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Participant Inclusion Criteria 

Because dual-task manipulations are interpretable only to the extent that 

participants are actually performing both, potentially interfering, tasks, we excluded the 

data of 11 participants whose concurrent task accuracy was less than 75% and the data of 

one participant who failed to meet a response deadline greater than 20 times. We 

employed a further step to remove participants who failed to demonstrate sensitivity to 

rewards in the decision task using second-stage choices, so as to detect reward task 

performance without biasing our primary comparisons of interest, which involve the first-

stage choices. Namely, we excluded the data of 3 participants who repeated previously 

rewarded second-stage responses—i.e., P(stay|win)—at a rate less than 50%. The 

exclusion of the above participants does not affect the pattern of significance in the main 

strategy analysis described below: the WM-load lag×reward×transition terms (see Table 

1) resulted in ps of .98, .48, and .008 for lag-0, lag-1, and lag-2 trials respectively. 

Choice and RT Analyses 

Mixed-effects logistic regressions were performed using the lme4 package (Bates 

& Maechler, 2009) in the R programming language. All coefficients were taken as 

random effects across subjects, and the estimates and statistics reported are at the 

population level. All predictors were coded as -1/1, with the exception of the lag-0, lag-1, 

and lag-2 indicator variables, which were coded as 0/1.  Note that this model 

specification does not include a lag-2 main effect term because the combination of all 

three WM-load lag main effect terms is equivalent to the intercept term (which, 



necessarily, needs to be specified in this class of linear model). Thus the lag-2 main effect 

term, of no particular interest to our hypotheses, is subsumed by the intercept term. To 

directly test differences between WM-load lag conditions (namely, the last three 

interaction terms in Table 1), planned comparisons were conducted using the esticon 

function (package doBy; Højsgaard & Halekoh, 2009) on the estimated model.  

In the RT analysis, we included a number of binary nuisance variables in this 

linear model included motor responses on the last 5 trials (reflecting motor stay/switch 

costs), whether or not reward was obtained on the previous trial, and whether or not a 

correct Numerical Stroop response was made on the previous last trial (if applicable). 

These nuisance variables were entered in with a binary predictor indicating the WM-load 

lag, and contrasts between lag coefficients were calculated using the method described 

above. 

Second-Stage Choice Analyses 

According to our computational framework, model-based and model-free choice 

strategies make different choice predictions at the first stage of choice—on which our 

core analysis was focused—but not at the second stage. Accordingly, we expected no 

difference in second stage choice behavior across WM-load lags as the signatures of 

second-stage behavior should be indistinguishable under model-based versus model-free 

strategies. We specified a mixed-effects logistic regression model similar to the model 

used to analyze first-stage choices (see Results in main text) in order to analyze second-

stage choices.  However, unlike the main analysis, which examined first-stage stay/switch 

probabilities as a function of both the previous trial’s reward and the previous transition 

type, this second-stage analysis did not include transition type as a factor because, unlike 



for the first choice, the transition does not intervene between the second-stage choice and 

its reward, and thus has no causal relevance. Moreover, both RL models—by virtue of 

the Markov property—predict no effect of the transition type on second-stage choices. 

Accordingly, our analysis examined second-stage response repetitions (conditioned upon 

the response made on the subject’s last visit to that second-stage state) as a function of 

WM-load lag and reward obtained on the subject’s last visit to that state. The full model 

specification and resultant coefficient values are reported in Table S1. The critical 

pairwise contrasts were taken among the last three terms and are reported in the main 

text. Critically, we revealed no differences across the lag × reward interaction terms (all 

pairwise contrast ps > .28) confirming that second-stage behavior did not differ across 

WM-load lags. 

Table S1. Second-stage choice regression coefficients.  

Coefficient Estimate (SE) p-value 
(Intercept) 0.57 (0.11) < .0001 
lag-0 0.16 (0.10) 0.089 
lag-1 -0.16 (0.09) 0.067 
lag-0 × reward 0.58 (0.11) < .0001 
lag-1 × reward 0.50 (0.08) < .0001 
lag-2 × reward 0.60 (0.08) < .0001 

 

 

Secondary Task Performance 

The final group of included participants made Numerical Stroop judgments with 

an average accuracy of 86% in the WM task. We found no relationship between 

secondary task performance and task performance on WM-load trials (calculated as the 

total proportion of rewarded trials) arguing against the possibility of a more global 



tradeoff between secondary task performance and choice task performance on WM-load 

trials (r=-.03, p=.90).  

 

Reinforcement Learning Model 

Our model follows closely the hybrid model described in Daw et al. (2011). The 

task consists of three states (first stage: sA; second stage: sB and sC), each with two actions 

(aA and aB). The hybrid model consists of model-based and model-free subcomponents, 

both of which estimate a state-action value function Q(s,a) that maps each state-action 

pair to its expected future value (cumulative reward). On trial t, we denote the first-stage 

state (always sA) by s1,t, the second-stage state by s2,t, the first- and second-stage actions 

by a1,t  and a2,t , and the first- and second-stage rewards as r1,t (always zero) and r2,t. 

For the model free algorithm we used SARSA(λ) temporal difference learning 

(Rummery & Niranjan, 1994), which updates the value for the visited state-action pair at 

each stage i and trial t according to: 

 

where 

 

is the reward prediction error (RPE), and  is a learning rate parameter. For the first-stage 

choice,   and the RPE is instead driven by the second-stage value, ; 

conversely at the second stage, we define , since there is no further 



value in the trial apart from the immediate reward . The model uses an eligibility trace 

to propagate second-stage reward information to the first-stage values. Specifically, at the 

end of each trial, the first-stage values are updated according to:  

 

where λ  is an eligibility trace decay parameter (Sutton and Barto, 1998). We assume that 

eligibility traces are reset to 0 between episodes (i.e., that eligibility does not carry over 

from trial to trial). 

In general, a model-based RL algorithm works by learning a transition function 

(mapping state-action pairs to a probability distribution over the subsequent state), and 

immediate reward values for each state, then computing cumulative state-action values by 

iterative expectation over these. Specialized to the structure of the current task, this 

amounts to, first, simply deciding which first-stage action maps to which second-stage 

state (since subjects were instructed that this was the structure of the transition 

contingencies), and second, learning immediate reward values for each of the second-

stage actions (the immediate rewards at the first stage being always zero). 

We modeled transition learning by assuming participants used a Bayesian 

estimation scheme, starting with a uniform Beta prior over transition probabilities and 

updating using standard calculations for the Beta-Bernoulli family. Under this model, the 

estimated transition probability at time t is given by: 

 



where  denotes the number of times the participant observed a transition from state A 

to state B after taking action . 

At the second-stage (the only one where immediate rewards were offered), the 

problem of learning immediate rewards is equivalent to that for TD above, since 

 is just an estimate of the immediate reward r2,t; with no further stages to 

anticipate, the SARSA learning rule reduces to a delta-rule for predicting the immediate 

reward. Thus the two approaches coincide at the second stage, and we define  

at those states. 

The model-based values are defined in terms of Bellman’s equation (Sutton & 

Barto,1998): 

 

where we have assumed these are recomputed at each trial from the current estimates of 

the transition probabilities and rewards. 

Finally, to connect the values to choices, we define net action values at the first 

stage as the weighted sum of model-based and model-free values 

 where w is a weighting parameter. 

At the second stage, . To accommodate our working memory load 

paradigm, we defined two different weights that operated on different trial types. We 



define w0/1 as the “lag-0/1” weight, which was used when working memory load occurred 

on the current or previous trial. The “lag-2+” weight w2 was used on all other trial types. 

We modeled choice probabilities as a softmax function of :  

 

where the inverse temperature parameter  governs the stochasticity of choices. The 

indicator function  is defined as 1 if a is a top-stage action and is the same one as 

was chosen on the previous trial, zero otherwise. Together with the “stickiness” 

parameter p, this captures first-order perseveration (p > 0) or switching (p< 0) in the first-

stage choices (Lau and Glimcher, 2005). 

In total, the algorithm contains 7 free parameters (β, α, w0/1, w2, λ, p), and nests 

pure model-based (w = 1, with arbitrary α1 and λ) and model-free (w = 0) learning as 

special cases. 

 

Experiment 2: Between-Subjects Conceptual Replication 

Participants 

A total of 89 undergraduates at the University of Texas were randomly assigned 

to one of two groups: the Single-Task (ST) condition and the Dual-Task (DT) condition. 

We used the same criteria for screening participants for adequate performance on both 

tasks as in Experiment 1. In particular, we excluded the data of 3 (2 DT) participants who 

failed to meet a response deadline greater than 15 times. To ensure that participants in the 

DT condition exhibited engagement with the secondary task, we excluded the data of 5 



DT participants who exhibited a root-mean-squared-error on the tone counting task 

(detailed below) of 80 or greater. Following Experiment 1, we excluded the data of 6 (3 

DT) participants who repeated previously rewarded second-stage response at a rate less 

than 50%. Consequently, 75 participants (37 DT) remained in the analyses. 

Materials and Procedure 

 Both groups completed 200 trials of the two-step task using the same structure 

and stimuli as Experiment 1 in the main text. The DT condition followed the general 

tone-counting procedure of Foerde et al. (2006) but was modified to ensure that the 

concurrent task persisted over all stages of the decision task (Otto et al., 2011). This 

experiment used the same task flow and stimuli display as depicted in the No-WM-load 

condition of Figure 2. Both the ST and DT conditions followed the same trial timing 

procedure to ensure that, across conditions, a fixed amount of time elapsed each trial. In 

each stage, there was a 2-second response window and in the second stage, the outcome 

(a U.S. quarter or a zero) was presented for 1 second immediately at the conclusion of the 

response window.  

In the DT condition, two types of tones, high-pitched (1000 Hz) and low-pitched 

(500 Hz) were played during each trial. Each trial stage was divided into 8 intervals of 

250 ms, with tones occurring in intervals 3-10 (500-2,500ms after trial onset). The 

number of tones presented each trial varied uniformly between 1 and 4, occurring 

randomly within intervals 2-5. The base rate of high tones was randomly determined 

every 50 trials, varying uniformly between .3 and .7. Participants were instructed to 

maintain a running count of the number of high tones while ignoring the low-pitched 



tones. At the end of each 50-trial block, participants reported their counts using the 

keyboard and were subsequently instructed to restart their count at zero.  

Results and Discussion 

  We factorially examined stay probabilities in the same manner as Experiment 1, 

calculating first-stage stay probabilities as a function of previous reward and transition 

type between the ST and DT groups. Figure 6 reveals that ST participants exhibited a 

mixture of model-based and model-free strategies—mirroring the Lag-2 condition of 

Experiment 1 and Daw et al. (2011)—while DT participants appeared to rely only upon a 

model-free strategy. Critically, a mixed-effects logistic regression revealed a significant 

three-way interaction between WM load condition, previous reward, and previous 

transition type (full model specification and coefficient estimates are reported in Table 2). 

In other words, the cognitive demands imposed by concurrent tone-counting appeared to 

eliminate the influence of model-based strategy, reverting the DT participants to a 

putatively cognitively inexpensive model-free choice strategy. This complementary 

study, utilizing a fundamentally different design and concurrent task, corroborates the 

pattern of results seen in Experiment 1 and underscores model-based choice’s reliance 

upon central executive resources. 
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