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Abstract

How do language models assign responsibility and reward, and
is it similar to how humans do it? We instructed three state-of-
the-art large language models to assign responsibility (Exper-
iment 1) and reward (Experiment 2) to agents in a collabora-
tive task. We then compared the language models’ responses
to seven existing cognitive models of responsibility and re-
ward allocation. We found that language models mostly eval-
uated agents based on force (how much they actually did), in
line with classical production-style accounts of causation. By
contrast, humans valued actual and counterfactual effort (how
much agents tried or could have tried). These results indicate
a potential barrier to effective human-machine collaboration.

Introduction
As we enter a world where AI systems collaborate with hu-
mans, it is important to understand the extent to which these
systems think about collaboration in human-like ways. In
particular, Large Language Models (LLMs) are becoming in-
creasingly involved in human day-to-day work (George &
George, 2023; L. Wang et al., 2024), sometimes even assist-
ing with how people evaluate their human colleagues (Chiang
& Lee, 2023; Dong et al., 2024). In this paper, we eval-
uate LLMs and compare their behavior with humans on a
key aspect of collaborative cognition—the assignment of re-
sponsibility and reward in teams—by leveraging experimen-
tal paradigms and cognitive models adopted from two past
studies.

When a team succeeds, who gets more credit, and who
deserves more reward? Effective responsibility and reward
allocation fosters motivation within teams. When collabora-
tors feel that their efforts are recognized and fairly rewarded,
they are more willing to make contributions to the team (Jo &
Shin, 2025). However, how one’s efforts are recognized and
rewarded depends on who they are evaluated by—a human
or an LLM. If LLMs are involved in determining how human
collaborators are rewarded or punished, we need to under-
stand how they do so, and whether their outputs match peo-
ple’s intuitions. There may be important differences between
how LLMs and humans evaluate collaborators, and these dif-
ferences might have substantial impacts in downstream appli-
cations.

Several factors predict how people assign responsibility
and rewards to others. One line of work (Wolff, 2007; Greene
et al., 2009; Nagel & Waldman, 2012) indicates that causal
and moral judgments depend on the force a person exerts

(how much they actually did). Collaborators who gener-
ate more output receive more reward (Baumard et al., 2012;
Schäfer et al., 2023). Other work shows that effort (the pro-
portion of a maximum force exerted) determines the amount
of credit, blame, and punishment one deserves. For example,
an effortful moral act leads to more credit, and an effortful
immoral act leads to more blame (Bigman & Tamir, 2016;
Jara-Ettinger et al., 2014; Sosa et al., 2021). Lack of effort is
also punished more than lack of ability (Weiner, 1993). Note
that here and elsewhere, we use “blame” and “credit” to mean
responsibility in the event of failure and success, respectively.
This terminology is consistent with past work, and blame and
credit have been assessed on continuous scales (Gerstenberg
& Lagnado, 2010, 2014; Gerstenberg, Ejova, & Lagnado,
2011; but see also Malle, Guglielmo, & Monroe, 2014).

Another line of work shows that people care about coun-
terfactual contributions—how much a person could have
done. For example, people simulate counterfactual alterna-
tives when they judge causation and attribute responsibility
(Gerstenberg, 2024). The same actual contributions can lead
to different responsibility judgments depending on the struc-
ture of the task (Gerstenberg & Lagnado, 2010), the order of
events (Gerstenberg & Lagnado, 2012), and the availability
of other options (Wu & Gerstenberg, 2024). A player can
get a disproportionately large reward if their contribution was
critical to the team’s success (Miller & Komorita, 1995; Ger-
stenberg et al., 2023).

We adapted materials from recent work on human respon-
sibility judgment and reward allocation (Xiang, Landy, et
al., 2023; Xiang et al., 2025), and instructed three LLMs
(GPT-4o-mini, GPT-4o, GPT-4) to attribute responsibility
and reward to agents in a collaborative task. We then com-
pared the responses of LLMs to those of human participants
as reported in the aforementioned studies. To understand the
mechanisms underlying LLM responses, we compared them
to seven cognitive models: three actual-contribution mod-
els (which base their judgments on the agent’s actual force,
strength, and effort), three counterfactual-contribution mod-
els (which base their judgments on how much effort the agent
and their partner could have exerted), and an ensemble model
that combines the actual effort and counterfactual effort mod-
els, and which has been shown to outperform the remain-
ing six models in capturing human responsibility judgments
(Xiang, Landy, et al., 2023).



Failure Success

Exp 1: How much is each contestant to be blamed/credited 
for the team’s loss/victory?

Exp 2: How much bonus do you want to give each contestant?

Contestant A1
Strength: 5
Effort: 20%

Force: 1

Contestant B1
Strength: 5
Effort: 60%

Force: 3

Contestant A2
Strength: 5
Effort: 70%
Force: 3.5

Contestant B2
Strength: 5
Effort: 20%

Force: 1

Weight: 5 and
Weight: 5

Figure 1: Experiment stimuli. Participants observed each
agent’s strength, effort, and force, as well as the weight of the
box, and whether the agents failed (left panel) or succeeded
in lifting the box together (right panel). Participants then as-
signed credit, blame, or reward to each agent. These images
are adapted from Xiang, Landy, et al. (2023) Experiment 2a.

Experimental Paradigm
The experiments described a fictional game show, BoxLifters,
where pairs of agents attempted to lift a box together. Each
box had a weight W in the range [1,10], and each agent a
had a strength Sa ∈ [1,10] defined as the maximum amount
of force that they could exert. Each agent exerted a level of
effort Ea ∈ [0,1], defined as a fraction of their strength, and
produced force Fa ∈ [0,Sa], defined as their strength times
their effort (Fa = EaSa). The agents succeeded at lifting
the box when their combined force exceeded the box weight
(∑a Fa ≥W ), and failed otherwise (∑a Fa <W ).

In the analyses below, we compare LLM responses on this
task to seven cognitive models, as well as to human behavior.

Cognitive Models
The seven cognitive models we used were adapted from
Xiang, Landy, et al. (2023); Xiang et al. (2025).1 These
models assign responsibility (blame B in the event of fail-
ure, and credit C in the event of success) and reward R to one
of the two agents—the focal agent, denoted as a—at a time,
by considering different factors. Three of them are actual-
contribution models that base their decisions only on the focal
agent’s actual contributions (Force, Strength, and Effort mod-
els). Three of them are counterfactual-contribution models
that base their decisions on counterfactual judgments about
how much effort the focal agent and their partner—the non-
focal agent, denoted as /a—could have contributed (Focal-
agent-only, Non-focal-agent-only, and Both-agent counter-
factual models). The last one is an Ensemble model that
averages the Effort model and the Both-agent counterfactual
model. The Ensemble model has been shown to outperform
the other six models in capturing human responsibility judg-
ments (Xiang, Landy, et al., 2023).

1The only change we made was replacing numbers like 10 and 1
with terms like Fmax, Smax, and Emax.

Actual-contribution models
Force model (F). The Force model allocates responsibility
and reward based on how much force an agent produces in
the event. This model was inspired by production-style ac-
counts of causality (Wolff, 2007; Greene et al., 2009), and by
developmental research showing that children reward collab-
orators who generated more output (Baumard et al., 2012).
Agents who exert more force are blamed less, credited more,
and rewarded more:

BF
a ∝ Fmax −Fa

CF
a ∝ Fa

RF
a ∝ Fa

(1)

Strength model (S). The Strength model allocates responsi-
bility and reward based on an agent’s strength. This model
was inspired by past work showing that stronger agents are
blamed more for failures (Gerstenberg et al., 2011). Although
there weren’t significant effects for credit allocation, it is nat-
ural to attribute success to a stronger person, especially if the
strength difference is huge (e.g., an adult and a toddler lifting
a box together). So, stronger agents receive more credit and
reward for successes, and receive more blame and less reward
for failures:

BS
a ∝ Sa

CS
a ∝ Sa

RS
a ∝

{
Sa if L = 1
Smax −Sa if L = 0

(2)

Effort model (E). The Effort model allocates responsibility
and reward based on the level of effort an agent exerts. This
model was inspired by past work finding that greater effort
in performing moral acts leads to more credit and reward,
whereas lack of effort is punished (Bigman & Tamir, 2016;
Weiner, 1993; Jara-Ettinger et al., 2014). Agents who exert
more effort are credited and rewarded more, and blamed less:

BE
a ∝ Emax −Ea

CE
a ∝ Ea

RE
a ∝ Ea

(3)

Counterfactual-contribution models
Central to the counterfactual-contribution models is the con-
cept of difference making (Icard et al., 2017): whether the
outcome could have been different if the agents had exerted
a different level of effort E ′. Inspired by prior work (Sanna
& Turley, 1996), here we consider directional counterfactu-
als (upward for failures, downward for successes). In other
words, when agents fail, we consider what would have hap-
pened if they exerted more effort; when agents succeed, we
consider what would have happened if they exerted less ef-
fort.2 Specifically, we consider counterfactual efforts drawn

2Past work has proposed other ways of constructing counterfac-
tuals; for example, Gerstenberg et al. (2021) proposed a noisy model



from discrete uniform distributions in increments of 0.01,
where E ′ ∈ (E,1] when agents fail and E ′ ∈ [0,E) when
agents succeed. The responsibility and reward an agent re-
ceives hinge on the probability that they or their partner could
have changed the outcome.

Each agent’s probability of changing the outcome is de-
fined as:

Pa =

{
∑E ′

a
P(E ′

a) I[E ′
aSa +F/a <W ] if L = 1

∑E ′
a

P(E ′
a) I[E ′

aSa +F/a ≥W ] if L = 0,
(4)

where I[·] is an indicator function that returns 1 if its argument
is true, and 0 otherwise. The term F/a denotes the force of the
group excluding the contribution of agent a.
Focal-agent-only counterfactual model (FA). The Focal-
agent-only counterfactual model only considers counterfac-
tual actions on the part of the focal agent. The model assigns
responsibility and reward based on the likelihood of the focal
agent changing the outcome by altering their effort allocation,
while holding the non-focal agent’s effort allocation fixed:

BFA
a ∝ Pa

CFA
a ∝ Pa

RFA
a ∝

{
Pa if L = 1
1−Pa if L = 0

(5)

In other words, if the focal agent could have easily changed
the outcome, they would get more credit and reward in the
event of success, and more blame and less reward in the event
of failure.
Non-focal-agent-only counterfactual model (NFA). The
Non-focal-agent-only counterfactual model only considers
counterfactual actions of the non-focal agent. If the non-focal
agent could have easily changed the outcome, the focal agent
would get less credit and less reward in the event of success,
and less blame and more reward in the event of failure:

BNFA
a ∝ 1−P/a

CNFA
a ∝ 1−P/a

RNFA
a ∝

{
1−P/a if L = 1
P/a if L = 0

(6)

Both-agent counterfactual model (BA). The both-agent
counterfactual model considers counterfactual actions of both
the focal agent and the non-focal agent by averaging the pre-
dictions of the Focal-agent-only model and the Non-focal-
agent-only model. As in Xiang, Landy, et al. (2023); Xiang
et al. (2025), we assign equal weighting to the two compo-
nents for simplicity:

RBA
a ∝ (RFA

a +RNFA
a )/2

BBA
a ∝ (BFA

a +BNFA
a )/2

(7)

of Newtonian physics that samples counterfactuals from a Gaussian
distribution centered on what actually happened. Note that here we
are not making a strong claim about how counterfactuals are con-
structed.

In doing so, this model considers both factors within the focal
agent’s control (what they themselves could have done dif-
ferently) and factors outside their control (what their partner
could have done differently).

Ensemble model (EBA)
The last model is an Ensemble model that combines the Ef-
fort model (E) and the Both-agent counterfactual model (BA),
hence the acronym EBA. The Ensemble model was designed
to address the insufficiency of the six models above in ex-
plaining human responsibility judgments. Theoretically, its
two components can have different weights; however, past
work has found that the two models have similar weights
in human responsibility judgments (Xiang, Landy, et al.,
2023). Here, we stick with the same equal-weighting Ensem-
ble model to be consistent with past work and avoid adding
free parameters to the model:

BEBA
a ∝ (BE

a +BBA
a )/2

CEBA
a ∝ (CE

a +CBA
a )/2

REBA
a ∝ (RE

a +RBA
a )/2

(8)

Note that none of the cognitive models have free parameters;
therefore we did not need to fit any of the models to the data.

Experiments
In order to examine how LLMs attribute responsibility and re-
ward, and allowing for potentially different underlying mech-
anisms, we conducted two experiments. Experiment 1 in-
structed LLMs to assign responsibility to agents, whereas
Experiment 2 instructed LLMs to assign reward. The full
prompts we used, along with code and data used for ex-
periments and analyses are available at https://osf.io/
b5yz4/.

Experiment 1: Responsibility judgments
Methods We used an experimental design (Figure 1)
adopted from work studying human responsibility attribution
and reward allocation (Xiang, Landy, et al., 2023; Xiang et
al., 2025). The stimuli consisted of 55 unique combinations
of strength, effort, force, and box weight. In every scenario,
the two agents were matched along one dimension—strength,
effort, or force. This helped tease apart the three actual-
contribution models.

We converted experiment instructions and questions to a
long-form text format, without images, and used it to prompt
LLMs. Each prompt specified the strength, effort, and force
of each contestant, the weight of the box, and whether the
agents successfully lifted it. Each prompt ended with a ques-
tion. When the agents failed, the question was “How much is
each contestant to be blamed for the team’s loss”. When the
agents succeeded, the question was “How much is each con-
testant to be credited for the team’s victory”. The LLMs were
instructed to reply with a number between 0 and 10 indicating
how much blame or credit they would assign to each agent (0
meant no blame/credit, 10 meant very high blame/credit). In

https://osf.io/b5yz4/
https://osf.io/b5yz4/
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Figure 2: LLM responsibility attributions compared to humans (Xiang, Landy, et al., 2023). Each line corresponds to a single
scenario. LLMs tend to assign similar amounts of responsibility to agents whose forces are matched, whereas humans tend to
assign similar responsibility to agents whose efforts are matched. Error bars indicate bootstrapped 95% confidence intervals.

order to ask about both agents, referred to as “Contestant A”
and “Contestant B”, we instructed the LLMs to evaluate a sin-
gle agent (A or B) at a time. We also flipped the order of A
and B to avoid ordering bias. As a result, every scenario was
prompted 4 times: two agents × two orderings.

We tested three LLMs available in the Ope-
nAI API: gpt-4o-mini-2024-07-18 (GPT-4o-mini),
gpt-4o-2024-11-20 (GPT-4o), and gpt-4-0125-preview
(GPT-4). While LLM model details are not publicly avail-
able, GPT-4 is presumed to have the most parameters of the
three LLMs. GPT-4o and GPT-4o-mini are comparatively
newer, have fewer parameters, and are multi-modal (language
and vision). GPT-4o-mini is smaller than GPT-4o and also
less capable. We used the OpenAI API due to the availability
of token logit probabilities (‘logprobs’), which reduced the
cost of our experiments. Token logit probabilities are the
likelihood that the LLM would have generated each possible
next token—in our case, integers from 0 to 10, e.g. p(‘5’)
or p(‘10’). With logit probabilities, we can estimate the
distribution of possible LLM outputs with only a single
query. We aggregated these into a weighted average over
integers; for example, if a response was 40% ‘5’ and 60%
‘10’, the response would be coded as 40% × 5 + 60% ×
10 = 8. These weighted averages were used as the LLM
responses in our analyses.

Results Figure 2 shows the LLM responses. In each row,
we consider scenarios where both agents were matched to
have either equal strength, equal effort, or equal force. Note
that when one of these is fixed, the other two are confounded:
for example, when two agents are matched for strength, the
agent that puts forth more effort will also exert more force.
When the agents were matched for strength (top row), GPT-
4o, GPT-4, and humans all assigned more credit to the agent
who exerted more effort and force, and more blame to the
agent who exerted less effort and force. GPT-4o-mini was
similar in how it assigned credit for successes, but for fail-

ures it assigned equal blame to both agents, regardless of ef-
fort/force. This suggests that neither LLMs nor humans at-
tribute responsibility based solely on collaborators’ strength.
When the agents were matched for effort (middle row), the
LLMs all assigned more credit to the stronger and more force-
ful agent, and more blame to the weaker and less forceful
agent. This could be explained by LLMs evaluating responsi-
bility based on either force or strength; however, given that
they didn’t assign responsibility based on strength, LLMs
were likely making responsibility judgments based on force.
By contrast, humans assigned similar amounts of blame and
credit to both agents when effort was equal. As argued by
Xiang, Landy, et al. (2023), this supports the view that hu-
mans evaluate collaborators based on effort. When the agents
were matched for force (bottom row), all LLMs assigned sim-
ilar amounts of blame and credit to both agents, which sug-
gests that LLMs evaluate collaborators based on force rather
than strength or effort. Conversely, humans in this case as-
signed more credit to the agent who was weaker but exerted
more effort, and more blame to the agent who was stronger
but exerted less effort.

Next, we computed the correlations between LLMs’ re-
sponses and human data. As shown in Table 1, GPT-4o-
mini showed strong correlations with human credit alloca-
tion, but was unable to explain blame allocation in human
responses. GPT-4o’s responses were weakly correlated with
human blame allocation, and strongly correlated with human
credit allocation. GPT-4’s responses were moderately cor-
related with human blame allocation, and highly correlated
with human credit allocation. Considering the three LLMs
ordered from least to greatest number of parameters, we see a
steady progression: GPT-4’s responsibility allocation behav-
ior is most correlated with humans, followed by GPT-4o, and
then GPT-4o-mini.

We then computed the correlations between each LLM and
the seven cognitive models, visualized in Figure 3 (top row).
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closer to the top right indicate better models for explaining
the data. Overall, LLMs responses are best captured by the
Force model, while human responses are best described by
the Ensemble model for responsibility attribution and the Ef-
fort model for reward allocation.

Points closer to the top-right of this plot indicate models that
better explain the data. We found that the Force model best
explains all LLMs’ responses both when the agents failed
(r = .35 for GPT-4o-mini, r = .70 for GPT-4o, and r = .71
for GPT-4) and when they succeeded (r = .80 for GPT-4o-
mini, r = .58 for GPT-4o, and r = .82 for GPT-4) when jointly
taking both correlations into account. By contrast, human
responses were best described by the Ensemble model both
when agents failed (r = .92) and succeeded (r = .90). The
similarities between LLMs and humans shown by the corre-
lations in Table 1 are thus driven by distinct underlying mech-
anisms, which are only noticeable when we examine the com-
putations that generate the behaviors.

In summary, while LLMs primarily use force to assign re-
sponsibility, humans primarily use actual and counterfactual
effort.

Experiment 2: Reward judgments
Methods Experiment 2 used the same experimental setup
and stimuli as Experiment 1. The only difference was that the
LLMs were instructed to give bonus rewards to the agents,

Table 1: Correlation between LLM data and human data.

GPT-4o-mini GPT-4o GPT-4

Exp 1 Responsibility
Failure −.11 .20 .46
Success .89 .79 .90

Exp 2 Reward
Failure .38 .70 .65
Success .55 .71 .81

which none of the agents were aware of beforehand (so they
couldn’t have behaved strategically). The question that ended
the prompts was “How much bonus do you want to give each
contestant?”, and the LLMs were instructed to reply with a
number between 0 and 10 indicating how much bonus reward
to give each agent.

Results Figure 4 shows the LLM responses. Across all
models and conditions, we see an intercept shift between Fail-
ure and Success conditions. This means that, similar to hu-
mans, the LLMs we studied judged that agents who failed the
task deserve less reward.

When the agents’ strengths were matched (top row), sim-
ilar to humans, all LLMs assigned more bonus to the agent
who exerted more effort and more force. When the agents’
efforts were matched (middle row), GPT-4o-mini assigned
similar rewards to agents when they failed, but more reward
to the stronger and more forceful agent when they succeeded.
GPT-4o and GPT-4 assigned more reward to the stronger and
more forceful agent regardless of the outcome of the collabo-
ration. This suggests that the LLMs likely did not base their
decisions on effort, since they reward collaborators differen-
tially when they exert the same effort. By contrast, humans
allocated the same reward to both agents when they put forth
the same effort. When the agents’ forces were matched (bot-
tom row), all LLMs assigned similar amounts of reward to
agents who varied in strength and effort. This supports the
hypothesis that the LLMs used force, instead of effort, as their
basis for judgments. By contrast, humans assigned more re-
ward to the agent who was weaker but exerted more effort.
As shown in Table 1, GPT-4o and GPT-4 were moderately-
to-highly correlated with human reward allocation, GPT-4o-
mini was moderately correlated with human data.

Human reward allocations were best captured by the Ef-
fort model. By contrast, we found that that the Force model
best describes the responses of all three LLMs, both when the
agents failed (r = .73 for GPT-4o-mini, r = .76 for GPT-4o,
and r = .81 for GPT-4) and when agents succeeded (r = .71
for GPT-4o-mini, r = .72 for GPT-4o, r = .95 for GPT-4).
By contrast, human responses were best described by the Ef-
fort model both when agents failed (r = .98) and succeeded
(r = .97). These patterns are visualized in Figure 3 (bottom
row). Points falling closer to the top right indicate better mod-
els for explaining the data. As with Experiment 1, we see that
LLM and human reward allocations were driven by different
underlying mechanisms. While LLMs use force as the single
metric for assigning reward, humans use effort.

General Discussion
We compared LLMs’ responsibility attribution and reward al-
location to seven cognitive models. We found that LLMs’ re-
sponses were best captured by a Force model that evaluates
collaborators based on how much they actually contributed.
By contrast, humans evaluated collaborators based on their
actual and counterfactual effort (Xiang, Landy, et al., 2023;
Xiang et al., 2025).
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Figure 4: LLM reward allocations compared to humans (Xiang et al., 2025). Each line corresponds to a single scenario. LLMs
tend to assign similar amounts of reward to agents whose forces are matched, whereas humans tend to assign similar reward to
agents whose efforts are matched. Error bars indicate bootstrapped 95% confidence intervals.

Using force to evaluate collaborators is in line with
production-style theories, which consider causal processes as
directly producing another event (Dowe, 2000; Talmy, 1988;
Wolff, 2007; Greene et al., 2009). According to this view,
forces produced by agents determine the outcome of the col-
laboration, so force should be the basis for judgments. This
is a natural metric for systems that only care about the likeli-
hood of a certain outcome being produced, which might ex-
plain why LLMs reasoned this way. However, this social rea-
soning bias could be problematic if people expect LLMs to
reason about collaborations the same way humans do.

Our results raise questions about why LLMs behave dif-
ferently from humans in evaluating collaborators. One rea-
son why humans use effort is that it signals a person’s desire
to contribute. There is considerable evidence showing that
cooperative traits are deeply valued by humans (Cottrell et
al., 2007; Raihani & Barclay, 2016; Bird et al., 2012; Bird
& Power, 2015; Hackel et al., 2015), that people are sen-
sitive to collaborators’ effort (Xiang, Vélez, & Gershman,
2023), and the sensitivity to effort can be traced back to as
early as infancy (S. Liu et al., 2017). These preferences are
so deeply rooted in us that we exhibit them even in one-
shot interactions (Delton et al., 2011) and anonymous games
(Hagen & Hammerstein, 2006). Additionally, people who
are more willing to exert effort are more likely to get better
over time through training and learning (Xiang et al., 2024),
which makes them better collaborators in the long run. The
value of effort is likely ingrained through cultural evolution
(Henrich & Boyd, 2016; Henrich & Muthukrishna, 2021) and
might not be learned by LLMs that are trained to predict text
from the internet, which in turn has many idiosyncratic bi-
ases and may emphasize the importance of results rather than
effort. It is also possible that LLMs may have a more fun-
damental limitation in their capabilities, in particular related
to the capacity to reason counterfactually. LLMs are capa-
ble of some forms of counterfactual reasoning (X. Liu et al.,

2024; Z. Wang, 2024); however, it may be that this capabil-
ity is limited, or does not extend to our scenarios (Zečević
et al., 2023; Schulze Buschoff et al., 2025). Alternatively,
LLMs may simply care less about counterfactuals, or do not
recognize the relevance of counterfactuals for evaluating col-
laborators. Our results establish that LLMs prioritize force
over effort, but future work is needed to understand why this
happens.

Understanding why LLMs value force over effort might
shed light on how we can steer LLMs to be more human-like
in their responses. One intriguing direction is to add context
in the LLM’s instruction prompt that emphasizes the impor-
tance of effort (e.g., by specifying that agents will continue to
collaborate in the future) or counterfactual relevance. This re-
search will also benefit from experimenting with LLM archi-
tectures outside the GPT series and using open-source LLMs,
such as LLaMA, Qwen, Mixtral, and Gemma, which will en-
able analyzing the impact of number of parameters, training
data, and model architecture on LLM behavior.

In addition to understanding how LLMs assign respon-
sibility and rewards, this domain is also particularly useful
for studying the mechanisms underlying complex behavior in
LLMs. Because the computational cognitive models in this
domain are relatively well-developed, we can use them to an-
alyze LLM responses beyond merely evaluating their overall
accuracy and examining superficial similarities and dissimi-
larities to human responses. These models formalize theo-
ries of cognition that are specific and interpretable, offering
high-level insights and expressing something more general
about cognition that extends beyond particular experimental
domains. Analyses such as ours serve to empirically test these
cognitive theories. Our work paves the road to more theory-
driven research into the processes driving LLM behavior and
offers an exciting opportunity to understand the similarities
and differences between natural and artificial minds, and to
foster more effective human-machine collaboration.
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