use computational models to
infer the structured abstraction from behavior. However,
such model-fitting based approaches carry risks, as com-
pelling fits to specific models are often insufficient to
ascertain that animals rely on the exact computations to
solve the task. In a cautionary tale from abstract structure
learning in model organisms, the initial interpretation that
pigeons and baboons were capable of learning an abstract
‘same’–‘different’ categorization, was later revised when
additional behavioral tests discovered that animals, in-
stead, followed a much simpler rule that tracked the degree
of variability in the intensity of displayed images [58].

Thus, developing behavioral frameworks that isolates the
structured abstraction an animal represents and uses to
solve interesting tasks is a key challenge for the field. One
path forward would borrow from the rigorous tradition of
psychophysics [59] and combine behavioral modeling
with a principled way of varying the details of task design
so that an assessment could be made whether the behav-
ioral model properly accounts for resulting variable task
performance. Attempts to expose the structure of the
learned abstraction and the computations done at each
level of the structure by combining response deadline
procedures with behavioral error analysis have recently
been made in human studies [60]. It seems essential for
the field going forward to find ways to translate similar
methods to animal models.

Conclusions
Since Edward Thorndike’s tests of cats’ escapology from
puzzle boxes, there has been a fascination with, and
debate about, if and how animals internalize and use
the structure of the world [61]. Contemporary cognitive
scientists have recruited NPHBM to generate normative
descriptions of cognition that infer this structure, but the
project of describing how the mind and the brain learn
internal models has remained challenging. Despite this,
there is promising recent evidence that some of the
computational processes described by NPHBM may be
implemented by neural circuits.
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