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Abstract

Why do people seek to improve themselves? One explana-
tion is that improvement is intrinsically rewarding. This can
be formalized in reinforcement learning models by augment-
ing the reward function with intrinsic rewards (e.g., internally-
generated improvement signals). In this paper, we develop
an alternative explanation: the drive for improvement arises
from planning in a state space that includes internal states
(e.g., competence). Planning is therefore reflective in the
sense that it considers the value of future internal states (e.g.,
“What could I accomplish in the future if I improve my compe-
tence?”). We formalize this idea as a sequential decision prob-
lem which we dub the reflective Markov Decision Process. The
model captures qualitative patterns of skill development better
than a range of alternative models that lack some of its compo-
nents. Importantly, it explains these patterns without appealing
to intrinsic rewards.

Keywords: Intrinsic motivation; Planning; Reinforcement
learning; Markov decision process; Competence; Skill devel-
opment

Introduction
Reinforcement learning (RL) models formalize how agents
take actions to maximize cumulative state-dependent rewards
(Sutton & Barto, 2018). When modeling, for example, an
agent navigating to goal locations in a grid-world, it’s natu-
ral to conceptualize grid locations as the states and goal at-
tainment as the reward. But how much of human life is like
the grid-world? Yes, we navigate two-dimensional spaces to
pursue explicit goals, but this characterization neglects deep
questions about why we pursue these (and more abstract)
goals in the first place. What exactly is rewarding about in-
creasing competence (White, 1959) or pursuing growth and
discovery (Vallerand et al., 1986)? It seems impossible to un-
derstand these phenomena without reference to a richer set of
internal states that coin reward and drive intrinsic motivation
(Fishbach & Woolley, 2022; Karayanni & Nelken, 2022).

Efforts to formalize intrinsic motivation have focused pri-
marily on augmenting extrinsic rewards (e.g., food, money)
with intrinsic rewards, such as goal achievement (Molinaro
& Collins, 2023), curiosity (Burda et al., 2018; Schmidhuber,
1991; Still & Precup, 2012; Eysenbach et al., 2018), and skill
mastery (Baranes & Oudeyer, 2013; Bougie & Ichise, 2020).
These intrinsic rewards might have evolved to facilitate rapid
learning in environments with sparse extrinsic rewards (Singh
et al., 2010). While these approaches can explain learning
in the absence of external reward, they still ground the state

space purely in the external environment. In contrast, humans
have a mental life that extends beyond the representation of
external states. In this paper, we argue that many aspects of
intrinsic motivation can be modeled by augmenting the state
space with internal states, even in the absence of intrinsic re-
wards. The key idea is that intrinsic motivation arises from
planning over these internal states—a form of self-reflection
which we dub reflective planning.

We formalize this idea as a Reflective Markov Decision
Process (rMDP). This framework represents aspects of the
agent (e.g., competence) as part of the state space. It endo-
genizes intrinsic motivation through value functions defined
over internal states. In the following sections, we formally
define the rMDP, and then explore its application to a con-
crete example of skill development. We test its ability to ex-
plain several classical phenomena, comparing it to several le-
sioned versions (lacking particular aspects of the full model)
and a model with intrinsic rewards inspired by Molinaro and
Collins (2023). Finally, we discuss the implications of the
model and outline experiments to test its validity.

Model
A Markov decision process (MDP) is a tuple (S ,A ,T,R,γ)
with the following components:

• A set of states S .

• A set of actions A , which can be state-dependent.

• A transition function T : S ×A → S , which we write as
s′ = T (s,a). More generally, the transition function can be
probabilistic, but for simplicity here we restrict our atten-
tion to deterministic dynamics.

• A reward function R : S ×A → R, which we write as r =
R(s,a). The reward function can also be probabilistic but
here we restrict our attention to deterministic rewards.

• A discount factor γ ∈ [0,1) that weighs short-term rewards
more highly than long-term rewards.

The rMDP is a form of MDP that represents aspects of the
agent as part of the state space (see Figure 1). An agent that
models the rMDP thus models itself (i.e., reflects upon itself).
In particular, the rMDP decomposes the state and action into
several components. State, s = (x,c), includes environmental
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Figure 1: Illustration of the rMDP model.

state x ∈ X and the agent’s competence c ∈ RN which de-
fines the agent’s ability to engage in different activities when
exerting maximum effort (N denotes the number of possible
activities). Action, a = (u,e), includes the agent’s activity
choice u ∈ U(x) ⊆ {1, . . . ,N}, where the menu of possible
activities depends on the current environment state, and the
agent’s effort level e ∈ [0,1], defined as a proportion of the
agent’s competence.

With these components, we can now define the transition
dynamics and reward structure. The dynamics are specified
by a factorized transition structure: x′ = TX (x,a) and c′ =
TC(c,a). We assume the following properties:

• Competence is increasing in effort: ∂c′/∂e > 0. You get
better at activities when you exert effort on them.

• Competence is increasing in prior competence: ∂c′/∂c> 0.
You don’t lose competence spontaneously.

• Reward is decreasing in effort: ∂r/∂e < 0. Effort is aver-
sive.

Following the convention in RL models, we assume that
the agent seeks to maximize expected discounted cumulative
future reward, or value, which can be expressed recursively
using the Bellman equation:

Q(s,a) = R(s,a)+ γmax
a′

Q(s′,a′). (1)

The value iteration algorithm uses the Bellman equation to
compute Q(s,a) for each action, and then sets the agent’s pol-
icy to π(s) = argmaxa Q(s,a). It iterates over these updates
until convergence.

Example: Intuitive skill development
We illustrate the framework in an example of intuitive skill
development. Consider the setting where the environment
state is defined by a fixed set of tasks, U(x) = {1, . . . ,N},
where x is always fixed (i.e., a “bandit” setting where the
available tasks do not change across states). At each state,
an agent can choose an effort level e ∈ [0,1] and a task u with
difficulty d.

The reward is the utility of choosing an action (expected
external reward minus cost). We make the assumption that

the external reward of a task is proportional to its difficulty.
The reward function is defined as:

r = dP(s = 1|c,e,d)−αe, (2)

where α > 0 determines the cost of effort. P(s = 1|c,e,d) is
the probability of succeeding given the agent’s competence,
effort, and the task difficulty, which follows a logistic func-
tion:

P(s = 1|c,e,d) = 1
1+ e−k(ce−d)

, (3)

where k controls the steepness of the curve. Intuitively, this
means that the probability of success is higher when the
agent’s output (competence multiplied by effort) is larger;
when the output equals the difficulty of the task, the likeli-
hood of succeeding is at chance (50%).

Past work has used a deterministic success function, where
an agent succeeds if and only if they exert more force (ce)
than the task difficulty (d) (Xiang, Vélez, & Gershman, 2024,
2023; Xiang, Landy, et al., 2023; Xiang et al., 2025) (but see
Xiang, Gershman, & Gerstenberg, 2024). By contrast, Equa-
tion 3 offers more flexibility—it can be used to describe a
variety of tasks, where a larger k captures more determinis-
tic outcomes and a smaller k captures captures more variable
outcomes (e.g., when luck plays a bigger factor).

Competence evolves according to:

c′ = c+βeexp
[
− (c−d)2

2σ2

]
, (4)

where β > 0 is a coefficient determining the effects of effort.
σ is a domain-specific parameter that determines how much
a task’s difficulty can deviate from current competence while
still contributing to improvement. Larger σ allows for growth
from a wider range of tasks, while smaller σ means only tasks
near current competence are effective for learning. For exam-
ple, running has a large σ (even short or slow runs contribute
to endurance and fitness over time), whereas math has a small
σ (solving very easy or very difficult problems doesn’t typi-
cally improve skills).

Intuitively, more effort exertion leads to greater increase
in competence. In addition, competence increases the most
when the agent attempts tasks that are just at their current
abilities (which demands near-maximal effort to succeed).
These two features of Equation 4 align with the principle of
deliberate practice, which was found to play an important role
in the acquisition of expert performance (Ericsson, 2008; Er-
icsson & Pool, 2016; Ericsson et al., 1993).

Equation 4 extends the function postulated by past work
(Xiang, Vélez, & Gershman, 2024), according to which com-
petence increases based on the amount of effort exerted, and
only when the agent succeeds. Our new formulation of com-
petence dynamics captures the fact that competence can in-
crease even when an agent attempts a task that is slightly be-
yond their competence.



Alternative models
To examine the necessity of including all the components of
the rMDP, we consider two alternative models that each le-
sion one component. Additionally, we consider an intrinsic
reward model inspired by past work (Molinaro & Collins,
2023).

Myopic model: γ = 0
The first alternative model lesions prospection. This means
that the agent does not consider future rewards in their plan-
ning; they will always choose the action that yields the great-
est immediate reward.

Fixed mindset model: β = 0
The second alternative model lesions expectations about com-
petence change. This means that the agent does not factor
competence increase into their planning, expecting to per-
manently stay in the same competence state. Past work on
growth versus fixed mindsets lends plausibility to this model
(Dweck & Leggett, 1988; Blackwell et al., 2007; Haimovitz
& Dweck, 2017). The fixed mindset model might appear to
be similar to the first alternative model; it also chooses the
most immediately rewarding action, because (in the agent’s
mind) the current best and future best are the same. However,
there is one key difference: Competence in the first alterna-
tive model gets updated after each action, and therefore the
agent may take different actions at different time points. By
contrast, competence in the second alternative model is ex-
pected to remain the same over time, and therefore the agent
always takes the same action.

Intrinsic reward model
The intrinsic reward model includes an extra component in
the reward function: an intrinsic reward r̃ = c′ − c. It pos-
tulates that the agent has a motivation to improve their com-
petence independently of the external rewards. The reward
function is therefore:

r = wr̃+(1−w)(dP(s = 1|c,e,d)−αe), (5)

where w ∈ [0,1] is a mixture parameter that controls the
weighting of the intrinsic reward and expected utility. When
w = 1, the agent only values competence increase, whereas
when w = 0, the reward function is the same as for the other
models. For our simulations, we set w = 0.5. Note that in the
implementation, we additionally multiply the intrinsic reward
r̃ by the maximum possible reward (max(r). This brings the
intrinsic reward and extrinsic reward into a commensurable
range. Without it, the intrinsic reward model makes almost
the same predictions as the rMDP unless w = 1.

Implementation details
We simulated each model in a “planning phase” with a start-
ing competence of c0 = 10, over 50 time steps. At each time
step, the agent chooses a task and an effort level, based on its
beliefs about how competence changes. During the “execu-
tion phase” (when the agent carries out its planned actions),

we computed the competence trajectory according to the cho-
sen task difficulty and effort level at the corresponding time
steps. During this phase, the agent’s ground truth competence
always changed according to Equation 4 for all models.

The parameter values used in the simulations below are
summarized in Table 2. Note that the specific values don’t
affect the overall patterns as long as the parameters are within
reasonable ranges; for example, if effort cost (α) is too high,
the agent won’t exert any effort. If the effect of effort on
learning (β) is too small, the intrinsic reward term (r̃) in the
intrinsic reward model will be negligible.

Table 2: Model parameter values.

Parameter Meaning Value

C Competence range [1, 100]
E Effort range [0, 1]
D Task difficulty range [0.5, 100.5]
k Slope of the logistic function 2
α Effort cost 0.2
β Coefficient determining effects of effort 2
σ Domain-specific variability 1
γ Discount factor 0.9
w Weight of intrinsic reward 0.5

Simulations
We simulated four phenomena in skill development based
on the empirical evidence. These phenomena demonstrate
the effects of certain constraints on learning. A summary
of the phenomena, empirical evidence, description of con-
straint, and implementation details are summarized in Ta-
ble 1. The code and simulated data are publicly available at
https://osf.io/6cyhv/.

The results are visualized in Figure 2. Each column cor-
responds to one model. Each row corresponds to one phe-
nomenon, where the coral curve shows the condition with
constraints imposed by each phenomenon (as summarized in
Table 1), and the turquoise curve shows the unconstrained
condition (which is the same across phenomena). Overall,
without constraints, the rMDP and the intrinsic reward mod-
els predicted that the agent would learn quickly and continue
to improve. The intrinsic reward model predicted sightly
more competence increase than the rMDP model due to the
additional incentive the agent had for improving their compe-
tence (r̃ in Equation 5). The myopic model predicted less
overall improvement compared to the rMDP model. The
fixed mindset model did not predict much competence in-
crease.

Below, we describe the four phenomena and simulation re-
sults in detail.

Phenomenon 1: Appropriate difficulty led to more
mastery than overly difficulty tasks (“ZPD”)
In two studies, Zou et al. (2019) and R. Baker et al. (2020)
collected and analyzed data from an online learning platform,
Learnta. Both studies found that students gained more mas-

https://osf.io/6cyhv/


Table 1: Constraints in each phenomenon.

Phenomenon label Empirical evidence Constraint Implementation

ZPD Zou et al. (2019); R. Baker et al. (2020) Task always too difficult d forced to c0 + 1
Clustering Pierce et al. (2011) Task always too simple d forced to c0 - 1
Pygmalion Rubie-Davies (2016) Task starts right but doesn’t change d forced to c0

Adaptation (Low) Corbalan et al. (2008) Yoked to less competent agent d forced to agent starting with c0 −3
Adaptation (High) Corbalan et al. (2008) Yoked to more competent agent d forced to agent starting with c0 +3

tery when they took on tasks that they were “ready to learn”—
i.e., within their Zone of Proximal Development (Vygotsky,
1978)—compared to tasks that they were “unready to learn”.
These findings held across math and English learning do-
mains and various success levels (excellent, normal, or, strug-
gling).

We model the constraint under “unready to learn” scenarios
as the task difficulty being fixed to c0 + 1, where c0 denotes
the agent’s starting competence. In other words, the agent is
forced to take on a task that is more difficult than their starting
competence. The agent could still choose the amount of effort
to exert.

The rMDP model captured the qualitative pattern of the
constrained curve growing more slowly than the uncon-
strained curve. The constrained curve showed a little bit of
learning at the very beginning, but then stopped improving
because the task was too hard. The intrinsic reward model
showed similar patterns. The myopic model was able to cap-
ture the relative differences between constrained and uncon-
strained conditions for most of the time steps, but it pre-
dicted that the agent improves quicker in the constrained con-
dition at first, and the relative differences overall were smaller
compared to the rMDP and intrinsic reward models. The
fixed mindset model predicted the opposite pattern—the con-
strained curve was slightly above the unconstrained curve.

Phenomenon 2: Gifted learners learn faster in
cluster settings (“Clustering”)

Pierce et al. (2011) studied the impact of using cluster group-
ing to support gifted learners’ math achievement in urban el-
ementary schools. They found that clustering enabled greater
improvement in both gifted and comparison learners. Gifted
learners enjoyed a differential rate of learning success when
placed in cluster settings, as compared to gifted learners in
noncluster classrooms.

We model the constraint that gifted students have to deal
with in nonscluster classroom as fixed task difficulty of c0−1.
In other words, the agent has no choice but to take on a task
that is too easy for them. The agent could still choose the
amount of effort to exert.

Both the rMDP and the intrinsic reward models captured
this qualitative pattern. The myopic model also did, but the
difference between conditions was small. The fixed mindset
model predicted the same pattern between constrained and
unconstrained conditions.

Phenomenon 3: Students taught by high-expectation
teachers learn faster (“Pygmalion”)
Through a three-year Teacher Expectation Project (Rubie-
Davies, 2014), Rubie-Davies (2016) found that students in
the classes of high-expectation teachers (intervention group)
gained more marks on their standardized tests (equivalent to
almost three additional months of learning) by the end of the
year, compared to students in the classes of control teach-
ers. The high-expectation teachers set individual learning
goals with their students that were continuously challenging
for all students. They monitored student progress regularly
and moved students to higher levels individually as they were
ready.

We model the constraint that students face with control
teachers as task difficulty fixed at c0. This means that the stu-
dent starts with the task difficulty just right for them d = c0,
but it doesn’t change as learning goes on.

Both the rMDP and the intrinsic reward models captured
this qualitative pattern. The myopic model predicted faster
progress at start under constraints, and the difference between
conditions was small. The fixed mindset model predicted al-
most the same pattern between constrained and unconstrained
conditions.

Phenomenon 4: Adaptation leads to better learning
outcomes compared to yoked (“Adaptation (Low)”
and “Adaptation (High)”)
Corbalan et al. (2008) studied students’ learning in a Web ap-
plication. They found that learners who took on tasks that
were matched to their competence learned more effectively
and more efficiently, compared to their yoked counterparts,
who received exactly the same sequence of tasks. The find-
ing shows that adaptation (whether chosen by the computer
or the learner) leads to better learning outcomes than yoked
controls.

We modeled the constraints that yoked learners had by sim-
ulating a counterpart whose competence is either lower (start-
ing with c0−3) or higher (starting with c0+3) than the agent.
The agent is yoked to their counterpart in terms of difficulty.
However, the agent still has freedom to choose their effort al-
location and we assume that they plan their effort “as if” they
have control.

When the agent was yoked to a less competent counter-
part (“Adaptation (Low)”), the rMDP, intrinsic reward, and
myopic models predicted that the agent’s learning would be
lagged compared to the unconstrained condition, but they
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Figure 2: Simulation results. Constrained curves show the competence trajectories under constraints imposed by the specific
phenomenon. Overall, the rMDP and intrinsic reward models were able to capture the qualitative patterns of each phenomenon.
The myopic and fixed mindset models were unable to do so.

would still benefit from their counterpart once their counter-
part reached their competence level. The fixed mindset model
predicted almost the same pattern between constrained and
unconstrained conditions.

When the agent was yoked to a more competent counter-
part (“Adaptation (High)”), the rMDP and intrinsic reward
models predicted that the tasks appropriate for their coun-
terpart would be too difficult for the agent, and with time
the tasks get even harder. The myopic model predicted the
same pattern between constrained and unconstrained condi-
tions, with the constrained condition plateauing a bit faster
than the unconstrained condition. Finally, the fixed mindset
model predicted that the agent would improve faster when
they were yoked, which is the opposite of what was empiri-
cally observed.

Teasing apart predictions of the rMDP and
intrinsic reward models

In the results above, we found that the intrinsic reward model
showed similar patterns to the rMDP model. In this section,
we simulate two studies that disentangle them.

Phenomenon 5: Demotivating effects of getting
awards
In a field experiment, Robinson et al. (2021) found that stu-
dents who received awards for perfect attendance attended
less school in the following month. Importantly, students
were told that these were one-time awards. We modeled
this using extrinsic rewards that only existed for tasks that
were harder than a threshold, so that getting the reward re-
quired improving competence. These rewards also remained
the same for all tasks beyond the difficulty threshold. As
shown in Figure 3 (bottom panel), for both easy and hard
goals where reward is only available for tasks with d ≥ 15 or
50, the rMDP model predicted that the agent would improve
until they are capable of getting the reward, but they are not
motivated to improve their competence further. This predic-
tion aligned with the empirical finding. By contrast, the in-
trinsic reward model predicted that the agent would continue
to increase their competence regardless of the threshold.

Phenomenon 6: Demotivating effects of negative
feedback and motivating effects of goal alignment
reminders
Anand et al. (2023) found that frequent unfavorable feedback
about goal progress demotivated participants. In addition,
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Figure 3: Simulations of two studies that tease apart the
rMDP and intrinsic reward models (Robinson et al., 2021;
Anand et al., 2023). Less and more prospection corresponded
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late the easiest task that yields reward, corresponding to d =
15 and 50, respectively. The agent does not get any reward if
they succeed at a task with difficulty below the task difficulty
threshold. The agent gets a reward of 100 if they succeed at a
task with difficulty equal to or above the threshold.

they found that a reminder about goal attainability mitigated
the effect. We modeled sustained unfavorable feedback as a
conceptualization of a harder goal. Similar to our simulation
of Study 1, goal difficulty corresponded to the minimum task
difficulty that yielded reward. We modeled the goal attain-
ability reminder as changes in prospection (controlled by γ).
In other words, the reminder reduced the discounting of fu-
ture rewards. Figure 3 shows that, with less prospection, the
rMDP model predicted that the agent would increase their
competence to attain goals that they thought were easy, but
not goals that they thought were hard (as indicated by the
frequent unfavorable feedback). More importantly, this de-
motivating effect was predicted to mitigate when the agent
increased their prospection (because of the reminder). Both
these patterns were in line with the empirical finding. How-
ever, the intrinsic reward model did not predict these patterns.

Discussion
Our simulations lend plausibility to the claim that central as-
pects of intrinsic motivation can be formalized as reflective
planning over internal states. We focused on competence as
a paradigmatic example of an internal state. In the rMDP
model, the agent’s only goal is to maximize cumulative ex-
trinsic rewards, but it nonetheless places value on competence
improvement because this leads to larger extrinsic rewards in

the future. A myopic model that ignores these future rewards
is insensitive to competence improvement and therefore does
not exhibit signatures of intrinsic motivation. Similarly, a
“fixed mindset” model that ignores the dynamics of compe-
tence will not appear intrinsically motivated, because it oper-
ates on the belief that competence cannot change. Further, an
intrinsic reward model that assumes an independent drive to
increase one’s competence fails to explain demotivation.

While our focus was on potential drivers of intrinsic mo-
tivation, the rMDP may shed light on related phenomena.
For example, why do people sometimes choose difficult tasks
over easy ones, despite generally disliking effort (Inzlicht et
al., 2018)? As in many models of cognitive effort avoidance,
we assume an effort penalty in the utility function (Kool &
Botvinick, 2018). However, long-term value can be assigned
to effort if it predicts future extrinsic reward (Eisenberger,
1992). Importantly, this effect is mediated by beliefs about
the dynamics of competence. Effort may be valued less if
its effect on future reward is ephemeral. The promise of in-
creased competence through effort exertion has a potent mo-
tivational effect because of its enduring yields. From an evo-
lutionary point of view, this logic may explain why people
are motivated to improve themselves even in the absence of
obvious extrinsic rewards.

Future directions

When teachers are assigning tasks to students (e.g., in the
“Pygmalion” phenomenon), the teacher’s choices and the stu-
dent’s choices are entangled. An extension of the framework
could consider modeling the teacher as planning in a second-
person rMDP, where they anticipate how students’ compe-
tence would increase as they decide what tasks to assign
them. Indeed, in the real world, the students themselves can
sometimes find it difficult to judge which tasks are most help-
ful in improving their competence. This aligns with past work
showing that teachers reason about learners’ minds when de-
ciding what to teach (Shafto et al., 2014; Vélez et al., 2023).

In the current work, we assumed that the agent’s compe-
tence could only increase and that they had perfect knowl-
edge about their competence. These assumptions are not core
to the framework. The framework can straightforwardly in-
corporate competence decay (e.g., fatigue, or a skill getting
rusty) into the transition function. One future direction is to
incorporate the agent’s uncertainty about their own compe-
tence into the framework, perhaps through a Partially Ob-
servable Markov Decision Process (POMDP). Another fu-
ture direction is to extend the framework to multi-agent set-
tings, where optimal collaboration requires recursive theory
of mind (Xiang, Vélez, & Gershman, 2023; C. L. Baker et
al., 2017) or some form of heuristics to approximate the pro-
cess. A multi-agent version of the rMDP has the potential to
explain the motivation behind classical phenomena such as
comparative advantage, division of labor, and social confor-
mity.
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