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Summary

Statistical decision theory seems to offer a clear framework for the integration 
of perception and action. In particular, it defines the problem of maximizing the 
utility of one’s decisions in terms of two subtasks: inferring the likely state of the 
world, and tracking the utility that would result from different candidate actions 
in different states. This computational-level description underpins more process-
level research in neuroscience about the brain’s dynamic mechanisms for, on the 
one hand, inferring states and, on the other hand, learning action values. However, 
a number of different strands of recent work on this more algorithmic level have 
cast doubt on the basic shape of the decision-theoretic formulation, specifically 
the clean separation between states’ probabilities and utilities. We consider the 
complex interrelationship between perception, action, and utility implied by 
these accounts.

13.1 Introduction

Normative theories of learning and decision making are motivated by a 
computational-level analysis of the task facing an organism: What should 
the animal do to maximize future reward? However, much of the recent 
excitement in this field concerns ideas about how the organism arrives 
at its decisions and reward predictions: implementational and algorith-
mic questions about which the computational-level analysis is more or 
less silent. Answers to these algorithmic questions are essentially claims 
about dynamics: how the decision variables that support behavior are 
learned across trials from experience, and how they are transformed 
within a trial to effect a decision. Thus, these theories offer a somewhat 
unique intersection of dynamical and information processing content: 
The transformations of decision variables in these theories characterize 
the within- or between-trial dynamics of learning and choice, but, as 
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decision variables, they also map onto computational-level descriptions. 
This chapter focuses on this interplay between computational quantities 
and the more process-level questions of how they are manipulated 
algorithmically.

At the computational level, statistical decision theory—and its rela-
tives utility theory and reinforcement learning—seems to offer a clear 
framework for the integration of perception and action. Actions are 
chosen to optimize expected future utility. These expectations are with 
respect to latent states of the task, and the role of perception is to analyze 
stimuli so as to form probabilistic beliefs about these states. This frame-
work supports a sequentially staged view of the problem—perception 
guiding evaluation—which has more or less implicitly licensed two  
influential streams of work in neuroscience, studying either stage in 
isolation.

The question of this chapter is what becomes of this seemingly clean 
computational separation at the algorithmic and implementational levels. 
The computations mandated by decision theory are, in general, intr-
actable, and many different approximations replace them in practice, 
with underappreciated consequences for the interdependency of perc-
eption and action. Work in approximate inference, for instance, considers 
realizable (e.g., variational or Monte Carlo) approximations to the 
expected value computation and involves trading off the relative cost of 
approximations in the action and sensory stages or even entirely collaps-
ing the two in various ways. These approximations induce a variety  
of dynamic patterns (in learning, inference, and decision stages) that are 
not anticipated by a purely computational-level analysis, and we present 
evidence that many behavioral and neural phenomena are naturally 
explained in terms of the dynamics of approximate algorithms. In the 
following, we first review the classical view before attempting to unravel 
the tangled skein of perception, action, and utility that arises in 
practice.

13.2 The Classical View

We begin by formalizing mathematically the problem of decision under 
uncertainty.1 Consider a utility function U(s,a) (or more pessimistically, 
its negation, the loss function) that depends on the agent’s action a and 
a hidden state of the task s, which may be continuous and high-
dimensional. For an agent seeking to maximize expected utility (or mini-
mize loss), the optimal action is given by
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a U s aa
* argmax= Eπ [ ( , )]

= ∫argmaxa

s

s x U s a dsπ( | ) ( , ) ,  
(13.1)

where π(s|x) is the agent’s posterior belief about the hidden state condi-
tional on observing sense data x, given by Bayes’ rule:

π( | )
( | ) ( )

( | ) ( )
.s x

p x s p s

p x s p s ds
s

=
∫  (13.2)

In other words, the agent posits a generative model of the hidden and 
observed task variables in the form of a joint distribution p(s,x), and then 
uses Bayes’ rule to “invert” the generative model and infer the hidden 
state. The agent then considers what utility it can expect to achieve for 
an action, which is an average of utilities for taking the action in each 
state, weighted by the state’s posterior probability. The generic role com-
monly imputed to the perceptual system is the computation of this pos-
terior belief (Lee & Mumford, 2003; Knill & Pouget, 2004; Friston, 2005).

The assumptions of statistical decision theory are, in various forms, 
pervasive throughout psychology, neuroscience, economics, and ecology 
(not to mention statistics and engineering; see, e.g., Berger, 1985). They 
are the basis of signal detection theory and drift-diffusion models in 
perceptual psychology (Green & Swets, 1966; Bogacz, Brown, Moehlis, 
Holmes, & Cohen, 2006); of optimal control theory in sensorimotor 
control (Kording & Wolpert, 2006; Trommershäuser, Maloney, & Landy, 
2008); of Bellman’s equation in reinforcement learning (Sutton & Barto, 
1998; Dayan & Daw, 2008); of subjective expected utility theory in eco-
nomics (Von Neumann & Morgenstern, 1947; Savage, 1954); and of forag-
ing theory in behavioral ecology (McNamara & Houston, 1980; Stephens 
& Krebs, 1986). More recently, neuroscientists have begun to probe the 
brain for signatures of these assumptions, in particular the neural com-
putations of utilities and posterior probabilities (Glimcher, 2003).

We focus on two aspects of decision theory that have important impli-
cations for its implementation in the brain:

1. Decision theory implies a strong distinction or separation between 
probabilities and utilities. In particular, the posterior must be computed 
independently of the expected utility. This assumption is sometimes 
known as probabilistic sophistication (Machina & Schmeidler, 1992; 
Bossaerts, Preuschoff, & Hsu, 2008). It means that I can state how much 
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enjoyment I would derive from having a picnic in sunny weather, inde-
pendently of my belief that it will be sunny tomorrow.

2. The integral over s in equations (13.1) and (13.2) is generally intrac-
table. Although most investigations of decision theory in psychology and 
economics make Gaussian or multinomial assumptions about π(s|x), 
these assumptions are not generally applicable to real-world decision-
making tasks, where distributions may not take any convenient paramet-
ric form. Even if they do, the integrals may still resist closed-form 
solutions. This means that if the brain is to perform the necessary calcula-
tions, it must use some form of approximation.

Although statistical decision theory has been criticized on many other 
grounds (see, e.g., Kahneman & Tversky, 1979; Camerer, 1998), we focus 
on these aspects because they highlight the algorithmic and implemen-
tational commitments of the theory. Statistical decision theory, to be 
directly implemented in the brain, requires segregated representations 
of probability and utility and a mechanism for performing approximate 
inference. We discuss each of these requirements in turn. Then, in section 
13.5, we suggest how these requirements may in fact be intimately 
connected.

13.3 Segregation of Probability and Utility in the Brain?

In this section, we discuss evidence in favor of the classical view that 
perception (state inference) and utility are computed and represented 
independently. We then describe several challenges to this view based on 
behavioral and neural data.

13.3.1 State Inference

The basic sequential staging of state inference to action, via utility, seems 
to be in accord with the gross organization of at least the posterior half 
of cortex. Visual information arrives in occipital cortex and progresses 
anteriorly through the dorsal visual stream on the way toward neurons 
with direct control of effectors in primary motor cortex, just in front of 
the central sulcus. Progressions of this sort are thought to instantiate a 
hierarchically staged inference process: For example, in the influential 
architecture for the ventral stream proposed by Riesenhuber and Poggio 
(1999), object representations are built up through a hierarchy of recep-
tive fields, with orientation- and position-tuned simple cells (in V1) at 
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the bottom of the hierarchy view-tuned cells (in inferotemporal cortex) 
at the top of the hierarchy. Contemporary probabilistic models (e.g., Lee 
& Mumford, 2003; Friston, 2005) recapitulate this framework in the 
language of statistical inference: Visual cortex is inverting an internal 
“image model” to recover the latent objects that generated the sensory 
inputs. These models have in common an essentially inferential charac-
terization of visual cortex.

Theories of this sort, if they consider utility at all, view it as entering 
at a fairly late stage of the processing stream, and experiments on vision 
throughout the hierarchy tend to consider perceptual variables in isola-
tion of affective ones. All this is licensed, or indeed mandated, by the 
segregation of probability and utility in statistical decision theory 
(Bossaerts et al., 2008).

If the role of visual perception is ultimately to estimate a distribution 
over states, does this estimate have a discrete neural correlate? Perhaps 
the most detailed and compelling answer comes from studies of motion 
perception. Here, the state being inferred is the direction of dot motion 
given noisy sensory information. Newsome, Britten, and Movshon (1989) 
recorded from direction-selective neurons in visual area MT while 
monkeys performed what is now known as the “random dots” task: 
Monkeys view a display of randomly and coherently moving dots inter-
mixed and must report the direction of the coherent motion to earn a 
juice reward. Neurons in MT appear to report instantaneous motion 
energy; aggregating their spikes over time allows estimating the state 
(i.e., the motion direction). Indeed, varying the coherence of motion 
energy, the experimenters showed a remarkable correspondence between 
physiologic discrimination curves from aggregated spikes and psycho-
physical discrimination curves from monkeys’ behavioral reports. A 
follow-up study by Salzman, Britten, and Newsome (1990) established 
the causal nature of this relationship by showing that microstimulation 
of these neurons systematically biased the perceived direction of motion.

The brain appears to perform an analogous integration of instanta-
neous motion energy into an aggregate state estimate one synapse down-
stream from MT, in the lateral intraparietal area (LIP). There, Shadlen 
and Newsome (2001) observed direction-selective neurons that appeared 
to integrate motion evidence over time in a manner that predicted the 
timing of behavioral responses. These and other data were interpreted in 
terms of classical signal detection concepts (Gold & Shadlen, 2002), with 
LIP neurons reporting a log-likelihood ratio for motion direction (the 
“weight of evidence”) based on sensory evidence provided by inputs 
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from MT.2 It is worth noting here that while these signal detection vari-
ables are computational-level quantities, it is principally their process-
level dynamics (e.g., the accumulation of log-likelihood and its equivalence 
to a bounded diffusion process) that are the objects of study. Indeed, the 
dynamical content of these theories has been studied in isolation (Bogacz 
et al., 2006).

So far so good. On this view, the visual system (areas V1 and MT) 
furnishes LIP with sensory evidence, which in turn computes a quantity 
(the weight of evidence) directly related to the posterior distribution 
over motion direction. Note, however, that the utility function in the dots 
task is essentially trivial (e.g., one for a correct report of motion direction, 
and zero for an incorrect one). As mentioned, statistical decision theory 
licenses the search for state estimation while ignoring utility; in contrast, 
because of the simple form of the utility function, the overall expected 
utility is just proportional to the likelihood in the random dots task, and 
so these functions cannot be distinguished.

13.3.2 Utility

What about utility? A mostly separate body of work studies the mapping 
from states and actions to their utilities. Although there are a number of 
neural players involved in valuation, the most detailed work concerns 
the putative involvement of the midbrain dopamine system and its 
targets in learning the utilities that follow different states and actions. In 
this work, in a sort of mirror image of the simplistic utility function used 
in perceptual investigations such as the random dots task, the state is 
typically taken as unitary and wholly observed, posing no difficulties of 
ambiguous or uncertain perception.

Even given perceptual certainty, research on valuation generally 
assumes—both theoretically and in its experimental designs—that there 
is additional, irreducible stochasticity in the consequences subsequent to 
a state: For instance, a particular (wholly identifiable) picture might be 
followed by juice on half of trials, chosen randomly. In equation (1), this 
stochasticity might be characterized by folding it into the state (e.g., 
defining two states for the picture, differentially rewarded albeit percep-
tually indistinguishable). However, in the interest of separating percep-
tual uncertainty from stochasticity in state and outcome dynamics, 
outcome stochasticity can equivalently be characterized by introducing 
a nested level of averaging in equation (1), over the outcomes according 
to their probability given the state.3 Much work concerns incremental 
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learning rules for taking a running average over experienced outcomes’ 
utilities, so as to learn an estimate of their expectation; this is the purview 
of reinforcement learning (for a recent review, see Niv, 2009). In particu-
lar, prominent accounts of the responses of dopamine neurons suggest 
that they carry a “reward prediction error” signal for updating such a 
running average (Schultz, Dayan, & Montague, 1997). The targets of 
these neurons, notably in the striatum and prefrontal cortex, are believed 
to be involved in valuation and action selection (Montague, King-Casas, 
& Cohen, 2006).

Insofar as this strategy already suggests an alternative to the staged 
representation of probabilities and utilities—because it directly learns 
utilities in expectation over outcome stochasticity and so forgoes repre-
senting their decomposition into separate outcome probabilities and 
utilities—these theories suggest an alternative to the simple, two-stage 
mapping of decision theory onto the brain. However, again distinguish-
ing uncertainty about the perceptual state from stochasticity in its con-
sequences, these mechanisms do seem to fit the bill as the complement 
to the perceptual state inference systems discussed earlier: They map a 
given (assumed known) perceptual state and action to its utility (the 
latter in expectation over outcome stochasticity).

Indeed, numerous authors (Daw, Courville, & Touretzky, 2006; Dayan 
& Daw, 2008; Braun, Mehring, & Wolpert, 2010; Gershman & Niv, 2010; 
Rao, 2010) have argued that the full problem of decision making under 
perceptual uncertainty—when both the perceptual state and the utilities 
are unknown and nontrivial—can essentially be treated by the composi-
tion of these two mechanisms: a perceptual state inference mechanism 
along the lines of Gold and Shadlen (2002), and a state utility learning 
mechanism of the sort described by Schultz et al. (1997). These ideas 
recapitulate the two-stage probability-utility architecture envisioned by 
statistical decision theory.

13.3.3 Challenges

The full story, however, is not so simple. First, abundant evidence indi-
cates that reward modulation occurs at all levels of the visual hierarchy, 
including V1 (Shuler & Bear, 2006; Serences, 2008) and even before that 
in the lateral geniculate nucleus (Komura et al., 2001; O’Connor, Fukui, 
Pinsk, & Kastner, 2002). For example, Shuler and Bear (2006) trained 
rats to associate monocular stimulation with liquid reward and found 
that V1 neurons altered their firing patterns to predict the timing of 
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reward. Second, the visual system appears to sacrifice probabilistic fidel-
ity increased sensitivity to behaviorally relevant (i.e., highly rewarding) 
stimuli. Machens, Gollisch, Kolesnikova, and Herz (2005) measured the 
sound ensembles that are preferentially encoded by grasshopper audi-
tory receptor neurons and found that the distribution of optimal stimulus 
ensembles diverged from the distribution of natural sounds. Specifically, 
the ensembles were concentrated in a region of stimulus space occupied 
by mating signals. This finding also has important implications for 
approximate inference schemes, which we revisit in section 13.5.2.

More specific to the particular ideas and areas discussed here, if visual 
responses in the lateral geniculate nucleus are already reward-modulated, 
the idea of far-downstream LIP as a pure representation of posterior 
state probability is dubious. Indeed, other work varying rewarding out-
comes for actions (Platt & Glimcher, 1999; Sugrue, Corrado, & Newsome, 
2004) shows that neurons in LIP are indeed modulated by the probability 
and amount of reward expected for an action—probably better thought 
of as related to expected utility rather than state probability per se. 
(Recall that the dots task essentially confounds these two quantities.) 
Moreover, area LIP is a poor candidate for a purely perceptual repre-
sentation of perceived state, as it is a transitional area involved not just 
in visual perception but also action, specifically saccade control. (Monkeys 
in these experiments use saccades to signal their motion judgments.) But 
recall that area LIP is only one synapse downstream from the instanta-
neous motion energy representation in MT. If it already represents 
expected utility of saccades, there seems to be no candidate for an inter-
mediate stage of pure probability representation over states.

A different source of contrary evidence comes from behavioral eco-
nomics. The classic Ellsberg paradox (Ellsberg, 1961) revealed prefer-
ences in human choice behavior that are not probabilistically sophisticated. 
The example given by Ellsberg involves drawing a ball from an urn con-
taining 30 red balls and 60 black or yellow balls in an unknown propor-
tion. Subjects are asked to choose between pairs of gambles (A versus 
B or C versus D) drawn from the following set:

Red Yellow Black

A $100 $0 $0
B $0 $100 $0
C $100 $0 $100
D $0 $100 $100
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Experimentally, subjects prefer A over B and D over C. The intuitive 
reasoning is that in gambles A and D, the probability of winning $100 is 
known (unambiguous), whereas in B and C it is unknown (ambiguous). 
Hence, this pattern of preferences is sometimes known as ambiguity 
aversion and has been repeatedly demonstrated in a variety of paradigms 
(for a recent review, see Loewenstein, Rick, & Cohen, 2008). Crucially, 
there is no subjective probability distribution that can produce this 
pattern of preferences. This is widely regarded as violating the assump-
tion of probability-utility segregation in statistical decision theory. In 
summary, despite the fact that researchers have worked separately on 
perception and utility, data from both physiology and behavior speak 
against a clean separation of systems. Addressing these discrepancies 
theoretically is a major task. The data appear to demand algorithms with 
richer dynamical interactions between perceptual and motivational 
systems. In section 13.5, we discuss several possible approaches.

13.4 Approximate Inference

In this section, we discuss a key algorithmic challenge for decision theory: 
calculating expectations under the posterior. When the hidden state s is 
high-dimensional and continuous, analytical tractability is elusive, and 
some form of approximation must be used. As we discuss later, such 
methods preserve an (approximate) mapping to the ideal decision vari-
ables, but they make different claims about the series of steps used to 
(approximately) compute them. Often, the signatures of these different 
approximation steps have been argued to be reflected in the dynamics 
of behavior (e.g., of learning or perception).

Computing posterior distributions approximately is a common problem 
in statistics and machine learning, where the approaches tend to fall into 
one of two classes:

• Monte Carlo approximations (Robert & Casella, 2004), where the pos-
terior is approximated by a set of samples s1:M. The law of large numbers 
guarantees that as M gets larger, the approximation converges to the true 
posterior. Generally, one cannot draw samples directly from the poste-
rior, so two variations of the method are typically used. In importance 
sampling, samples are drawn from a proposal distribution g(s) and then 
weighted according to:

w
p x s p s

g s
m

m m

m
∝ ( | ) ( )

( )
.  (13.3)
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The Monte Carlo approximation of expected utility is then approxi-
mated by

Eπ [ ( , )] ( , ).U s a w U s a
m

M
m m≈

=
∑

1

 (13.4)

For certain generative models, an online version of importance sampling, 
known as particle filtering, is also possible, where the weights are updated 
after each observation. The second variation is known as Markov chain 
Monte Carlo and involves drawing the samples from a Markov chain 
whose stationary distribution is the posterior. Thus, sampling from the 
chain for long enough will eventually produce (unweighted) samples 
from the posterior.
• Variational approximations (Jordan, Ghahramani, Jaakkola, & Saul, 
1999), where the posterior is approximated by a more tractable distribu-
tion q chosen from a family of distributions Q  so as to minimize the 
Kullback–Leibler (KL) divergence between q and π :

q qq
* argmin KL= ∈Q ( || ),π  (13.5)

where the KL divergence is defined as

KL log( || ) ( )
( )

( | )
.q q s

q s
s x

ds
s

π
π

= ∫  (13.6)

The KL divergence is minimized (to zero) when q = π, but generally π is 
not in Q . The expected utility can then be approximated by Eq U s a[ ( , )], 
which by design should be tractable.

All of these variations have recently been explored in different con-
texts. Sanborn, Griffiths, Navarro, To, and Sanborn (2010) suggested that 
human categorization phenomena are well described by a version of 
particle filtering, and Daw and Courville (2008) have made a similar 
argument in the context of animal conditioning. Markov chain Monte 
Carlo approximations have been suggested as explanations for the 
dynamics of perceptual multistability (Gershman, Vul, & Tenenbaum, 
2009). Variational methods, while underappreciated, have begun to be 
considered as possible explanation for various associative learning phe-
nomena (Daw, Courville, & Dayan, 2008; Sanborn & Silva, 2009).

None of these algorithmic models has yet been explored systematically 
in the context of decision theory. However, several experimental findings 
are suggestive. Most Bayesian models assume that the posterior changes 
gradually as more information is acquired, and consequently the expected 
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utility should change gradually as well. In a choice task, for example, the 
animal is tasked with estimating the expected utility associated with each 
choice, where the hidden state represents a scalar association parameter 
governing the relationship between choice and reward (Kruschke, 2008). 
Assuming humans and animals are “soft” maximizers, gradual changes 
in expected utility imply gradual changes in choice behavior. However, 
careful analysis reveals that, at the individual subject level, the dynamics 
of choice behavior are quite different: Responses appear to change 
abruptly over the course of learning and never to reach stable asymptote 
(Gallistel, Fairhurst, & Balsam, 2004). One explanation, proposed by 
Daw and Courville (2008), is that subjects use a Monte Carlo approxima-
tion like particle filtering to approximate the posterior, and abrupt 
changes arise from the stochastic nature of the sampling process when 
only a small number of samples are used.

Another suggestive experimental finding is an effect known as high-
lighting (Medin & Bettger, 1991; Kruschke, 1996), which concerns the 
trial order–dependent dynamics of the learning of predictions about cues. 
In the balanced version of the experimental design, subjects are pre-
sented with three cues (A, B, and C) and two outcomes (R and S). In the 
first phase, subjects observe AB → R three times as often as AC → S. In 
the second phase, the same contingencies are preserved, but the propor-
tions are reversed: now AC → S occurs three times as often as AB → R. 
When tested with A alone, subjects predict R (a primacy effect), whereas 
when tested with the novel compound BC, subjects predict S (a recency 
effect). As shown by Kruschke (2006), this combination of primacy and 
recency effects is very difficult to explain by normative Bayesian models. 
Instead, Kruschke showed that an approximate learning algorithm, which 
he named “locally Bayesian learning,” could explain these effects by 
propagating sufficient statistics (rather than full posterior distributions) 
between layers in a neural network. The basic insight was that the local 
propagation induces sequential dependencies even when the underlying 
generative model lacks such dependencies. Later work by Sanborn and 
Silva (2009) showed that locally Bayesian learning could be interpreted 
as a variational message-passing algorithm and suggested other elabora-
tions in the same family of algorithms (see also Daw et al., 2008).

13.5 New Vistas

We have so far treated approximate inference as an inherently probabi-
listic computation, consistent with the decision-theoretic framework. 
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However, what is mainly interesting about these inference schemes is 
that they suggest ways of weakening or abandoning the separation 
between probabilities and utilities. We discuss two possible versions of 
this revision. The first answer attempts to reframe decision theory purely 
in terms of inference; that is, to dispense with a privileged concept of 
utility and deal entirely with probabilities. In this setting, utilities influ-
ence probabilistic approximations in the same manner as other variables. 
The second answer attempts to stay within the decision-theoretic frame-
work but ups the ante by treating the approximations themselves as 
decisions, with costs determined by the computational effort required by 
the approximations.

13.5.1 Decision Making as Probabilistic Inference

A rich vein of recent work in machine learning has explored the idea 
that decision problems can be reframed as inference problems (Dayan 
& Hinton, 1997; Toussaint & Storkey, 2006; Hoffman, de Freitas, Doucet, 
& Peters, 2009; Vlassis & Toussaint, 2009; Theodorou, Buchli, & Schaal, 
2010). Although these approaches differ in their precise mathematical 
formulation, the common idea is that by transforming the utility function 
appropriately, one can treat it as a probability density function param-
eterized by the action and hidden state. Consequently, maximizing the 
“probability” of utility with respect to action, while marginalizing the 
hidden state, is formally equivalent to maximizing the expected utility. 
That is, sensory inference is optimization—of the posterior probability 
of the causes, given the data—and the optimization underlying utility 
maximization can be framed in parallel terms.

Although this is more or less an algebraic maneuver, it has profound 
implications for the organization of decision-making circuitry in the 
brain. In machine learning, the importance of this insight has been that 
the stable of approximations and tricks that have been developed to 
tame difficult problems of probabilistic inference can also be applied to 
action optimization. The neuroscientific version of this insight is that 
what appear to be dedicated motivational and valuation circuits may 
instead be regarded as parallel applications of the same underlying com-
putational mechanisms over effectively different likelihood functions.

One version of this idea has been explored by Botvinick and An 
(2009). Building on earlier work in computer science (Cooper, 1988; 
Tatman & Shachter, 1990), Botvinick and An argued that the dorsolateral 
prefrontal cortex (DLPFC) could be thought of as computing action 
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policies by iteratively updating probabilistic beliefs over action nodes in 
a kind of directed graphical model known as an “influence diagram.” 
They proved that this algorithm converges to the optimal policy and then 
went on to show that it could reproduce several behavioral signatures of 
goal-directed behavior commonly associated with the DLPFC (see also 
Daw, Niv, & Dayan, 2005).

The most detailed articulation of common mechanisms for inference 
and decision, however, has come from the work of Karl Friston and his 
colleagues (for a recent review, see Friston, 2010). Friston has argued that 
many aspects of neural computation can be subsumed under a single 
“free-energy principle.” To understand this principle, let us return briefly 
to the variational approximation described in section 13.4. A basic iden-
tity from probability theory defines the relationship between the KL 
divergence and the marginal likelihood p x p x s p s ds

s

( ) ( | ) ( )= ∫ :

KL log( || ) ( ) ( , ),q p x x sπ = +F  (13.7)

where F ( , )x s  is known as the free energy in statistical physics. In the 
context of perceptual inference in neuroscience, the marginal likelihood 
can be understood as a measure of how well the brain’s internal model 
explains its sensory inputs, after integrating out the causes of the inputs. 
Because the KL divergence is always non-negative, the negative free-
energy is a lower bound on the log marginal likelihood. Thus, optimizing 
an internal model by minimizing free energy (with respect to the model 
parameters) is equivalent to maximizing a lower bound on the log mar-
ginal likelihood.

Friston and colleagues (Friston, Daunizeau, & Kiebel, 2009; Friston, 
Daunizeau, Kilner, & Kiebel, 2010) formulate the decision optimization 
problem in these terms. There are at least two separable claims here. The 
technical thrust of the work is similar to the ideas discussed earlier: If 
one specifies a desired equilibrium state distribution (here playing the 
role of the utility function), then this can be optimized by free-energy 
minimization with respect to actions. However, the authors build on this 
foundation to assert a much more provocative concept: that for biologi-
cally evolved organisms, the desired equilibrium is by definition just the 
species’ evolved equilibrium state distribution, and so minimizing free 
energy with respect to actions is, in effect, equivalent to maximizing 
expected utility. What makes this claim provocative is that it rejects deci-
sion theory’s core distinction between a state’s likelihood and its utility: 
Nowhere in the definition of free energy is utility mentioned. The math-
ematical equivalence rests on the evolutionary argument that hidden 
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states with high prior probability also tend to have high utility. This situ-
ation arises through a combination of evolution and ontogenetic devel-
opment, whereby the brain is immersed in a “statistical bath” that 
prescribes the landscape of its prior distribution. Because agents who 
find themselves more often in congenial states are more likely to survive, 
they inherit (or develop) priors with modes located at the states of 
highest congeniality. Conversely, states that are surprising given your 
evolutionary niche—like being out of water, for a fish—are maladaptive 
and should be avoided.

Although the free-energy principle appears at the least to be a very 
useful formulation for exposing the computational parallelism between 
perceptual and decision problems, the more radical maneuver of treating 
them both as literally optimizing a single objective function is harder to 
swallow. A state’s equilibrium likelihood and its utility are, on the clas-
sical view, not the same thing; rare events might be either unusually bad 
(being out of water, for a fish), good (being elected president, for an 
African American), or indeed neither. The idea that the two are united 
within a biological niche seems in one sense to appeal to evolutionary 
considerations to the end of substituting equilibrium for evolution and 
risks precluding adaption or learning. Should the first amphibian out of 
water dive back in? If a wolf eats deer not because he is hungry but 
because he is attracted to the equilibrium state of his ancestors, would a 
sudden bonanza of deer inspire him to eat only the amount to which he 
is accustomed? How can he adapt his diet if an ice age arises, or a new 
competitive deer-eating predator? Should a person immersed in the 
“statistical bath” of poverty her entire life refuse a winning lottery ticket, 
as this would necessitate transitioning from a state of high equilibrium 
probability to a rare one? In all these cases, the possibility of upward 
mobility, within the individual, seems to rest on at least some role for 
traditional notions of utility or fitness in guiding their decisions. However, 
the idea remains intriguing that in the ethological setting, these have 
more in common with probability than a decision theorist might expect.

13.5.2 The Costs of Representation and Computation

Probabilistic computations make exorbitant demands on a limited 
resource, and in a real physiological and psychological sense, these 
demands incur a cost that debits the utility of action. As shown in recent 
experiments by Kool, McGuire, Rosen, and Botvinick (2010), humans 
are “cognitive misers” who seek to avoid effortful thought at every 
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opportunity, and this effort diminishes the same neural signals that are 
excited by reward (Botvinick, Huffstetler, & McGuire, 2009).

One example of this issue arises in representing probability distribu-
tions over future states. We have mentioned already that predominant 
accounts of the dopamine system suggest that this system learns utilities 
in expectation over stochastic future states, rather than adopting the full 
decision-theoretically motivated representation of learning the probabil-
ities of outcomes, and their utilities, separately, and computing utilities 
by integrating over them. (In reinforcement learning, the latter approach 
is known as “model-based.”) These representations can actually be dis-
tinguished by clever experiments probing how behavior reacts to abrupt 
changes in circumstances. For instance, one can study whether a rat who 
has learned to lever-press for food while hungry will continue to do so 
when full: A full probabilistic representation over outcomes will adjust 
its expected utilities to the changed outcome value, whereas representing 
utilities only in expectation can preclude this and so predicts hapless 
working for unwanted food. The upshot of many such experiments is that 
the brain adopts both approaches, depending on circumstances. As sug-
gested by Daw et al. (2005) and Keramati, Dezfouli, and Piray (2011), 
which circumstances elicit which approach can be explained by a sort of 
meta-optimization over the costs (e.g., extra computation) of maintain-
ing the full representation relative to its benefits (better statistical 
accuracy).

Thus, whether to represent a probability distribution over states, alto-
gether, may itself be subject to (meta) decision-theoretic analysis. Assum-
ing the agent does represent probabilities, a finer question is how these 
should be approximated. Making the natural assumption that more accu-
rate approximations of the posterior incur larger costs, it would make 
sense for the brain to seek an approximation that balanced the costs of 
computation against the utility of accuracy. However, this principle 
appears to make a strict segregation of probability and reward not only 
impossible but foolhardy.

Consider a simple Monte Carlo scheme for approximating expected 
utilities by drawing samples from the state distribution. Vul, Goodman, 
Griffiths, and Tenenbaum (2009) analyzed the effects of imposing sam-
pling costs on an such an agent. They showed, using a simple two-
alternative forced-choice example and levels of sampling cost, that 
maximal total expected utility (gains minus costs) is achieved with 
remarkably few samples (of the order 1–50), which was argued to capture 
phenomena such as probability matching observed in humans playing 
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similar tasks. A key feature of this cost–benefit analysis of approximation 
is that it crosscuts probability and utility: The costs of adopting more or 
less faithful approximation to the probability must be weighed against 
the utility foregone by making worse decisions.

A more general analysis of this problem was recently undertaken by 
Gershman and Wilson (2010), exploring the idea that the brain might 
adopt approximate forms of the probability distribution over states and 
treat its choice of which approximation to use as a “meta-decision.” They 
incorporated a neurally motivated approximation cost into the utility 
function and then derived a variational lower bound on the log expected 
utility (closely related to the free-energy bound on the log marginal 
likelihood). By maximizing this bound with respect to the choice of 
approximate distribution, the agent can near-optimally balance the costs 
and benefits of accurately approximating the state distribution. They 
showed that this model could account for the finding by Machens et al. 
(2005) that auditory representations seem to overrepresent behaviorally 
relevant signals (like mating calls). The basic idea is that approximate 
distributions that represent the entire auditory spectrum with high fidel-
ity are metabolically costly and that accurately representing low-utility 
auditory signals is metabolically wasteful. Thus, approximations that con-
centrate their density in regions of high utility will achieve a higher utility 
lower bound. Finally, then, choosing appropriate approximations at the 
sensory level pushes utility considerations back to this level, perhaps 
explaining why the brain seems not to respect this basic decision-theoretic 
distinction.

13.6 Conclusion

This chapter has attempted to demonstrate that although statistical deci-
sion theory provides a tantalizingly simple framework for decision 
making, the neural reality is not so simple: Perception, action, and utility 
are ensnared in a tangled skein. To unravel this skein—or at least to 
motivate its tangle—we have pointed to new ideas that reconfigure the 
relationships between these variables and that suggest novel organizations 
for the underlying neural systems. These novel organizations involve a 
richer ensemble of dynamical interactions between perceptual and moti-
vational systems than that which is anticipated by statistical decision 
theory, and some of the signatures of these processes appear to coincide 
with the dynamics of behavior and neural signals.

The ideas discussed in this chapter borrow from recent as well as old 
computational concepts from artificial intelligence, engineering, statis-
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tics, and physics. There still remain many ideas from these sources that 
have yet to percolate into the consciousness of neuroscientists. For 
example, an extremely rich research tradition in artificial intelligence has 
examined how to incorporate computational costs into decision-making 
systems (e.g., Horvitz, 1988; Russell & Wefald, 1991; Zilberstein, 1995). 
We hope that contact with these ideas will reinvigorate thinking about 
the organizational principles of the brain.
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Notes

1. Our treatment is more precisely characterized as Bayesian decision theory, which is the 
most widely used special case of statistical decision theory. For discussion of alternatives 
to Bayesian decision theory, see Berger (1985). Some of these alternatives are considered 
in the context of vision by Maloney and Zhang (2010) and in the context of two-alternative 
forced choice tasks by Zacksenhouse, Bogacz, and Holmes (2010).
2. The log-likelihood ratio is equivalent to the log-posterior odds ratio under a uniform 
prior.
3. More generally, states may occur in sequence, and the aggregate value will depend on 
a series of nested expectations over each successive state, as in the Bellman equation defin-
ing utility in a Markov decision process (Sutton & Barto, 1998).
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