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1 The infinite-capacity mixture model

In this section, we provide more information about the infinite-capacity mixture model de-
scribed in the main text. Recall our definition of the prior over latent causes:

P (ct = k|c1:t−1) =

{
Nk

t−1+α
if k is an old cause

α
t−1+α

if k is a new cause,
(1)

where Nk is the number of observations already generated by cause k (by default it is assumed
that c1 = 1).

This distribution over latent causes is known in statistics and machine learning as a Chi-
nese restaurant process (Aldous, 1985; Pitman, 2002).1 Its name comes from the following
metaphor: Imagine a Chinese restaurant with an unbounded number of tables (causes). The
first customer (trial) enters and sits at the first table. Subsequent customers sit at an oc-
cupied table with a probability proportional to how many people are already sitting there,
and at a new table with probability proportional to α. Once all the customers are seated,
one has a partition of trials into causes. In a Chinese restaurant process mixture model,
each cause is linked to a parameterized distribution over features, so that an observation’s
feature values are determined by its latent cause. Observations generated by the same cause
will tend to have similar features by virtue of sharing these parameters.

To gain further intuition for how α governs the number of latent causes, if we were to sample
T trials from this distribution, we would obtain on average α log T unique causes. Note,
however, that the posterior over latent causes will not generally obey this law.

1The Chinese restaurant process was independently derived by Anderson (1991) in the development of
his rational model of categorization.
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We assume a Dirichlet distribution as the prior over the multinomial parameters of the
observation distribution.2 This prior expresses the animal’s predictions about features in the
experiment before any observations have been made. Given that the animal is unlikely to
have strong a priori predictions about the experiment before it has begun, we parametrized
the Dirichlet distribution so that all possible multinomial parameters have equal probability
under the prior.

2 Particle filter algorithm

Recall that for trials 1 . . . t the vector c1:t denotes a partition of the trials into clusters and
F1:t denotes the observations for these trials. Our posterior approximation consists of m
“particles,” each corresponding to a hypothetical partition. In our implementation,3 the
particles are generated by drawing m samples from the following distribution:

P (c
(l)
t = k) =

1

m

m∑
l=1

P (c
(l)
t = k|c(l)

1:t−1,F1:t), (2)

where c
(l)
t denotes the latent cause for trial t in particle l, and

P (c
(l)
t = k|c(l)

1:t−1,F1:t) =
P (c

(l)
t = k|c(l)

1:t−1)
∏D

i=1 P (ft,i|c(l)t = k, c
(l)
1:t−1,F1:t−1)∑

j P (c
(l)
t = j|c(l)

1:t−1)
∏D

i=1 P (ft,i|c(l)t = j, c
(l)
1:t−1,F1:t−1)

. (3)

The first term in Eq. 3 is the latent cause prior (Eq. 1). By default it is assumed that

c
(l)
1 = 1. The second term in Eq. 3 is the likelihood of the observed features on trial t given

a hypothetical partition and the previous observations. Using a standard calculation for the
Dirichlet-Multinomial model (Gelman et al., 2004), we can analytically integrate out the
multinomial parameters φ associated with each cause to obtain the following expression for
the likelihood:

P (ft,i = j|c(l)t = k, c
(l)
1:t−1,F1:t−1) =

∫
φ

P (ft,i = j|c(l)t = k, c
(l)
1:t−1,F1:t−1, φ)P (φ) dφ

=
N

(l)
i,j,k + 1∑

j(N
(l)
i,j,k + 1)

, (4)

where N
(l)
i,j,k is the number of previous observations with value j on feature i that were

generated by cause k in particle l (note that N
(l)
i,j,k depends on F1:t−1).

2The Dirichlet distribution is the conjugate prior for the multinomial distribution, meaning that under
this prior the posterior is also a Dirichlet distribution.

3This implementation differs slightly from the one described in Gershman et al. (2010). In particular, we
use a proposal distribution in this paper that is optimal in the sense that it minimizes the variance of the
estimator (Doucet et al., 2001).
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The posterior over partitions is then approximated by an average of delta functions placed
at the particles:

P (c1:t = c|F1:t) ≈
1

m

m∑
l=1

δ
[
c
(l)
1:t, c

]
, (5)

where δ[·, ·] is 1 when its arguments are equal and 0 otherwise. As m→∞ this approxima-
tion converges to the true posterior. Although not immediately evident in these equations,
learning occurs through maintaining and updating the sufficient statistics of each cluster,
namely the cluster-feature co-occurence counts (encoded by N

(l)
i,j,k).

Two things should be noted about this algorithm. First, hypothetical partitions are more
likely to the extent that observations assigned to the same cluster are similar; this can be
seen in Eq. 4. Second, the features interact multiplicatively in Eq. 3: a partition is more
likely to the extent that all the observed features are likely under the particle’s partition.

The probability of a US for a test observation (i.e., a feature vector in which the US feature
is treated as missing data), which we denote by Vt, is calculated according to:

Vt = P (ft,1 = US|ft,2:D,F1:t−1)

=
∑
c1:t

P (ft,1 = US|ct, c1:t−1, f1:t−1,1)P (ct|ft,2:D,F1:t−1,2:D, c1:t−1)P (c1:t−1|F1:t−1)

≈ 1

m

m∑
l=1

∑
k

r
(l)
tk P (ft,1 = US|c(l)t = k, c

(l)
1:t−1, f1:t−1,1), (6)

where

r
(l)
tk =

P (c
(l)
t = k|c1:t−1)

∏D
i=2 P (ft,i|F1:t−1, c

(l)
1:t−1, c

(l)
t = k)∑

j P (c
(l)
t = j|c1:t−1)

∏D
i=2 P (ft,i|F1:t−1, c

(l)
1:t−1, c

(l)
t = j)

, (7)

which is just Eq. 3 excluding the US feature in calculating the cluster assignment probability.
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