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The gambler’s fallacy is a false belief that a random 
event is less likely to occur if the event has occurred 
recently, even when the probability of the event is 
objectively known to be independent from trial to trial 
(Clotfelter & Cook, 1993; Suetens & Tyran, 2012). For 
example, when observing a sequence of coin tosses, 
people expect tails to be more likely after a run of 
heads. Ever since the fallacy was first proposed by 
Marquis de Laplace (1902), much work has documented 
it in real-world contexts, including casino betting  
(Sundali & Croson, 2006), lottery play (Clotfelter & Cook, 
1993; Kong et al., 2020; Suetens & Tyran, 2012; Terrell, 
1994), penalty shootouts (Misirlisoy & Haggard, 2014), 
and even predictions of next-child gender (McClelland 
& Hackenberg, 1978), as well as in many laboratory 
experiments (Ayton & Fischer, 2004; Barron & Leider, 
2010; Rao & Hastie, 2023; Roney & Sansone, 2015; Roney 
& Trick, 2003; Tversky & Kahneman, 1974).1

Researchers have proposed a myriad of theories to 
explain this fallacy. The existing theories largely fall 
under two classes. One class of models assumes it arises 
from irrational systematic errors that result from a reli-
ance on the representativeness heuristic and the law of 
small numbers (Kahneman & Tversky, 1972; Miller & 
Sanjurjo, 2018; Tversky & Kahneman, 1971, 1974). 
According to these accounts, people regard a sample 
randomly drawn from a population as highly represen-
tative and similar to the population in all essential char-
acteristics. This belief in local representativeness creates 
the gambler’s fallacy because reversals (e.g., the occur-
rence of black after observing a long run of red on a 
roulette wheel) will restore the balance and result in a 
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more representative sequence than repetition (e.g., the 
occurrence of another red). The other class of models 
posits that the fallacy arises from rational probabilistic 
reasoning about the underlying generator. Theories 
within this second class can further be grouped into 
two types: Error-optimal models assume that people 
rationally act on their mistaken model of the world, 
such as assuming that the generator changes over time 
(Barberis et al., 1998; Rabin, 2002; Rabin & Vayanos, 
2010), whereas bounded-optimal models assume that 
the fallacy occurs because people have limited memory 
(Dorst, 2024; Farmer et al., 2017; Hahn & Warren, 2009).

Despite the differences in the specific formalism and 
the assumptions, all of these theories assume that the 
fallacy stems from subjective probability judgments that 
then get translated into point predictions through a 
decision function—such as guessing the outcome that 
is most likely. Here, by “point predictions,” we mean a 
single-outcome prediction (e.g., heads or tails in the 
case of a coin), consistent with the literature (Agliari 
et al., 2016; Glazer & Rubinstein, 2024; Tergiman, 2015; 
Weitzel & Rosenkranz, 2016; Weiss & Shanteau, 2004). 
In other words, these theories all postulate that (a) 
subjective probability judgments should exhibit the 
gambler’s fallacy and (b) probability judgments and 
point predictions should move together.

Remarkably, almost none of the past work demon-
strating the fallacy—whether in the real world or labo-
ratory experiments—has tested these postulates directly. 
For a study to truly be a test of the gambler’s fallacy, it 
has to measure probability judgments based on inde-
pendent events. Past work based on real-world data 
has examined only point predictions (Clotfelter & Cook, 
1993; Kong et  al., 2020; McClelland & Hackenberg, 
1978; Misirlisoy & Haggard, 2014; Suetens & Tyran, 
2012; Sundali & Croson, 2006; Terrell, 1994), as is the 
case with most of the laboratory studies (Ayton & 
Fischer, 2004; Barron & Leider, 2010; Jones, 1971; Roney 
& Sansone, 2015; Roney & Trick, 2003; Tversky &  
Kahneman, 1974). Some laboratory studies have elicited 
probability judgments, but they used nonindependent 
sequences (Bloomfield & Hales, 2002; Rao & Hastie, 
2023). One exception is Asparouhova et al. (2009), who 
showed participants eight-outcome sequences gener-
ated independently from a Bernoulli distribution and 
asked for probability judgments. However, a closer look 
at participants’ reported probability that a streak would 
repeat (N = 46; 100 trials each) revealed that the median 
was .50 and the mean was .506, indicating that there 
was barely any gambler’s fallacy. Thus, evidence for a 
true gambler’s fallacy in probabilistic beliefs is weak to 
nonexistent. If indeed a true gambler’s fallacy does not 
exist in probabilistic beliefs, that would raise questions 
as to whether the existing theories rest on an erroneous 

premise and call for new theories that do not rely on 
access to probabilistic reasoning and a new understand-
ing of the mechanisms that drive the gambler’s fallacy.

In the current work, we tested the gambler’s fallacy 
systematically, adhering to its probabilistic definition: 
Adapting the materials from Rao and Hastie’s (2023) 
bingo-ball color-prediction task, we told participants 
the objective ground truth probability, showed partici-
pants independent sequences, and elicited probability 
judgments from them. Measuring probability judgments 
directly allowed us to investigate whether the gambler’s 
fallacy originates from probability judgments, as pos-
tulated by the existing theories. In Experiments 1a and 
1b (N = 300), we used independent and identically 
distributed (IID) sequences with 50% probability of 
producing each outcome (blue or red bingo ball). 
Experiments 2a and 2b (N = 300) repeated these experi-
ments using other probabilities (40% and 60%). Finally, 
Experiment 3 replicated an experiment from Rao and 
Hastie (2023) with nonindependent sequences. These 
studies collectively allowed us to interrogate the robust-
ness and provenance of the gambler’s fallacy.
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Experiments 1a and 1b

In these experiments, we modified the task design of 
predicting colors of bingo balls from Experiments 2a 
and 2b of Rao and Hastie (2023), replacing the stimuli 
with IID sequences (50% probability of producing 
each outcome, a blue or a red ball). The two experi-
ments differed in the type of response we asked  
participants to report: Experiment 1a elicited probabil-
ity judgments, whereas Experiment 1b elicited point 
predictions.

We note here that much of the prior experimental 
work on the gambler’s fallacy (with the notable excep-
tion of Rao and Hastie, 2023) is based on a few dozen 

participants per experiment, with few replications or 
preregistrations. To ensure that our experiments are 
reliably able to detect even small effects, we used a 
large sample size (150 participants per experiment), 
and all of our experiments are preregistered replica-
tions of pilot studies.

Method

Participants.  We recruited 150 participants for each 
experiment via Amazon’s Mechanical Turk (MTurk) plat-
form. After reading the instructions, participants completed 
a comprehension check that tested their understanding of 
the task, with special attention to ensuring they under-
stood that the balls were sampled with replacement. Par-
ticipants received $2.50 to complete eight trials. The 
experiments were approved by the Harvard Institutional 
Review Board and preregistered at https://aspredicted 
.org/2frb-zshx.pdf. For these and subsequent experiments, 
we did not exclude any participants or observations.

Stimuli.  The stimuli were 18 IID sequences of eight 
random ball colors generated on the fly on each trial for 
each participant. Each ball color was independently sam-
pled from a Bernoulli distribution with p = .5 of being 
blue or red.

Procedure.  Participants completed a total of 18 trials 
(for an example trial, see Fig. 1). On each trial, eight 
bingo balls were drawn, one after another with a 1-s 
delay, by a mechanical bingo machine from a covered 
cage with 50 blue balls and 50 red balls. Participants 
were told that each time after a ball is drawn the machine 

Fig. 1.  Example trial in Experiment 1a. Participants observed eight balls drawn from a bingo machine one after another with replace-
ment and predicted the color of the ninth ball.
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would roll the ball back to the cage and spin the cage 
before the next ball is drawn. After seeing eight draws, 
participants predicted the color of the next ball. In Exper-
iment 1a, participants reported probability judgments 
(the probability of the next ball being red) using a slider. 
In Experiment 1b, participants reported point prediction 
by choosing between red and blue.

Results

Figure 2 shows the participants’ responses to the eight 
most common sequences. Overall, for the same 
sequence, participants predicted repetition more for 
probability judgments and reversal more for point 
predictions.

We computed the probability that a streak will 
repeat—P(repeat)—for each participant by averaging 
their predictions across trials. Point predictions from 
Experiment 1b were treated as 0% and 100% for this 
calculation to compute P(repeat) as the proportion of 
trials in which they predicted that the streak would 
repeat. Note that the meaning of this average is con-
ceptually different for the two experiments and we are 
not directly comparing the two. For the following analy-
ses, we started with a normality test that determined 
whether we used a parametric t test or nonparametric 
Wilcoxon signed-rank test. We were originally con-
cerned about normality when we reanalyzed Rao and 
Hastie’s (2023) data (see Fig. 3), which showed a 
skewed distribution indicating that the effect was 
mainly driven by a small group of participants. A Lil-
liefors (Kolmogorov-Smirnov) test for normality indi-
cated that the data were not normally distributed (D = 
0.13, p < .001). This finding motivated us to check for 
normality first. Note that given our large sample sizes 
(N = 150 for each experiment), we could apply the t 
test even if the data were not normally distributed. We 
additionally reported Bayesian t test results so that we 
could evaluate the evidence for the null hypothesis.

For Experiment 1a, in which participants reported 
probability judgments, a Lilliefors (Kolmogorov-
Smirnov) test for normality indicated that the data were 
not normally distributed (D = 0.15, p < .001). Therefore, 
we conducted a one-sample Wilcoxon signed-rank test, 
which indicated that the median was not significantly 
different from 50% (Z = −1.03, p = .304, r = .08). A 
Bayesian t test yielded a BF (BF10) of 0.248, meaning 
that the data were four times more likely under the null 
hypothesis that the mean would not be different from 
50%. The median resulting posterior distribution for the 
effect size (δ) was −0.11—95% credible interval (CrI) = 
[−0.27, 0.05]. See the first row of Figure 4 (left) for the 
distribution of P(repeat). The first row of Figure 5a 

shows the mean and median predictions by terminal 
streak length, as in Rao and Hastie (2023).

By contrast, we observed more probability mass fall-
ing below 50% in Experiment 1b (Fig. 4, first row, right 
panel), in which participants reported point predic-
tions. A Lilliefors (Kolmogorov-Smirnov) test for nor-
mality indicated that the data were not normally 
distributed (D = 0.11, p < .001). A one-sample Wilcoxon 
signed-rank test indicated that the median was signifi-
cantly different from 50% (Z = −5.56, p < .001, r = .45). 
A Bayesian t test yielded a BF10 > 1,000, meaning that 
the data were more than 1,000 times more likely under 
the alternative hypothesis that the mean would be dif-
ferent from 50%. The median resulting posterior distri-
bution for the effect size (δ) was −0.51—95% CrI = 
[−0.68, −0.34]. The first row of Figure 5b shows the 
mean predictions by terminal streak length.

Past work has suggested that people often make 
decisions from a few samples (Icard, 2016; Vul et al., 
2014), which may lead to systematic deviations from 
the probability judgments (Sanborn, 2017; Sanborn & 
Chater, 2016). In light of this idea, we conducted an 
additional analysis to find out whether the point predic-
tions could be explained by a transformation of the 
probability judgments. In other words, could we recover 
the point prediction patterns in Experiment 1b by sam-
pling from the probability judgments in Experiment 1a 
or from the ground truth probability? We formalized 
these two hypotheses as the subjective probability 
model and the objective probability model. For each trial 
in Experiment 1a, the subjective probability model 
implements an optional stopping rule (Zhu et al., 2024) 
from which it draws samples sequentially from a  
Bernoulli distribution with a mean given by partici-
pants’ reported probability until there are five more 
samples supporting one prediction over the other. The 
objective probability model generates predictions using 
the same process except that the samples are drawn 
from a Bernoulli distribution with a mean given by the 
ground truth probability (50%). The resulting P(repeat) 
is shown in the first row of Figure 5b. Sampling could 
not recover the point prediction patterns. This suggests 
that the point prediction patterns are likely generated 
by a process different from probability judgments. We 
additionally explored different thresholds for terminat-
ing the sampling process, results of which are shown 
in Figure S1 in the Supplemental Material available 
online. These models still could not recover the point 
prediction patterns. We also considered a thresholding 
model that converts probability judgments to point pre-
dictions by applying a cutoff at the ground truth (which 
is effectively drawing an infinite number of samples, as 
illustrated in Fig. S1). The model could not capture the 



455

[0
,0

,0
,1

,0
,1

,1
,1

]
[0

,1
,0

,0
,0

,0
,0

,1
]

[0
,1

,1
,0

,1
,1

,1
,1

]
[0

,1
,1

,1
,1

,1
,1

,1
]

[1
,0

,1
,0

,0
,0

,0
,0

]
[1

,0
,1

,1
,1

,1
,1

,1
]

[1
,1

,0
,1

,0
,1

,0
,0

]
[1

,1
,1

,1
,1

,1
,1

,1
]

Probability Point

0
50

10
0

0
50

10
0

0
50

10
0

0
50

10
0

0
50

10
0

0
50

10
0

0
50

10
0

0
50

10
0

051015 051015

Pr
ob

ab
ili

ty
 o

f S
tre

ak
 R

ep
ea

tin
g 

(%
)

Frequency

F
ig

. 
2
. 

A
ve

ra
ge

 p
ro

b
ab

il
it
y 

th
at

 a
 s

tr
ea

k
 w

il
l 
re

p
ea

t 
fo

r 
th

e 
m

o
st

 c
o
m

m
o
n
 s

eq
u
en

ce
s 

in
 E

xp
er

im
en

ts
 1

a 
an

d
 1

b
. 
E
ac

h
 p

an
el

 c
o
rr

es
p
o
n
d
s 

to
 a

n
 e

ig
h
t-

b
al

l 
se

q
u
en

ce
: 
0 
=
 b

lu
e 

b
al

l, 
1 
= 

re
d
 b

al
l.
 T

h
e 

re
d
 d

as
h
ed

 l
in

es
 m

ar
k
 t

h
e 

gr
o
u
n
d
 t

ru
th

 (
50

%
).



456	 Xiang et al.

magnitude of participants’ responses. We conducted a 
Bayesian t test comparing participants’ P(repeat) in 

Experiment 1b and the thresholding model’s point pre-
dictions on the basis of participants’ probability judg-
ments in Experiment 1a, which yielded a BF10 of 21.514, 
meaning that the data were more than 20 times more 
likely under the alternative hypothesis that the mean 
of participants’ P(repeat) would be different from the 
model’s predicted P(repeat). The median resulting pos-
terior distribution for the effect size (δ) was −0.37—95% 
CrI = [−0.59, −0.14].

Could this disconnection be explained by the repre-
sentativeness heuristic? To find out, we explored a rep-
resentativeness model, which makes probability 
judgments and point predictions to render the sequence 
more representative in reflecting the ground truth prob-
ability. For example, after observing eight blue balls in 
a row, the representativeness model would predict that 
a red ball is “due” and thus that a red ball is more likely 
to appear in the next round than a blue ball. For prob-
ability judgments, we computed the number of balls 
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Fig. 3.  Reanalysis of Rao and Hastie (2023) Study 2A, bingo50 condi-
tion, showing the average probability that a streak will repeat. The 
dashed red line marks the ground truth probability (50%).
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with terminal streak color M and solved for the required 
number of balls with terminal streak color X:

	 P M X Nground truth( ) = +( ) +( )/ ,1 	 (1)

where N = 8 is the number of balls in the sequence. 
Intuitively, this equation attempts to bring the propor-
tion of the terminal streak color to the ground truth 
probability by adding X (which can be positive or nega-
tive). We then passed X through a sigmoid to generate 
a probability judgment:

	 P Xrepeat( ) = + −( )( )1 1/ .exp 	 (2)

For point predictions, we computed the proportion of 
balls with terminal streak color (M/8) and compared 
that to the ground truth. If the proportion is smaller 
than the ground truth, the model predicts repetition. If 
the proportion is larger than the ground truth, the 
model predicts reversal. If the proportion equals the 
ground truth, the model randomly predicts the next ball 
color on the basis of the ground truth. As shown in 
Figures 5a and 5b, the representativeness model was 
unable to capture the data.

Last, we tested for the nonlinearity we observed in 
Experiment 1b (the U-shaped data in the first row of 
Fig. 5b) as an exploratory analysis. We fit a Bayesian 
mixed-effects model predicting P(repeat) with terminal 
streak length, quadratic terminal streak length, and 
intercept, with random intercept and random slopes for 
terminal streak length and quadratic terminal streak 
length grouped by participants (see Table 1). We found 
a positive effect for the quadratic term (b = 1.58), and 

the 95% CrI—95% CrI = [0.82, 2.32]—excluded zero. This 
finding was consistent with the U-shape in Figure 5b.

Discussion

We failed to observe the gambler’s fallacy in partici-
pants’ probability judgments (Experiment 1a). In con-
trast, we observed the gambler’s fallacy in point 
predictions (Experiment 1b). However, they were not 
well explained by a transformation of the probability 
judgments, suggesting that qualitatively different mech-
anisms underlie these two types of responses, and the 
locus of the effect is probably in the decision process 
rather than the perception of probability.

Our findings contrast with those of Rao and Hastie 
(2023), who found a small gambler’s fallacy in probabil-
ity judgments. Considering that the only difference 
between Experiment 1a and their experiment was the 
sequences—we used IID sequences whereas Rao and 
Hastie (2023) used non-IID sequences—there is reason 
to suspect that the effect they found originated from 
the dependencies in their sequences. We explored this 
hypothesis further in Experiment 3, in which we repli-
cated Rao and Hastie’s (2023) study.

Experiments 2a and 2b

Experiments 2a and 2b aimed to test an alternative 
explanation for the discrepancy in probability judgments 
and point predictions. Because there was no right or 
wrong prediction to make when the two outcomes were 
equally likely, it is possible that participants resorted to 
a nonprobabilistic heuristic to make point predictions. 
To test whether this was the case, we conducted a new 
set of experiments with the same setup except that we 
gave participants IID sequences from a process 60% 
likely to produce one ball color and 40% likely to pro-
duce the other ball color. If, with non-50% IID sequences, 
we can recover point predictions by sampling from 
probability judgments, that would be evidence suggest-
ing that participants used the same underlying mecha-
nism for probability judgments and point predictions 
and that the discrepancy we observed previously was 
merely an artifact of 50% IID sequences. If instead we 
still see a deviation between probability judgments and 
point predictions, that would suggest a more robust 
difference between the two types of judgments.

Method

Participants.  We recruited 150 participants for each 
experiment via Amazon’s MTurk platform. As in Experi-
ments 1a and 1b, participants completed a comprehen-
sion check after reading the instructions. Participants 

Table 1.  Estimates of a Bayesian mixed-effects regression 
fit for the following model: P(repeat) ~ 1 + streak length2 +  
streak length + (1 + streak length2 + streak length | 
participant)

Estimate
Estimated 

error 95% CrI

Experiment 1b
  Intercept 63.82 3.86 [56.34, 71.47]
  Streak length2 1.58 0.38 [0.82, 2.32]
  Streak length −15.85 2.88 [−21.40, 10.24]
Experiment 3
  Intercept 47.81 1.76 [44.28, 51.25]
  Streak length2 0.12 0.13 [−0.12, 0.37]
  Streak length −0.79 1.16 [−3.05, 1.47]

Note: Estimates and estimated errors are means and standard 
deviations of the posterior distributions, respectively. CrI = credible 
interval.
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were compensated $2.50 to complete 18 trials. The 
experiments were approved by the Harvard Institutional 
Review Board and preregistered at https://aspredicted 
.org/prws-hqh3.pdf.

Stimuli.  The stimuli were 18 IID sequences of eight 
random ball colors generated on the fly on each trial for 
each participant. Each ball color was independently sam-
pled from a Bernoulli distribution with p = .6 for one 
color and p = .4 for the other color (randomized for each 
participant).

Procedure.  The procedure was the same as Experiments 
1a and 1b except that the covered cage contained either 
60 blue balls and 40 red balls or 40 blue balls and 60 red 
balls, in accordance with the ground truth probabilities.

Results

Because the two ball colors had different ground truth 
probabilities (60% and 40%), we grouped the trials by 
the ground truth probability of the terminal ball color 
and analyzed them separately. In Experiment 2a, for  
a ground truth probability of 60%, a Lilliefors  
(Kolmogorov-Smirnov) test for normality indicated that 
the data were not normally distributed (D = 0.12, p < 
.001). A one-sample Wilcoxon signed-rank test indi-
cated that the median was significantly different from 
60% (Z = −3.65, p < .001, r = .30). A Bayesian t test 
yielded a BF10 of 421.921, meaning that the data were 
more than 400 times more likely under the alternative 
hypothesis that the mean would be different from  
60%. The median resulting posterior distribution for  
the effect size (δ) was −0.34—95% CrI = [−0.50, −0.18]. 
For a ground truth probability of 40%, a Lilliefors  
(Kolmogorov-Smirnov) test for normality indicated that 
the data were not normally distributed (D = 0.10, p < 
.001). A one-sample Wilcoxon signed-rank test indi-
cated that the median was not significantly different 
from 40% (Z = −1.77, p = .076, r = .14). A Bayesian  
t test yielded a BF10 of 0.148, meaning that the data 
were more than six times more likely under the null 
hypothesis that the mean would not be different from 
40%. The median resulting posterior distribution for the 
effect size (δ) was −0.08—95% CrI = [−0.24, 0.08]. See  
the second and third rows of Figure 4 (left) for the 
distribution of P(repeat). As before, these effects 
seemed to be driven by a small percentage of outliers. 
For trials ending in the color with 60% probability, the 
mean P(repeat) was 55.47%, and the median P(repeat) 
was 58.25%. For trials ending in the color with 40% 
probability, the mean P(repeat) was 39.04%, and the 
median P(repeat) was 38.31%. The second and third 
rows of Figure 5a show the mean and median predic-
tions by terminal streak length.

In Experiment 2b, for a ground truth probability of 
60%, a Lilliefors (Kolmogorov-Smirnov) test for normal-
ity indicated that the data were not normally distributed 
(D = 0.14, p < .001). A one-sample Wilcoxon signed-
rank test indicated that the median was not significantly 
different from 60% (Z = −0.95, p = .341, r = .08). A 
Bayesian t test yielded a BF10 of 0.149, meaning that 
the data were six times more likely under the null 
hypothesis that the mean would not be different from 
60%. The median resulting posterior distribution for  
the effect size (δ) was −0.08—95% CrI = [−0.24, 0.08]. 
For a ground truth probability of 40%, a Lilliefors  
(Kolmogorov-Smirnov) test for normality indicated that 
the data were not normally distributed (D = 0.21, p < 
.001). A one-sample Wilcoxon signed-rank test indi-
cated that the median was significantly different from 
40% (Z = −7.57, p < .001, r = .62). A Bayesian t test 
yielded a BF10 > 1,000, meaning that the data were 1,000 
times more likely under the alternative hypothesis that 
the mean would be different from 40%. The median 
resulting posterior distribution for the effect size (δ) 
was −0.76—95% CrI = [−0.95, −0.58]. See the second 
and third rows of Figure 4 (right) for the distribution 
of P(repeat). This effect was primarily driven by very 
long streak lengths (when all eight balls are in the color 
with 40% probability; see Fig. 5b). The gambler’s fallacy 
did not show up robustly in the 50% or 60% conditions, 
presumably because seeing such long streaks of a low-
probability event makes people suspicious that the 
process is not following the described structure.

We again compared the subjective and objective 
probability models to the point prediction patterns. As 
shown in the second and third rows of Figure 5b, the 
point predictions in Experiment 2b were not well 
explained by a transformation of the probability judg-
ments in Experiment 2a or the ground truth probabili-
ties. In particular, the subjective model was in the 
opposite direction of the data in the 40% condition as 
well as the objective model in the 60% condition. The 
representativeness model also could not explain the 
data in either experiment. Finally, the thresholding 
model seemed closer to the data in the 60% condition 
visually (see Fig. S1) but not in the 40% condition. 
However, Bayesian t tests comparing participants’ 
P(repeat) in Experiment 2b and the thresholding mod-
el’s point predictions based on participants’ probability 
judgments in Experiment 2a showed that the threshold-
ing model could not recover the point prediction data 
in either condition. The 60% condition yielded a BF10 
of 2.097, meaning that the data were two times more 
likely under the alternative hypothesis that the mean 
of participants’ P(repeat) would be different from the 
model’s predicted P(repeat). The median resulting pos-
terior distribution for the effect size (δ) was 0.27—95% 

https://aspredicted.org/prws-hqh3.pdf
https://aspredicted.org/prws-hqh3.pdf
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CrI = [0.05, 0.50]. The 40% condition yielded a BF10 > 
1,000, meaning that the data were more than 1,000 
times more likely under the alternative hypothesis that 
the mean of participants’ P(repeat) would be different 
from the model’s predicted P(repeat). The median 
resulting posterior distribution for the effect size (δ) 
was −0.65—95% CrI = [−0.88, −0.42].

Discussion

Experiments 2a and 2b demonstrated the robustness of 
our findings in Experiments 1a and 1b by introducing 
asymmetric generators. As in the previous experiments, 
we did not find the gambler’s fallacy consistently, and 
the effects we did find were still numerically small. 
When we did see strong effects for probability judg-
ments in the 40% condition, they appeared only at very 
long streaks, and they also did not show up consistently 
in the 50% or 60% conditions. Last, we still were not 
able to reconstruct point predictions from sampling 
from probability judgments. Thus, our conclusions from 
Experiments 1a and 1b appear to hold rather broadly.

Experiment 3

Experiment 3 replicated an experiment reported by Rao 
and Hastie (2023). Our goal was to examine the robust-
ness of their findings and further investigate why they 
found the gambler’s fallacy in probabilistic predictions, 
whereas we did not. We hypothesized that the sequences 
used in Rao and Hastie (2023), which we refer to as 
“RH sequences,” had statistics different from IID 
sequences (because they were filtered by Rao and Has-
tie) and that participants might have been sensitive to 
that difference. Critically, all of our experiments used 
truly IID sequences. Here we explored the effects of 
using RH sequences.

Method

Participants.  We recruited 150 participants via Ama-
zon’s MTurk platform. As in the experiments described 
above, participants completed a comprehension check 
after reading the instructions. Participants were compen-
sated $2.50 to complete 18 trials. The experiment was 
approved by the Harvard Institutional Review Board and 
preregistered at https://aspredicted.org/khp6-hkz8.pdf.

Stimuli.  The stimuli were identical to Rao and Hastie 
(2023). The stimuli contained 18 sequences of eight ball 
colors. Twelve of the sequences ended with streak length 
of 1. The remaining six sequences ended with a streak 
length of 2, 3, 4, 5, 6, and 7. All of the sequences were 
drawn from a pool of designed sequences for each 

participant. The order was shuffled for each participant, but 
the first sequence always ended with streak length of 1.

Procedure.  The procedure was identical to Experi-
ments 1a and 1b.

Results

Experiment 3 was a direct comparison with Experi-
ment 1a because they differed only in the sequence- 
generation process. As shown in Figure 6a, there were 
meaningful differences in the distribution of the termi-
nal streak length between these two experiments: The 
IID sequences used in Experiment 1a tended to show 
an exponential distribution with a more gradual 
decrease in frequency as the streak lengths increased, 
whereas the RH sequences used in Experiment 3 con-
sisted of a uniform distribution of streak lengths 2 to 
7, with streak length of 1 appearing much more fre-
quently than truly IID sequences.

Figure 6b juxtaposes the mean and median predic-
tions by terminal streak length in Experiments 1a and 
3. A two-sample Wilcoxon test showed that the median 
in Experiment 3 was significantly different from the 
median in Experiment 1a (Z = −2.25, p = .025, r = .13).

A Lilliefors (Kolmogorov-Smirnov) test for normality 
indicated that the data in Experiment 3 were not nor-
mally distributed (D = 0.12, p < .001). A one-sample 
Wilcoxon signed-rank test indicated that the median 
was significantly different from 50% (Z = −4.02, p < 
.001, r = .33). A Bayesian t test yielded a BF10 of 273.609, 
meaning that the data were more than 200 times more 
likely under the alternative hypothesis that the mean 
would be different from 50%. The median resulting 
posterior distribution for the effect size (δ) was 
−0.33—95% CrI = [−0.50, −0.17]. However, this effect 
seemed to be driven by a small percentage of partici-
pants. Only 7.33% of participants’ P(repeat) was less 
than 40%. As shown by Figure 6b (right), it also 
seemed to be driven by a few streak lengths—primar-
ily streak lengths 2 and 3. To characterize this, we fit 
a Bayesian mixed-effects model predicting P(repeat) 
with terminal streak length, quadratic terminal streak 
length, and intercept, with random intercept and ran-
dom slopes for terminal streak length and quadratic 
terminal streak length grouped by participants (see 
Table 1). The coefficient of the quadratic term was 
positive (b = 0.12), but the 95% CrI—95% CrI = [−0.12, 
0.37], did not exclude zero.

Discussion

In Experiment 3, we replicated the small gambler’s fal-
lacy for the probabilistic predictions reported in Rao 

https://aspredicted.org/khp6-hkz8.pdf
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and Hastie (2023). A comparison between Experiments 
1a and 3 revealed that Rao and Hastie’s (2023) sequences 
did not have the same statistics as IID sequences; par-
ticipants were clearly sensitive to this difference even 
though they were told in both experiments that the 
sequences were truly random. Still, the effects we 
observed were small, holding only for a small subset 
of participants and streak lengths. The effects likely 

resulted from nonrandomness in the sequences because 
we did not find them in Experiment 1a.

General Discussion

In the current work, we tested the gambler’s fallacy 
through a series of experiments using IID sequences. 
Overall, we failed to observe a robust gambler’s fallacy 
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in participants’ probabilistic predictions (Experiments 1a 
and 2a). By contrast, we observed the gambler’s fallacy 
when participants made point predictions (Experiments 
1b and 2b) or when they were given correlated processes 
(Experiment 3), in which case the effect might be better 
characterized as a “pseudo-gambler’s fallacy.”

Our findings challenge the idea, found throughout 
the modeling literature (and reviewed earlier on in this 
article), that the gambler’s fallacy arises from probabi-
listic reasoning. We were not able to reconstruct the 
fallacy apparent in point predictions from the probabi-
listic predictions using a simple sampling model. Accord-
ing to this model, participants draw samples sequentially 
and use this “Monte Carlo” estimate to generate a point 
prediction by an optional stopping rule. Although there 
is much to recommend this kind of model from other 
quarters of cognitive science (Griffiths et  al., 2012; 
Sanborn, 2017), there clearly must be some other pro-
cess giving rise to the fallacy in point predictions.

The disconnection between probabilistic predictions 
and point predictions also rules out a few alternative 
explanations. We explored a representativeness model 
based on the representativeness heuristic (Kahneman 
& Tversky, 1972; Tversky & Kahneman, 1974); it made 
similar predictions for probability judgments and point 
predictions (see Fig. 5), suggesting that the represen-
tativeness heuristic alone cannot explain the two judg-
ments. Likewise, a conservatism bias (the tendency 
toward 50%; Edwards, 1968) or noisy cognition models 
(Costello & Watts, 2014, 2016; Enke & Graeber, 2023; 
Xiang et al., 2021) would not be able to explain the 
discrepancies between the probabilistic and point pre-
dictions we observed. Critically, if point predictions are 
functions of probabilistic predictions, then they should 
reflect the same biases measured in probabilistic pre-
dictions. Our results show that point predictions cannot 
be easily reconstructed from probabilistic predictions 
regardless of what mechanism underlies the probabi-
listic predictions. There is conceivably some other map-
ping from probabilistic to point predictions, but existing 
models do not specify what this might look like. Our 
results do not rule out the possibility that the probabil-
ity judgments participants reported do not reflect their 
internal model of probabilistic reasoning because peo-
ple have difficulty reporting precise probability judg-
ments, especially with an unfamiliar task and an 
unfamiliar elicitation mechanism (Gigerenzer, 1991, 
1993). However, the same task and elicitation mecha-
nism were used in Rao and Hastie (2023), who found 
that when participants were uncertain whether the 
ground truth was 25%, 50%, or 75%, they reported prob-
ability judgments that significantly deviated from 50% 
as the streak length increased, in line with Bayesian 
posterior probabilities. It is therefore reasonable to infer 

that participants in this task are capable of making 
probability judgments that reflect their internal model.

The most parsimonious explanation, then, is that point 
prediction does not rely on probabilistic reasoning. What 
might a viable alternative model look like? Generally 
speaking, what is needed is a model that generates point 
predictions from a function of outcome history. Critically, 
this function does not require computational access to 
probabilistic predictions, which might be generated from 
a completely separate process. An intriguing possibility 
is that cognitive heuristics such as representativeness or 
the law of small numbers arise from naturalistic sequence 
statistics combined with an information or computational 
bottleneck. Some suggestive hints in this direction have 
been glimpsed in large language models (Castello et al., 
2024; Suri et al., 2024). Other heuristics might also be 
involved because we showed that the representativeness 
heuristic itself could not capture the point prediction data 
quantitatively, and in some cases, not even qualitatively 
(the U-shape in Experiment 1b).

Our findings also have implications for experiments 
that test the gambler’s fallacy and judgment and  
decision-making in general. The comparison between 
Experiment 1a (which used IID sequences) and Experi-
ment 3 (which used non-IID sequences) revealed that 
non-IID sequences did not have the same statistics as 
IID sequences, and participants responded differently 
to non-IID sequences despite being told that they were 
IID. This suggests that participants were sensitive to the 
statistical patterns of the stimuli they were presented 
with. Experiments that use deception should be mindful 
of its effects on participants’ responses because they 
may infer that the stimuli are not generated by the 
described process. The current research is potentially 
limited to MTurk workers; therefore, future work is 
needed to comprehensively test this idea.

In sum, we have provided evidence that the gam-
bler’s fallacy likely originates at the decision stage 
rather than in probabilistic reasoning. Our findings 
challenge the existing theories of the gambler’s fallacy, 
which typically (if not exclusively) explain the fallacy 
as arising from probabilistic reasoning, whether from 
irrational errors or from rational probabilistic inference. 
Emerging theories of the fallacy may need to explain 
it without relying on probabilistic predictions.
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Note

1. In the early literature on probability learning, starting with 
Jarvik (1951), the gambler’s fallacy is known as the “negative 
recency effect” (for a review, see Jones, 1971).
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