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Definition

Dopamine (DA) is a neuromodulator released by midbrain neurons with widespread projections
throughout the brain. Dopaminergic modulation has diverse effects on cellular, motor and
cognitive functions, including reinforcement learning, working memory and attention.
Dysregulation of dopamine also plays a central role in the breakdown of these functions in
disorders such as Parkinson’s disease and schizophrenia.

Detailed Description

Dopamine basics

DA is a neuromodulator released by neurons in two nuclei of the midbrain: the ventral
tegmental area (VTA) and the substantia nigra pars compacta (SNc). The axons of these neurons
project to a large number of cortical and subcortical areas. Prefrontal cortex, motor cortex, and
the striatum are among the most densely innervated areas. DA release tends to be fairly
homogeneous across DA neurons, by virtue of electrical coupling between the axons of
adjacent neurons, which induces highly synchronous firing. As pointed out by Paul Glimcher,
these properties suggest that DA neurons “cannot say much to the rest of the brain but what
they say must be widely heard” (Glimcher, 2011).

DA affects its targets primarily by two classes of receptor—D1 and D2—and the distinct
properties of these receptors have functional consequences which are discussed below. D2
receptors tend to be activated earlier, and at lower concentrations, than D1 receptors (Lapish
et al., 2007; Schultz, 2007). As a consequence, D2 receptors are more sensitive to phasic
(transient) DA release than D1 receptors, with the opposite pattern for tonic (background) DA
release (Grace, 1991). D1 and D2 receptors also have different postsynaptic effects: D1 receptor
activation increases both NMDA (excitatory) and GABA (inhibitory) currents, whereas D2
receptor activation decreases them (Trantham-Davidson et al., 2004).

Reinforcement learning models
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One of the most influential hypotheses about DA is that it plays an integral role in a system that
learns to predict future reward. This hypothesis can be formalized in terms of the theory of
reinforcement learning (RL) first developed in computer science (Sutton & Barto, 1998). At each
time t the agent occupies a state s; (e.g., the agent’s location or the surrounding stimuli) and
receives a reward 7;. The goal of an RL system is to estimate the expected discounted future
return, or value, of visiting a sequence of states starting in state s;:

V(se) = ElXk=0V*Tesr 1,
where y is a discount factor that account for the fact that distal rewards are less valuable than
proximal rewards. The expectation E represents an average of the quantity inside the brackets
over stochastic sequences of states.

If we make certain assumptions about the environment (specifically, that it is a Markov decision
process; see Sutton & Barto, 1998), then the value can be estimated by a simple learning rule
known as temporal difference learning:
‘7(51:) < 17(St) + aédy,

where «a is a learning rate and 6; is a prediction error defined as:

8 =1 + ¥V (ser1) — V(so).
Intuitively, if the prediction error is greater than zero, then more reward was received than was
predicted, and hence V(s,) is increased. If the prediction error is less than zero, then V (s,) is
decreased. Another implication of this learning rule is that prediction errors will gradually
propagate backwards in time as values at earlier time points come to reflect reward received at
later time points.

Schultz, Dayan and Montague (1997) observed that the phasic firing of DA neurons in an
appetitive conditioning experiment was conspicuously consistent with a hypothetical prediction
error. In these experiments, a conditioned stimulus (CS; e.g., a tone) is repeatedly followed by
an unconditioned stimulus (US; e.g., juice reward). Schultz et al. noticed that DA firing
increased in response to an unexpected reward (e.g., in early training trials). After multiple
training trials, if the reward is delivered following the CS, then DA firing is at baseline following
reward delivery but increases following the CS onset. In this case, the reward is expected and
hence the prediction error at the time of reward is zero, whereas the prediction error at the
time of the CS is greater than zero due to the temporal propagation described above. Finally, if
the reward is omitted following the CS, DA firing pauses (decreases below baseline), consistent
with the occurrence of a negative prediction error.

In addition to its role in predicting reward, DA plays an important role in selecting actions to
increase reward. For example, electrophysiological studies have shown that DA responses to
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reward are sensitive to actions (Morris et al, 2006; Roesch et al., 2007), and DA receptor
antagonism in the striatum suppresses the initiation of reward-seeking actions (Berridge &
Robinson, 1998). According to RL theory, there are a number of ways to use prediction errors to
estimate the value of actions, some of which have been integrated into models of DA (e.g.,
Frank, 2005; Houk et al., 1995; Montague et al., 1996; Suri & Schultz, 1998).

Since the seminal work of Schultz et al. (1997), the prediction error theory of DA has been
corroborated by converging evidence from humans and other animals (see Glimcher, 2011 for a
review). At the same time, it is clear that such a simple theory is unable to account for many of
the complexities of DA function. These lacunae have stimulated a number of significant
extensions of the theory, some of which are described below. Interestingly, these extensions
mirror the technical development of RL theory in computer science. Biological and artificial
agents face similar challenges in optimizing reward—and may have even arrived at similar
solutions.

One development of the prediction error theory concerns the phasic DA firing in response to
novel stimuli (e.g., Horvitz et al., 1997). The original prediction error theory fails to anticipate
this finding, since novelty does not by itself predict reward. However, as pointed out by Kakade
and Dayan (2002), novelty responses can be rationalized by considering the problem of
optimizing reward. All agents face a dilemma between exploiting the currently best option and
exploring other options that might be potentially better (Cohen et al., 2007). One way to
encourage exploration is by initializing the values of all states to be greater than zero. As shown
by Kakade and Dayan, this has the effect of generating positive prediction errors when these
states are visited for the first time, consistent with the DA novelty response.

A second development has been to incorporate timing variability and partial observability into
the TD model (Daw et al., 2006). The original prediction error theory (Montague et al., 1996;
Schultz et al., 1997) used a delay line to represent different temporal epochs as distinct states.
Daw et al. (2006) replaced the delay line with two assumptions: (1) States are occupied for
some random amount of time before a transition occurs (timing variability); and (2) states are
not directly observed, but must be inferred from noisy sensory data (partial observability). Daw
et al. showed that these extensions could account for a number of timing properties of phasic
DA firing. For example, if a reward is delivered early or late, a phasic DA burst is observed
(Hollerman & Schultz, 1998), contrary to the delay line model, which predicts a negative
prediction error (i.e., a pause in firing). The Daw et al. model correctly predicts a positive
prediction error, because it infers that a transition to the “reward state” has occurred early or
late.
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A third development of the theory concerns the role of tonic DA. It has long been recognized
that tonic levels of DA appear to be regulated independently of phasic levels (Grace, 1991). In
particular, increased tonic DA has been associated with the invigoration of behavior (Schultz,
2007), and the depletion of tonic DA results in a loss of vigor (Salamone et al., 2001; Sokolowski
& Salamone, 1998). To account for these observations, Niv et al. (2007) proposed that tonic DA
signals an estimate of an environment’s average reward. When the average reward is high, it is
rational for an agent to respond more vigorously (since more reward can be collected), whereas
when the average reward is low, the energetic costs may outweigh the benefits of responding.
This model predicts not only a lower rate of responding with depleted tonic DA, but also a
longer latency to respond, consistent with experimental evidence (Denk et al., 2005).

A fourth development has been to integrate the prediction error theory into more biologically
detailed models of RL in the basal ganglia. For example, Frank (2005) proposed a model in
which DA differentially affects the “direct” and “indirect” pathways of the basal ganglia. The
direct pathway Striatal neurons in the direct pathway primarily express D1 receptors, whereas
striatal neurons in the indirect pathway primarily express D2 receptors. The net effect of DA in
the striatum is to increase activity in the direct pathway and suppress activity in the indirect
pathway, resulting in disinhibition of action selection in the frontal cortex via modulation of
basal ganglia output pathways. One consequence of this differential effect is that neurons in
the direct pathway undergo long-term potentiation following a DA burst, whereas neurons in
the indirect pathway undergo long-term depression. Another contribution of this model is a
division of error-driven learning into positive and negative components: D1-expressing neurons
learn more from positive prediction errors, whereas D2-expressing neurons learn more from
negative prediction errors. Thus, the model of Frank (2005) provides a neurally plausible
mechanism by which DA can influence action selection in corticostriatal circuits.

Gain modulation and working memory

The sensitivity of a neuron to stimulation can be enhanced by the application of DA, without
changing the spontaneous firing rate (Clarke et al., 1987; Foote & Morrison, 1987). In other
words, DA increases the signal-to-noise ratio of a neuron. Servan-Schreiber, Printz and Cohen
(1990) introduced a connectionist implementation of this idea by positing that DA increases the

gain S of a sigmoidal activation function:
1
"~ 14e-Bx-b’
where x is the synaptic input of the neuron, b is the baseline membrane potential, and a is the
firing rate. This basic schema for dopaminergic gain modulation has been reproduced in much
greater biological detail by a number of authors (e.g., Durstewitz et al., 1999; Moyer, Wolf &

Finkel, 2007).
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An important function of gain modulation is to support active maintenance in working memory:
If a group neurons are recurrently connected to form an attractor network, increasing the gain
will increase the stability of high activity states (i.e., actively maintained memories) while
suppressing low activity states corresponding to spontaneous background activity. Consistent
with this idea, DA appears to play an important role in supporting active maintenance of
working memory representations in the prefrontal cortex (Cohen, Braver & Brown, 2002).

DA has been hypothesized to play a complementary role in updating working memory (Braver
& Cohen, 1999; Durstewitz et al., 1999; O’Reilly & Frank, 2006). According to these models, a
phasic burst of DA acts as a “gating” signal, transiently amplifying afferent inputs while
suppressing local inhibitory signals. The effect of this gating signal is the encoding of afferent
input into the current attractor state. O’Reilly and Frank (2006) have proposed a biologically
detailed refinement of this idea, whereby “stripes” in the prefrontal cortex (groups of neurons
connected to distinct areas of the basal ganglia. Levitt et al. (1993) encode representations in
working memory that are updated by phasic DA bursts. This model uses an RL mechanism to
learn when to gate, providing a link to the models of corticostriatal plasticity described above.

How can the active maintenance and updating roles of DA be reconciled? One suggestion is that
these roles are mediated by different receptors. Specifically, Cohen et al. (2002) have suggested
that phasic DA activity primarily affects updating via D2 receptors, whereas tonic DA activity
primarily affects active maintenance via D1 receptors. These two modes interact, with tonic DA
inhibiting phasic DA by regulating presynaptic autoreceptors (Grace, 1991). This hypothesis is
consistent with the observation that prolonged pharmacological elevation of tonic DA results in
perseverative and stereotyped behavior (Arnsten, 1997; Sawaguchi & Goldman-Rakic, 1991),
which could arise from a failure to update due to reduced phasic DA.

Computational modeling of dopamine-associated disorders

The models reviewed above furnish a set of hypotheses about the etiology of psychiatric
disorders arising from DA dysfunction. This section focuses on the two most well-studied
examples: schizophrenia and Parkinson’s disease.

A number of authors have proposed that many cognitive deficits in schizophrenia can be
explained by a breakdown in the regulation of gating (Braver & Cohen, 1999; Durstewitz &
Seamans, 2008; Frank, 2008; Waltz et al., 2007). The gain modulation view lead Braver and
Cohen (1999) to propose that reduced prefrontal DA in schizophrenics results in a lower signal-
to-noise ratio; combined with noisier DA signaling, this produces gating of irrelevant
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information into working memory, and can cause psychotic episodes in schizophrenia. Another
view, proposed by Frank and colleagues (Frank, 2008; Waltz et al., 2007), is that striatal D1
receptor function is compromised in schizophrenia, resulting in impaired learning from positive
prediction errors but spared learning from negative prediction errors.

The model of Frank and colleagues also sheds light on the cognitive deficits in Parkinson’s
disease (Frank, 2005; Moustafa et al., 2008b; Wiecki & Frank, 2010). Unmedicated patients with
Parkinson’s disease appear to be better at learning from negative outcomes compared to
positive outcomes, and this pattern is reversed by DA medication (Cools et al., 2006; Frank et
al., 2004; Moustafa et al., 2008a). Frank et al. explained these findings in terms of the effects of
DA levels on D1 and D2 receptors in the striatum: Depleted DA in unmedicated patients results
in D2 dominance (as in schizophrenia), whereas elevated DA in medicated patients results in D1
dominance. This account may explain the nature of cognitive deficits following DA medication,
such as failures to avoid non-rewarding or punishing stimuli (Cools et al., 2006; Frank et al.,
2004; Moustafa et al., 2008a) and susceptibility to pathological gambling and addiction (Dagher
& Robbins, 2009).

In addition to these cognitive deficits, Parkinson’s disease is associated with bradykinesia, an
overall slowing of movements, and this deficit is relieved by DA medication. However,
Parkinson’s patients can learn to make movements at a task-specified velocity and with the
same level of accuracy as controls; the key difference is that Parkinson’s patients take longer to
reach the performance criterion (Mazzoni et al., 2007). The tonic DA model of Niv et al. (2007)
offers a perspective on these findings: since tonic DA is reduced in Parkinson’s disease, the
average reward will be perceived as lower, thus reducing the opportunity cost of not
responding. Thus, bradykinesia may actually reflect an optimal decision by the motor system
based on incorrect information about average reward provided by tonic DA (Niv & Rivlin-Etzion,
2007).
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