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Since the early days of neuroscience, students have been instructed to ‘‘just look’’ at their data with innocent
eyes, andmore recently with innocent algorithms. I argue that this epistemic attitude obscures the ubiquitous
role that theory plays in neuroscience.
‘‘Attention is rarely directed to the

space between the leaves of a tree,

save when a Keats brings it to our

notice.’’—NorwoodRussell Hanson

(1958), Patterns of Discovery

In his 1857 book The Elements of Draw-

ing, John Ruskin pointed out that grass

sometimes turns yellow when illuminated

by sunlight, yet we continue to perceive

it as green (what modern vision scientists

call ‘‘color constancy’’). Ruskin argued

that perception becomes trained through

experience and social convention, so

that we ‘‘always suppose that we see

what we only know, and have hardly any

consciousness of the real aspect of the

signs we have learned to interpret.’’ The

painter’s task, according to Ruskin, is to

recover the infant’s innocent eye, ‘‘a sort

of childish perception of these flat stains

of color, merely as such, without con-

sciousness of what they signify.’’

Ruskin’s mantra for painters could

serve well as a de facto mantra for exper-

imental neuroscientists. If one just looks at

the data, then facts can be documented,

and progress can be made. Ramon y Ca-

jal, in his 1897 book Advice for a Young

Investigator, put it this way:

A scholar’s positive contribution is

measured by the sum of the original

data that he contributes. Hypothe-

ses come and go but data remain.

Theories desert us, while data

defend us. They are our true re-

sources, our real estate, and our

best pedigree. In the eternal

shifting of things, only they will

save us from the ravages of time

and from the forgetfulness or injus-

tice of men.
Cajal approvingly quoted the great

German chemist Justus von Liebig:

‘‘Don’t make hypotheses. They will

bring the enmity of the wise upon

you. Be concerned with the discov-

ery of new facts. They are the only

things of merit that no one

disregards.’’

In more recent times, this sentiment has

been echoed by neuroscientists striving

to shed the ‘‘philosophical’’ descriptors

that have historically mediated our under-

standing of the brain, for example by Buz-

sáki (2020):

I suggest that neuroscience, as any

new discipline, should establish its

own vocabulary based on brain

mechanisms. It should start with the

brain (independent variable) and

define descriptors of behavior

(dependent variables) that are free

from philosophical connotations and

can be communicated across labo-

ratories, languages, and cultures.

At the risk of bringing the enmity of the

wise upon myself, I will argue against the

possibility of data-driven discovery in

neuroscience research. There is no inno-

cent eye: our observation reports are

inevitably theory laden. This point has

been made repeatedly (and controver-

sially) in the philosophy of science, and in-

tersects with heated debates concerning

rationalism versus empiricism, among

others. The main consequence for our

purposes is that one cannot maintain a

naive distinction between facts and the-

ories. If we cannot define facts in a the-

ory-independent way, then we cannot
Neuron
discover new facts by ‘‘just looking’’ at

data. I will examine a number of case

studies in systems neuroscience illus-

trating this point.

In the second part of the paper, I extend

this argument to a more sophisticated

version of the innocent eye, what I call the

innocent algorithm: the idea that ‘‘hypothe-

sis-free’’ algorithmscanextractmeaningful

patterns from data, in essence replacing

‘‘just looking’’ with ‘‘just analyzing.’’ The

challenge is to understand what counts as

meaningful without appealing implicitly or

explicitly to theoretical concepts. While in

principle thesealgorithmscanmake funda-

mental discoveries, we can only recognize

them as such by linking them back to what

we already know. Thus, neither just looking

nor just analyzing on their own suffice to

break free from our existing theoretical

concepts.
The drunkard’s search
Consider the following question: why do

we find so many topographic maps in the

brain? One possibility is that topography

reflects fundamental organizing principles,

such as dimensionality reduction or wiring

length minimization. A less obvious possi-

bility is that we find so many topographic

maps because that is what we know how

to find. Space is a salient dimension of

our perceptual experience and conceptual

understanding of the world. Accordingly,

spatial properties of experimental mea-

surements will ‘‘jump out’’ at the neuro-

physiologist as she moves her electrode

gradually through the brain. This is true

even in the absence of topography, for

example in the case of place cells in the

hippocampus and grid cells in the entorhi-

nal cortex, as I discuss further below.
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A neuroscientist confronted with the

bewildering opacity of the brain will first

reach for familiar concepts ready at

hand: space, time, size, color, orientation,

and so on. Receptive fields organized

along these dimensions may have been

relatively easy to discover, not because

they are fundamental, but because they

are obvious. This issue is reminiscent of

the parable known as the drunkard’s

search. A policeman comes across a

drunk man searching for his keys under

a streetlight. The drunkard admits that

he actually lost his keys in the park. ‘‘So

why are you searching here’’? asks the

policeman, to which the drunkard replies:

‘‘Because this is where the light is.’’

Many neuroscientists will understand-

ably bristle at this characterization. Is the

history of neuroscience not rich with stor-

ies of true discovery? A celebrated

example is Hubel and Wiesel’s discovery

of edge detectors in the cat primary visual

cortex. Here is how Hubel and Wiesel

(1998) describe the story:

We had been recording in visual

cortex from a large, isolated and

stable cell for several hours without

getting anywhere: none of our

retinal stimuli produced any

change in the cell’s firing. Then we

began to sense vague changes in

firing as we stimulated one part

of the retina. Suddenly there was

a vigorous discharge, which

occurred as we slid the glass slide

into place. It took a while to

discover that the firing had nothing

to do with turning on or off the dark

spot but occurred as we slid the

piece of glass into and out of the

slot. The stimulus turned out to be

the faint but sharp line shadow

cast on the retina by the moving

edge of the glass.

This seems like a clear case of data-

driven discovery, with no particular hy-

pothesis being tested. However, consider

whether it would have been possible for

Hubel andWiesel to discover edge detec-

tors without knowing about edges! It is

easy to forget that edges are obvious

because our perception is sensitive to

edges. Yet there is no reason to expect

that all the principles of brain function

will be similarly obvious Indeed, there is
2 Neuron 109, August 4, 2021
reason to think that these neurons are

not edge detectors at all. Hubel and Wie-

sel themselves noted an ‘‘endstopping’’

phenomenon, where extending the length

of an edge beyond a neuron’s classical

receptive field caused an inhibition of

firing (Hubel and Wiesel, 1968). It is not

clear why a simple edge detector would

exhibit this kind of tuning.

Decades later, an influential paper by

Rao and Ballard (1999) provided an

answer: the neurons are reporting errors

between bottom-up sensory signals and

top-down predictions. Longer edges indi-

cate higher-order stimulus structure that

renders the sensory signals predictable.

If you know, for example, that you are

looking at the edge of a table, then any

segment of the table’s edge is highly pre-

dictable from the table’s large-scale ge-

ometry. Importantly, Rao and Ballard did

not build edge detectors into their model.

They trained a simple neural network to

predict sensory data and showed that

both edge tuning and endstopping (as

well as other receptive field properties)

emerged from solving the prediction

problem. The discovery of this funda-

mental principle came not from ‘‘just look-

ing’’ at the data, but by thinking about the

prediction problem that needed to be

solved by the brain.

A similar story can be told about hippo-

campal place cells. The discovery of

spatial tuning in the hippocampus

(O’Keefe and Dostrovsky, 1971) directed

much of the subsequent neurophysiology

research on this area toward understand-

ing its spatial tuning properties. Is this not

an example of data-driven discovery par

excellence? Recapitulating the argument

about edge detectors, consider whether

O’Keefe and Dostrovsky would have

been able to identify spatial tuning without

a concept of space. This counterfactual is

almost too unintuitive to contemplate,

since space is so fundamental to human

perception. Nonetheless, it highlights the

point that O’Keefe and Dostrovsky were

not ‘‘just looking’’—their observations

were embedded within the spatial frame-

work of perception. We therefore have

no way of knowing whether space is truly

a fundamental organizing principle of the

hippocampus or if space is a fundamental

organizing principle of perception that

constrains the kinds of principles we can

discover through observation.
The hippocampus is an instructive

example because many forms of non-

spatial tuning have been discovered since

(and even before) the discovery of place

cells, suggesting possibly more abstract

coding principles. Recently, some of

these principles have been formalized in

computational models. These models

make certain patterns in the data visible

that were previously invisible. They are in-

struments not only of understanding the

data but also of describing the data.

To drive this point home, recall the

common practice in electrophysiology of

focusing on a subset of neurons acquired

during recording. These are the neurons

that the experimenter can make sense

of; the rest are ignored, at least tempo-

rarily. It’s not the case that the experi-

menter has a ready description of what

these cells are doing, and they’re ignored

simply because they’re not interesting for

whatever reason. On the contrary, the

cells are often ignored precisely because

the experimenter lacks such a descrip-

tion. Our descriptive powers increase

with our theoretical powers.

Some of the most important discov-

eries in neuroscience arrived when exper-

imenters brought to bear new theoretical

ideas. For example, the discovery that

dopamine neurons appear to signal

reward prediction errors was driven by

theorists who already knew about reward

prediction errors (Schultz et al., 1997). It

was not the case that neuroscientists

discovered reward prediction errors from

just looking at their data. To echo the

theme of this section: how could they?

Similarly, the discovery that neurons in

the lateral intraparietal area (LIP) appear

to signal accumulated evidence for

perceptual decisions was enabled by the

fact that the experimenters already knew

about the concept of integrators (Shadlen

and Newsome, 2001). It was not the case

that neuroscientists discovered integra-

tors from just looking at their data. How

could they? Today, the ideas about

reward prediction errors and evidence ac-

cumulators are being challenged. The

challenges come not from just looking at

the data, but from formalized alternative

hypotheses which permit rigorous testing.

At this point, one might reasonably ob-

ject that my examples are rather trivial;

referring to visual features like edges as

theoretical objects is elevating them
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above their station. Surely no one would

hold that we begin experiments

completely empty headed? In that case,

why not say that we begin with a reper-

toire of relatively theory-neutral (and

possibly even innate) ‘‘perceptual input

analyzers.’’ If one accepts that some the-

ory-neutral observation is possible, then

one rejects the strong form of the the-

ory-ladenness argument. So where does

one draw the line between theory-laden

and theory-neutral observation? Without

trying to resolve this question here, I think

it’s worth keeping our eye on the prize,

which is not to catalog tuning curves but

ultimately to understand the principles of

brain function. Can we get from tuning

curves to principles without any theory-

laden observation along the way? It

seems unlikely that we are equipped

with the appropriate perceptual input an-

alyzers that would make a theory of the

brain pop out from experimental data.

A different line of argument holds that

our brains are equipped with powerful

learning algorithms that enable us to

discern structure in data, thereby over-

coming the limitations of our perceptual

input analyzers. Much work in cognitive

science supports this argument. In fact,

this is likely how we arrive at theories in

the first place—how else could it happen?

Whatever learning algorithms we use to

discover theories are likely aided by strong

inductive biases about the kinds of struc-

ture that we expect to find, and these

inductive biases are often supplied by prior

theories. In this way, theories are boot-

strapped to support new theory discovery.

The innocent algorithm
One response to the issues raised in the

last section is to augment our powers of

observation with better analysis algo-

rithms. Can these algorithms reveal pat-

terns that lead to substantive discoveries?

I argue, on the one hand, that they can in

principle output hypotheses that no one

has yet conceived. On the other hand,

our interpretations of these outputs are still

limited by our current theoretical concepts.

To illustrate this point, I’ll discuss a few

examples. Norman-Haignere et al. (2015)

took on the challenge of understanding

representations in human auditory cortex

using functional magnetic resonance im-

aging. They used a latent variable model

(a variant of independent component
analysis) to decompose voxel-wise tuning

of auditory cortex voxels into a linear

combination of response profiles (the

latent components). The response pro-

files derived in this way were intuitive:

four were selective for acoustic features

such as frequency and pitch, one was se-

lective for speech, and one was selective

for music. The authors emphasize that

these results were ‘‘hypothesis-free’’ in

the sense that they didn’t constrain the

response profiles in any way that would

bias them to recover these particular pat-

terns of selectivity. This is true, but what if

the response profiles reflected patterns

that were unintelligible to the experi-

menters? Could they discover frequency

and pitch tuning if they lacked these con-

cepts coming into the experiment? In that

case they would have no way of knowing

whether the profiles were meaningful or

garbage. At the end of the day, the hy-

pothesis-free analysis can only be vali-

dated by appeal to prior hypotheses.

A similar issue applies to virtually all

other papers proposing (relatively) unbi-

ased data analysis algorithms. These algo-

rithms are advertised as being uncon-

strained by prior hypotheses, but they

inevitably fall back on prior hypotheses in

order to certify their validity. For example,

Kobak et al. (2016) proposed demixed

principal components analysis of neural

population data. They showed that the

recovered components map onto features

of the data identified by previous studies

(e.g., responses time-locked to stimulus,

memory, and choice). Even though in prin-

ciple the algorithm could (and probably

does) recover components that don’t

map onto such intuitive features, it’s not

clear what to do with those components.

Again, howdowe know if they’remeaning-

ful or garbage? Only by appeal to prior hy-

potheses. There is no innocent algorithm,

because ultimately, we rely on our own

eyes to judge the algorithm’s usefulness,

and our eyes are not innocent.

In a subversive study, Jonas and Kord-

ing (2017) asked whether sophisticated

data analysis algorithms could be used

to reveal how a microprocessor works.

In short, their answer was no: these algo-

rithms could identify some patterns, but

not the underlying functional principles.

Of course, it’s possible that other algo-

rithms could reveal the functional princi-

ples, so the results should be taken with
a grain of salt. But absent a positive

demonstration, the results are (at least

provisionally) a sobering reminder that

we cannot completely rely on algorithms

to guide us toward theories of the brain.

They can in fact seriously mislead us.

Acknowledging that there is no innocent

algorithm does not mean that the kinds of

algorithms mentioned above are useless.

On the contrary, they may be indispens-

able for linking theory and data. When a

theorist invents a concept like prediction

error, it may not be straightforward to

map that concept onto brain activity. Is it

encoded by a single neuron or a popula-

tion, linearly or non-linearly, in firing rates

or spike times? Statistical algorithms can

address these questions.

Conclusion
I once had a conversationwith a neurosci-

entist that went roughly as follows. He told

me that we didn’t need psychology to un-

derstand the brain; all we had to do was

measure what’s going on in the brain,

and from those measurements we could

derive everything we wanted to know

about cognition. I think this point of view

is common among neuroscientists, who

yearn to free themselves from antiquated

notions of mental representations once

brain measurement and analysis technol-

ogy become sufficiently advanced. This, I

argue, is a pipe dream born from a naive

belief in the innocent eye.

Discovery is possible, not by looking

but by thinking. The only way to observe

new things is to think new thoughts. The

greatest leaps in our understanding of

the brain have come at moments when

new theories rendered the invisible

visible, expanding our conceptual vocab-

ulary and our descriptive powers. In Frie-

drich Nietzsche’s words, ‘‘The greatest

ideas are the greatest events.’’
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