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Supplemental behavioral results 

Comparison between decomposed TD and null choice model 

To check that the decomposed TD model predicts choice behavior better than chance, 
we compared it to a “null choice” model in which all possible choices have equal 
probability. Since the null choice model is a reduced version of the decomposed TD 
model, we calculated the likelihood ratio test statistic: 

LR = -2*(LLTD- LLnull), 

Where LL denotes the maximized (fixed effects) log-likelihood. For a chi-squared test 
with 64 degrees of freedom, the likelihood test statistic was 6049.7 and the p-value was 
astronomically small in favor of the decomposed TD model. Thus, our model predicts 
choice behavior significantly better than chance. 

 

As an additional comparison, we asked whether subjects earned significantly more 
reward in the task than would be expected by chance. To do so, we calculated the 
expected reward under the null choice model, and compared this quantity across 
subjects to their actual earned rewards. Using a paired-sample t-test, we found that 
earned reward was significantly higher than would be expected by chance (t15=6.5, 
p<0.00001). 

 

Finally, to calculate how much variance in the choice behavior was accounted for by the 
decomposed TD model, we calculated the pseudo-R2 value, which showed that the 
model accounted for 47% of the variance in choice behavior. 

 

Logistic regression analyses of choice behavior 

We also examined a set of nested logistic regression models as an alternative way to 
investigate decomposition in choice behavior. These models represent Q-values by a 
linear combination of predictor variables: 

Qt(at) = Xtw 



where Xt is a C x K design matrix of C joint choice options and K predictor variables 
(regressors) and w is a K x 1 vector of regression coefficients. Just as in the TD model, 
choice probabilities are modeled as a softmax function of the Q-values. In the full 
model, we included 3 regressors: 

1. A “joint” reward regressor a particular joint action was rewarded on the previous 
trial. 

2. A “decomposed” reward regressor expressing whether a particular sub-action 
was rewarded on the previous trial. In other words, each effector’s sub-action 
gets credit regardless of what the other effector’s sub-action was on the previous 
trial. 

3. A “joint” choice regressor expressing whether a particular joint action was chosen 
on the previous trial (we could also have included a “decomposed” choice 
regressor, but we chose to omit this for simplicity). 

 

In the reduced model, we removed the decomposed reward regressor. The first key 
question of interest is whether the regression coefficient for the decomposed reward 
regressor in the full model was significantly greater than zero, which would indicate that 
subjects were exploiting the decomposition structure in the rewards. We found this to be 
the case (p<0.0001). 

To further support this conclusion, we performed a chi-squared test on the likelihood 
ratio test statistic (see above) between the full and reduced models. We found 
LR=178.2 (p<0.00000001). 

 

Supplemental behavioral experiments 

Methods 

We performed two additional behavioral experiments to further investigate the 
predictions of our models. For Experiment 1, twelve subjects participated in the study. 
For Experiment 2, eleven subjects participated in the study. For both experiments, 
informed consent was obtained in a manner approved by the New York University 
Committee on Activities involving Human Subjects. 

 

One major prediction is that the decomposed model should only fit behavior better when 
the reward structure of the task is actually decomposable into separate effector-specific 



components. To test this prediction, in Experiment 1 we designed an “un-
decomposable” version of the task which was identical to the decomposed version 
described in the Methods section, except for 3 differences: (1) each joint action was 
associated with a unique reward probability; (2) only a single reward was presented on 
each trial (this is by necessity, since effector-specific rewards no longer exist in this 
version); and (3) the spatial ordering of the options on the screen were scrambled to 
discourage subjects from adopting a decomposed learning strategy. We also designed 
a slightly modified version of the decomposable task described in the Methods 
(Experiment 2), where a single, summed reward was shown on the screen rather than 
separate rewards for each effector. We chose to do this so as to equate the 
decomposable and un-decomposable tasks as much as possible. 

One additional complication is that the decomposed TD model described in the Methods 
section can no longer be applied to these tasks because the separate effector-specific 
rewards are not available. Thus, we created an alternative decomposed TD model 
which operates on the summed reward. Note that in the decomposable task when both 
effectors are rewarded the summed reward will always be $2, and when neither are 
rewarded the summed reward will be $0. Thus, these two cases have no ambiguity with 
respect to the effector-specific reward in the decomposable task. As a consequence, it 
is possible to use the same decomposed TD model for these cases as described in the 
Methods section. The only difference is that for the case when subjects receive a $1 
reward (where there is true ambiguity as to which effector earned the reward), we 
assumed that subjects divide the reward equally between effectors. 

 

Results 

We calculated an approximate Bayes Factor BF (see Methods) between the 
decomposed and joint models for each experiment. A BF > 4.6 represents strong 
evidence in favor of the decomposed model. We found that for the decomposable 
experiment BF = 239, whereas for the un-decomposable experiment BF = -27. These 
results suggest that humans will adopt a decomposed learning strategy only when the 
reward structure of the task actually admits such a decomposition. 

 



 

Brain region X Y Z Z-score 

Premotor Cortex 24 8 46 6.28 

Inferior Frontal Gyrus -54 4 34 4.79 

Intraparietal Sulcus -34 -38 38 5.69 

Angular Gyrus 48 -28 42 5.32 

Angular Gyrus 60 -48 40 5.2 

Cerebellum 8 -12 2 4.94 

Parahippocampal Gyrus -12 -24 4 5.27 

 

Supplemental Table 1: Voxels displaying a negative correlation with average chosen 
value, p<0.05, FWE-corrected. Note that no voxels survived this threshold for the 
positive correlation with average value. 



 

Brain region X Y Z Z-score 

Cuneus 34 -84 0 6.02 

V1 -32 -90 -2 5.93 

 

Supplemental Table 2: Voxels displaying positive correlation with average prediction 
error, p<0.05, FWE-corrected. 



 

Brain region QL QR 

Left caudal IPS -4.50 -3.46 

Right caudal IPS -3.53 -4.53 

Left rostral IPS -4.59 -4.14 

Right rostral IPS -5.04 -3.21 

Left mPFC 2.29 2.42 

Right mPFC 2.05 2.80 

 δL δR 

Left ventral striatum 2.92 2.67 

Right ventral striatum 3.37 3.67 

 

Supplemental Table 3: Z-values for chosen value or prediction error effects in the 
voxels of interest, presented separately for each effector. Note that these statistics are 
uncorrected for multiple comparisons (using the correlated contrasts, QL+QR or δL+ δR) 
used to select these voxels. 



 

 

Supplemental Figure S1: Sagittal slice (x=-5) of MPFC activation for the QL+QR 

contrast, thresholded at p<0.001 (uncorrected). 



 

 

Supplemental Figure S2: Parameter estimates in functional VOIs. (a) Responses in 
rostral IPS to the left and right value regressors, separated by left (-52, -28, 42) and 
right (48, -28, 42) hemisphere. (b) Responses in MPFC  to the left and right value 
regressors, separated by left (-34, -38, -38) and right (38, -34, 44) hemisphere. 

 


