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Significance

Humans are remarkably efficient 
teachers. For example, an 
experienced forager can teach a 
novice how to distinguish 
delicious morels from similar, 
toxic mushrooms by pointing out 
a few distinctive features. These 
features constitute a tiny fraction 
of what a knowledgeable teacher 
could possibly point out. Out of 
all the things we could teach, 
how do our brains compute what 
information is most helpful to 
communicate? Here, we find that 
specialized regions in the brains 
of teachers track learners’ beliefs 
during teaching. These results 
shed light on the neural 
mechanisms that support our 
extraordinary abilities as 
teachers.

Author affiliations: aDepartment of Psychology, Harvard 
University, Cambridge, MA 20138; and bDepartment of 
Brain and Cognitive Sciences, Massachusetts Institute of 
Technology, Cambridge, MA 02139

Author contributions: N.V., A.M.C., T.B., F.A.C., and S.J.G. 
designed research; N.V., A.M.C., and T.B. performed 
research; N.V., A.M.C., and T.B. analyzed data; and N.V., 
F.A.C., and S.J.G. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.  
This article is distributed under Creative Commons 
Attribution-NonCommercial-NoDerivatives License 4.0 
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email: 
nvelez@fas.harvard.edu.
2F.A.C. and S.J.G. contributed equally to this work.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2215015120/-/DCSupplemental.

Published May 22, 2023.

PSYCHOLOGICAL AND COGNITIVE SCIENCES

Teachers recruit mentalizing regions to represent learners’ 
beliefs
Natalia Véleza,1, Alicia M. Chenb, Taylor Burkea , Fiery A. Cushmana,2 , and Samuel J. Gershmana,2

Edited by Uta Frith, University College London, London, United Kingdom; received September 4, 2022; accepted April 20, 2023

Teaching enables humans to impart vast stores of culturally specific knowledge and 
skills. However, little is known about the neural computations that guide teachers’ 
decisions about what information to communicate. Participants (N = 28) played the 
role of teachers while being scanned using fMRI; their task was to select examples that 
would teach learners how to answer abstract multiple-choice questions. Participants’ 
examples were best described by a model that selects evidence that maximizes the 
learner’s belief in the correct answer. Consistent with this idea, participants’ pre-
dictions about how well learners would do closely tracked the performance of an 
independent sample of learners (N = 140) who were tested on the examples they 
had provided. In addition, regions that play specialized roles in processing social 
information, namely the bilateral temporoparietal junction and middle and dorsal 
medial prefrontal cortex, tracked learners’ posterior belief in the correct answer. Our 
results shed light on the computational and neural architectures that support our 
extraordinary abilities as teachers.

social learning | pedagogy | social cognition | bayesian modeling | fMRI

Humans are remarkable teachers: Through teaching, we can empower others to fish, craft 
tools, identify medicinal plants, solve differential equations, and learn a host of culturally 
specific skills and concepts. While teaching practices vary across cultures (1, 2), teaching 
has been argued to be a universal and essential component of human cultural transmission 
(3, 4), and the sophistication of human teaching is unmatched in other animals [(5, 6); 
but see ref. 7]. However, the unique power of human teaching makes its biological basis 
difficult to study. Animal models are inadequate, which limits what we can measure in 
the brain. Further, because teaching is so efficient, it is difficult to study using functional 
magnetic resonance imaging (fMRI), which typically depends on dozens or hundreds of 
trials within each participant. Here, we aimed to bridge these gaps by combining com-
putational modeling with a teaching task adapted to the constraints of fMRI.

The Computational Basis of Efficient Pedagogy

The hallmark of human teaching is that we are able to transmit abstract, generalizable 
concepts efficiently through a handful of examples (3, 6). For example, suppose you and 
an experienced forager are hunting in the woods for morels, a prized mushroom. Your 
teacher points out features of morels that distinguish them from toxic look-alikes, such 
as the honeycomb shape of the cap, the point where the base of the cap attaches to the 
stipe, and its hollow interior. These examples may help you begin to identify morels, but 
they constitute a small fraction of what the forager could have taught. For example, the 
teacher could have gone on to describe every morel that they have ever found, or to 
exhaustively point to everything in your surroundings that is not a morel. A large part of 
what makes teaching so efficient is that humans do not teach everything they know, but 
instead prioritize information that is helpful to the learner.

Efficient teaching requires the balancing of costs and benefits. First, one must be able to 
identify the benefits of candidate examples by determining how much useful information 
each would provide to the learner. This process relies on mentalizing, our ability to represent 
what others believe and to anticipate what they can learn. The benefit of an example can be 
defined in information-theoretic terms as its information content: Teachers ought to select 
examples that maximize the learner’s belief in a target concept (8–10). Even young children 
seem to obey this principle when deciding what to teach; for instance, they prioritize inform-
ing others about events that are out of view (11) or about skills that would be particularly 
difficult to discover on one’s own (12). Informational content guides teachers’ decisions about 
what to communicate in a variety of modalities, including verbal descriptors (13), demon-
strations (14), and examples (8). Second, one must balance these benefits against a variety 
of costs; some examples may be easier for teachers to provide because they require less time D
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and effort (12, 15) or because they are more typical or salient in 
context (13, 16).

Put together, Bayesian models of communication characterize 
teaching as a utility-maximization process (10, 12, 17–19). When 
selecting information to communicate, teachers balance the com-
municative costs to themselves against the benefits to the learner. 
In the example above, the target concept is morel, and your teacher’s 
examples are useful to the extent that they help you to correctly 
identify a morel as a morel and to discard other mushrooms. Other 
features—e.g., that morels grow near trees—are less informative 
because they are also true of similar, toxic species. Thus, they would 
not help you distinguish between them. Additionally, features of 
the morel that are distinctive but hard to teach, learn, or use—for 
instance, unique genomic markers—would be ruled out on the 
basis of cost.

The Neural Basis of Efficient Pedagogy

Existing work on the neural bases of social behaviors have largely 
focused on uncovering the neural representations that support our 
ability to learn from others (e.g., refs. 20–25), rather than our 
ability to decide what to teach (cf. ref. 26). Developmental and 
computational studies of teaching provide converging evidence 
for one candidate representation: Teaching relies on our ability to 
represent other people’s beliefs and to anticipate how those beliefs 
will change when presented with new information. This rep-
resentation is the focus of our study. As people make decisions 
about what to teach, we expect to find domain-specific neural 
representations that track the learner’s belief in the target concept. 
Additionally, we hypothesized that learners’ beliefs are represented 
within regions that play a specialized role in social cognition.

The first potential substrate for this representation is a set of 
regions that has been consistently implicated in mental state reason-
ing tasks, including bilateral temporoparietal junction (TPJ), pre-
cuneus (PC), right superior temporal sulcus (RSTS), and dorsal, 
middle, and ventral medial prefrontal cortex (27, 28); collectively, 
we refer to these regions as the mentalizing network. Regions within 
the mentalizing network have been found to respond more strongly 
when participants are prompted to reason about the mental states 
of a character in a story, movie, or cartoon, compared to when they 
are prompted to reason about a character’s bodily states (e.g., pain; 
ref. 29) or about physical events (30–32). Evidence from human 
fMRI (33, 34) and single-neuron recordings (35) suggests that these 
regions represent abstract features of mental states, such as the 
perceptual source and valence of other people's beliefs. Past 
work also suggests that these regions play a key role in strategic 
decision-making—a domain where, much like teaching, participants 
act by anticipating what their partner will think and how they will 
act (36–39). However, much is not known about the computations 
that are implemented in these regions. Most notably, there is cur-
rently no direct evidence that these regions are involved in teaching; 
here, we examine whether the mentalizing-related computations 
that support teaching are directly instantiated in these regions.

Another potential substrate for these computations is the anterior 
cingulate gyrus (ACCg). ACCg has been implicated in a wide range 
of social behaviors, including tracking rewards that others receive 
(40), learning self- and other-ownership (41), and tracking rewards 
that are inferred through social learning (24). Most importantly, 
existing studies on teaching have also pointed to a key role for 
ACCg. In particular, reinforcement signals in the ACCg vicariously 
monitor other people’s prediction errors when providing instructed 
feedback (26). It is important to note, however, that participants in 
this prior study could not choose what to teach—rather, they were 
asked to report task feedback to a learner. Thus, it is an open 

question whether error signals in ACCg guide teachers’ decisions 
about what to teach.

In the present study, participants (N = 28) played the role of 
“teachers”. Much like a forager teaching a pupil how to identify 
morels, their task was to pick out features that would help other, 
future participants—“learners”—distinguish a single rewarded 
option from visually similar but worthless alternatives. On each 
trial, participants chose which feature to communicate to learners, 
and they predicted how likely learners would be to pick out the 
rewarded option given the examples provided so far. Participants’ 
teaching behavior was best explained by a utility-maximizing 
model that balances the energetic costs to the teacher against the 
informational benefits to a learner who will interpret each feature 
literally. As complementary evidence that teachers represent learn-
ers’ beliefs, teachers’ predictions about how likely learners would 
be to answer the questions correctly closely matched the actual 
performance of an independent sample of learners (N = 140). 
Further, we found that regions that have been implicated in men-
talizing—including bilateral TPJ and middle and dorsal medial 
prefrontal cortex—track learners’ posterior belief in the rewarded 
option. By linking computational theories of teaching to their 
neural substrates, our work provides insights into the computa-
tional and neural foundations of teaching.

Results

Experimental Setting. Our task adapts classic “teaching games” 
(8, 42) to the constraints of fMRI. In teaching games, teachers 
are shown a target concept and teach it to a learner by providing 
examples. For instance, in the “rectangle game,” teachers clicked 
two points on a canvas to teach learners the location of a rectangle 
hidden from them (8). Teachers consistently chose points that were 
on opposite corners of the rectangle; this pattern is well captured by 
computational models that maximize learners’ belief in the target 
concept. However, if repeated over many trials, we cannot guarantee 
that teachers in this game consistently reason about learners' beliefs 
to select examples. For example, teachers may instead cache a 
simpler rule (e.g., “touch the corners”) that can be generalized across 
concepts. This presents a particular problem for task-based fMRI; 
thus, we designed a generalized form of the rectangle game where 
participants teach learners a wider variety of concepts.

Twenty-eight participants [17 F, M(SD) age = 22.1(4.0)] were 
scanned using fMRI while they taught learners how to answer 
multiple-choice questions. The task structure is shown in Fig. 1A: 
At the start of each block, participants saw a new question and 
were given 25 s to study it. Each question consisted of four draw-
ings, and each drawing was composed of light and dark blue 
squares arranged on a 6 × 6 grid (Fig. 1 B, Top). The correct answer 
was highlighted with a gold border. After this period, participants 
provided three examples to help learners pick out the correct 
answer. On each test trial, participants could show learners the 
location of one of the light blue squares contained in the correct 
answer (Fig. 1 B, Bottom). After selecting which square to reveal, 
participants saw the example as it would appear to learners 
(Fig. 1C). We modeled parametric regressors during the period 
when this screen was present. We reasoned that during this period 
participants might represent the learner’s update to their beliefs, 
and also their resulting belief state.

Finally, participants rated how likely learners would be to 
answer the question correctly, given the examples they had selected 
so far (Fig. 1D). Fig. 1E shows teachers’ examples and ratings for 
one representative question, and Fig. 1F shows a sampling of other 
multiple choice questions; average participant responses for these 
questions are shown in SI Appendix, Fig. S1. Participants taught D
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learners how to answer 40 multiple-choice questions. These ques-
tions were designed to be sufficiently varied to prevent teachers 
from learning a simple strategy that would generalize across target 
concepts, such as touching opposite corners. Participants were 
told that the examples they selected would then be shown to other, 
future participants from across the United States.

Teachers Balance Communicative Costs against the Benefits 
to the Learner. We modeled participants’ decisions about which 
examples to teach by defining a suite of models that select examples 
sequentially by balancing three values: the informational value to 
the learner, the movement costs to the teacher, and the teacher’s 
preferences (Fig. 2).

In order to measure the informational value of an example to 
the learner, these models represent learners’ beliefs and select 
examples that will maximize their posterior belief in the correct 
answer. In information-theoretic terms, this is equivalent to min-
imizing the learner’s surprisal ( Uinfo = ln(PL(h |d )) ; see also 
ref. 10). We defined three families of models, which differ in how 

they compute learners’ beliefs (Fig. 2A). First, pedagogical learner 
models assume that teachers and learners reason about each other 
recursively: Teachers select evidence that will maximize the learn-
er’s belief in a concept ( PT (d ; h) ∝ (PL(h |d ))

�info ), while learners 
infer what concept the teacher is trying to teach them 
( PL(h |d ) ∝ PT (d |h) ). �info is a free parameter that controls how 
strongly teachers choose examples that maximize learners’ beliefs; 
teachers tend to respond randomly as �info → 0 , and to determin-
istically select the option that maximizes learners’ beliefs as 
�info →∞ . In principle, learners and teachers could reason recur-
sively about each other indefinitely; in practice, this system of 
equations converges to a fixed point after a finite number of steps 
(SI Appendix, Fig. S2). This approach is often used in models of 
pedagogy (e.g., ref. 8). Second, literal learner models assume that 
learners’ beliefs are uniformly distributed across the options that 
are consistent with the examples provided; this model is equivalent 
to the one above, but stops after a single recursive step. This 
approach is often used in models of pragmatic language use, which 
assume that speakers say things that will be most informative to 

A C

D

F

B

E

Fig. 1. Experiment design & behavioral results. (A) Task structure and timing: At the start of each block, participants studied the question before being prompted 
to respond (“Study question”). Then, in each of three test trials, participants chose an example to provide to learners (“Give example”), saw the example presented 
from learners’ perspective (“Show example to learners”), and rated how likely learners would be to pick the correct answer, given the examples provided so far 
(“Rate beliefs”). (B) Choice screen: Participants could reveal to learners where the light blue squares were; these were highlighted in light gray on the canvas. 
Participants selected examples by moving a cursor; the cursor turned blue when participants navigated to a valid example. (C) In the critical event, participants 
saw the examples that they had selected so far as they would appear to learners. (D) Rating screen. (E) Behavioral results: Participants’ examples (Left) and 
trial-by-trial ratings (Right) for the question in panel B. The brightness of each cell shows the proportion of teachers who chose to reveal that square to learners. 
Error bars denote bootstrapped 95% CIs. (F) Other representative questions; see also SI Appendix, Fig. S1.
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a listener who interprets them literally (e.g., ref. 13). Finally, as a 
baseline, we also included a family of belief-free models that do 
not use learners’ beliefs to select examples.

In addition to considering learners’ beliefs, teachers have little 
time to evaluate each question and move the cursor across the 
screen to select examples. Therefore, it is important to take into 
account that some examples may require more effort to select or 
may be more salient than others. For example, participants tended 
to choose examples that were closer together and closer to the 
contours of the target concept than one would predict if teachers 
solely acted to maximize the benefits to the learner (SI Appendix, 
Fig. S3). Each of the three families of models defined above con-
tained models that incorporated teachers’ communicative costs 
and preferences into their decisions (Fig. 2B). We modeled the 
movement cost of an example ( C (dt |dt−1) ) as the Manhattan dis-
tance between the starting point of the cursor and the example. 
The cursor started at a random corner of the canvas on the first 
trial of each question and on the location of the most recently 
selected example on subsequent trials. Finally, to account for 
teachers’ idiosyncratic preferences ( S(dt ) ), we assigned a higher 

weight to examples that had fewer light blue squares surrounding 
it. This weighting favors examples on the contours of the correct 
answer.

Put together, at time t , the utility of an example dt is defined as:

	 [1]
U (dt ; h;�; d1..t−1)=�info ⋅ ln(PL(h|d1..t ))

+�cost ⋅C (dt |dt−1)+�speaker ⋅S(dt ),

where h is the target concept and � is a vector of coefficients that 
control the relative weighting of each of these values. Examples were 
selected probabilistically, in proportion to their utilities, using a soft-
max function ( P(x) = exp(U (x))∕Σx�exp(U (x� )).

We defined 12 models (Fig. 3A) that differed in how they rep-
resent learners’ beliefs (pedagogical, literal, and belief-free) and in 
whether they assign nonzero coefficients to the teacher’s movement 
costs and preferences. Each model makes distinct predictions about 
how teachers should select examples; SI Appendix, Fig. S4 shows 
model and parameter recovery results on simulated datasets. To 
select a model for fMRI analysis, we performed random-effects 

A

B

Fig. 2. Schematic of computational models. (A) Literal and pedagogical learners: Here, the teacher selects an example to teach a learner how to answer a toy 
question with two 2 × 2 alternatives. The literal learner’s beliefs are uniformly distributed among the options that are consistent with the example provided. 
By contrast, the pedagogical learner favors option B, even though neither option has been definitively ruled out. Intuitively, the pedagogical learner’s beliefs 
are guided by an expectation of what the teacher could have shown; if the teacher had been trying to point them toward option A, they could have chosen the 
square on the top-right corner. (B) Augmenting learner models: The full model computes the utility of possible examples (light blue squares) based on three 
values: the informational value to the learner, the teacher’s speaker preferences, and the movement cost to the teacher. The bottom row shows each of these 
values for all possible examples in the multiple-choice question shown in Fig. 1; brighter cells have higher values.
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Bayesian model selection [(43); see SI Appendix, SI Methods for 
more details]. From this procedure, a clear winning model emerges: 
The most likely model in the population is one that selects examples 
to teach by considering the teacher’s preferences, the teacher’s move-
ment costs, and the informational value to a learner who will inter-
pret the examples literally (protected exceedance probability > 
0.999; Fig. 3A). Additionally, models that considered the beliefs of 
a literal learner consistently provided the best fit to individual par-
ticipants’ teaching behavior, compared to models that considered 
the beliefs of a pedagogical learner or models with no belief rep-
resentations at all (SI Appendix, Fig. S4E). Thus, in the model-based 
fMRI analyses below, we use a literal learner model to predict learn-
ers’ posterior belief in the correct answer.

Taking a closer look at this full model shows what each of 
these terms contributes to the model predictions (Fig. 3 B–F). 

Fig. 3B shows the examples selected by one teacher for the ques-
tion shown in Fig. 1. The full model predicts that the teacher 
should choose examples that will uniquely identify the correct 
answer at t = 0 and t = 1, and choose a nearby example at t = 2 
once all other options have been ruled out (Fig. 3C). A single 
term in our utility function could not have predicted this pat-
tern. A model that considers only the informational value to 
the learner prioritizes examples that will uniquely identify the 
correct answer, but is indifferent between these examples 
(Fig. 3D). Conversely, a model that prefers only examples at the 
contours disprefers the examples selected by the teacher, and 
does not change its predictions after each trial (Fig. 3E). Finally, 
a model that considers only movement costs simply predicts 
that participants should pick the closest available example on 
each trial (Fig. 3F).

A

B

D E F

C

Fig.  3. Model comparison & predictive checks. (A) Model comparison: The y axis shows distributions of model evidences, defined as −0.5*BIC, for each 
participant (44). Along the x axis, we considered three classes of models: pedagogical learner models (SN), literal learner models (S1), and those that included 
no belief representations at all (belief-free). Within each class of models, we defined alternative models by setting coefficients to 0; green cells denote nonzero 
coefficients in each model. (B–F) Predictive checks. (B) Examples chosen by a representative participant for the question on Fig. 1. The red square shows the 
starting point of the cursor on the first trial; the light blue squares show the examples selected by the participant, and the order in which they were selected. 
(C) Trial-by-trial predictions generated by the winning, literal-listener model (S1: all ω > 0) and by (D–F) alternative models that consider only informational value, 
teacher preferences, and movement costs, respectively. The brightness of each square shows the model-predicted probability that the teacher will select that 
square on a particular trial; the white border shows which example the teacher actually selected.D
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Teachers Accurately Predicted the Performance of an 
Independent Sample of Learners. So far, our results suggest that 
teachers select examples by balancing the informational value 
to the learner against their own preferences and communicative 
costs. They also add to a growing body of evidence that teaching 
is supported by mentalizing: The informational value of a given 
example depends on the learner’s beliefs, and on how those beliefs 
will change with new examples. However, it is an open question 
whether teachers’ representations of learners are well calibrated. 
That is, what teachers think learners will believe does not 
necessarily correspond to what they actually believe. We addressed 
this question by testing an independent online sample of learners 
on the examples that teachers provided (N = 140; see Materials 
and Methods–Learner task).

Learners were assigned to a different teacher on each question, 
and they saw the examples that that teacher selected in sequence 
(Fig. 4A). After seeing each new example, learners rated the prob-
ability that each of the four drawings was the correct answer. 
Participants were told that these ratings would be used to dis-
tribute 100 “chips” to bet on the correct answer; the more chips 
they placed on the correct answer, the larger the bonus they 
would receive. We counterbalanced which teacher’s examples 

were assigned to each learner so that learners could receive exam-
ples from as many teachers as possible (mean: 27.7 teachers, 
range 23 to 28) and so that teachers could share their examples 
for each question with at least five learners (mean: 5 learners per 
teacher per question, range 5 to 6).

Overall, learners tended to assign a higher probability to the 
correct answer as they received more examples (Fig. 4B; main 
effect of time: � = 0.03 , t = 4.751 , P < 0. 001 ). While we 
observed substantial variation in how well learners performed on 
different questions, we did not observe much variation based on 
the teacher they were assigned to, suggesting that the examples 
that different teachers provided were of comparable quality 
(SI Appendix, Fig. S5). Our key analysis tested whether teachers’ 
predictions about how well learners would do corresponded with 
how they actually did, after adjusting for time and for random 
effects of teachers, learners, and questions (see Materials and meth-
ods for details). After adjusting for these factors, we found a close 
relationship between teachers’ predictions about how likely learn-
ers would be to answer correctly and learners’ belief in the correct 
answer (Fig. 4C; main effect of teachers’ predictions: � = 0.02 , 
t = 4.6 , P < 0. 001 ; interaction between time and teachers’ 
predictions: β = 0.01 , t = 7.2 , P < 0.001). These results provide 

A

B C

Fig. 4. Learner behavior. An independent sample of learners was tested using the examples that teachers provided during the scanner task. (A) Task: Learners 
saw the examples provided by teachers in sequence. On each trial, they used sliders to place bets on the correct answer. (B) Learner performance: Overall, 
learners converged on the right answer as they received more examples (C) Relationship to teachers’ predictions: Teachers’ predictions about how likely learners 
would be to get each question right were correlated with learners' actual trial-by-trial performance. Error bars denote bootstrapped 95% CIs; the dotted line 
denotes chance performance.D
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convergent evidence that teachers possessed a well-calibrated 
model of learners’ mental states.

Bilateral TPJ and Middle, Dorsal MPFC Track Trial-by-Trial 
Changes in Learners’ Beliefs. Our behavioral results provide 
two lines of evidence that teachers represent learners’ beliefs 
when deciding what to teach. First, teachers’ examples were best 
explained by a model that maximizes the learner’s belief in the 
correct answer while taking the teacher’s communicative costs and 
preferences into account. Second, teachers’ trial-by-trial predictions 
about learners’ performance tracked the actual performance of an 
independent sample of learners. With this evidence in hand, we 
can now search for neural correlates of learners’ beliefs.

We examined two sets of regions of interest that have been 
implicated in processing social information (Fig. 5A). First, we 
functionally identified the mentalizing network within individual 
participants using an independent localizer task [(45, 46); see 
Localizer task, below] and hypothesis spaces drawn from a large 
sample of participants who were tested on the same localizer 
(SI Appendix, Fig. S6 and Table S1). Second, we defined ACCg 
anatomically as cytoarchitectonic area 24a/b (47, 48).

Within these regions of interest, we performed an ROI-based 
univariate analysis using a general linear model (GLM 1; see 
Materials & methods) with model-derived, trial-by-trial estimates 
of two quantities: learners’ posterior belief in the correct answer 
( PL(hTrue|d1..t ) ), and a belief update signal defined as the 
Kullback–Leibler divergence between learners’ belief distribution 
on successive trials ( DKL(PL,t | |PL,t−1) ), following the modeling 
procedure in ref. 49 (Fig. 5B). Note that both regressors are 
derived from the beliefs of a literal learner model, based on the 
structure of the teaching problem and on the examples presented 
so far; they are not affected by free parameter values (e.g., �info ). 
After Bonferroni correction, all regions of interest except PC 
tracked learners’ posterior belief in the correct answer (Fig. 5C; 
all ps < 0. 05∕8 ). A post hoc whole-brain analysis suggests that 
this effect is largely localized within our a priori regions of interest; 
bilateral ventrolateral prefrontal cortex was the only region outside 
of our hypothesis space to survive multiple-comparisons correction 
(FWE < 0.05, cluster extent > 10; Fig. 5D). We obtained similar 
results using parametric regressors that were derived from human 
learners’ average bet allocations (GLM 2; Fig. 5 E and F) and using 
independent ROIs derived from Neurosynth (SI Appendix, Fig. S7).

We then tested whether activations within each of these regions 
could be explained by simpler task variables. The literal learner 
model’s belief in the correct answer increases monotonically, and is 
thus correlated with task variables such as the number of examples 
presented or the amount of time spent on a question (SI Appendix, 
Fig. S8). To test whether these variables can account for our find-
ings, we used Bayesian model selection to compare two GLMs: a 
control GLM that merely tracks the number of examples presented 
(GLM 5), and a GLM that additionally tracks learners’ posterior 
belief and belief update, as in GLM 1 (GLM 6). Fig. 5G shows the 
results of this model comparison: Three ROIs—ACCg, RSTS, and 
VMPFC—were best explained by the control GLM, while activa-
tions in bilateral TPJ, MMPFC, and DMPFC were best explained 
by the GLM that additionally represents learners’ beliefs.

By contrast, evidence for neural correlates of belief updating was 
mixed. We did not find any regions where activity correlated pos-
itively with learners’ belief update. Instead, activity across several 
regions within the mentalizing network was negatively correlated 
with model-based estimates of learners’ belief update, and uncor-
related with regressors derived from human learners’ average belief 
update (SI Appendix, Fig. S9). We found similar results even after 
estimating each parametric regressor in a separate GLM, to account 

for correlations between regressors (GLM 3–4; SI Appendix, 
Figs. S10 and S11). Our results diverge from prior work, which 
has found that instructors vicariously represent learners’ prediction 
errors when providing feedback (26). We consider potential expla-
nations for this discrepancy in the Discussion.

Put together, our results suggest that activity in mentalizing 
regions—namely DMPFC, LTPJ, MMPFC, and RTPJ—tracks the 
learners’ posterior belief in the correct answer, and that this result 
cannot be explained by simpler confounding variables. By contrast, 
we find comparably weaker evidence that these regions contribute 
to the representation of the learner’s belief update—that is, how 
much their beliefs have changed—at the same moment in time.

Discussion

Teaching enables humans to efficiently transfer knowledge. In the 
past, both computational and developmental studies of teaching 
have proposed that teaching relies on mentalizing—that is, on our 
ability to represent other people’s mental states, and to anticipate 
how those beliefs will change during teaching. Here, we examined 
the neural correlates of belief representations as people make deci-
sions about what to teach. By modeling participants’ behavior, we 
find that teachers indeed choose examples that will maximize a 
learner’s belief in a target concept, while also taking their own pref-
erences and communicative costs into account. Consistent with the 
idea that teachers represent and anticipate how learners’ beliefs will 
change, teachers’ trial-by-trial predictions about how well learners 
would do correlated with the actual performance of an independent 
sample of human learners. Using the computational model that 
best fits teachers’ behavior, we then examined how belief representa-
tions are neurally instantiated. We took a hypothesis-driven, ROI-
based approach, examining eight regions that have been implicated 
in processing social information. Overall, activity in bilateral TPJ 
and dorsal and middle MPFC correlated with learners’ trial-by-trial 
beliefs in the correct answer; further, activity in these regions was 
best explained by a GLM that represented learners’ beliefs, com-
pared to a control GLM that merely tracked the number of exam-
ples presented. A whole-brain analysis showed that this effect was 
largely localized within our regions of interest. Put together, our 
work ties computational theories of teaching to their neural instan-
tiation, providing evidence that mental state representations within 
the mentalizing network play a role during teaching.

Our results suggest ways that existing models of teaching may 
be improved to better capture actual teaching behaviors. Pedagogy 
models are part of a broader suite of models of cooperative com-
munication (10, 18)—the principles that guide good teaching 
also guide good communication in other domains, such as lan-
guage. Our results suggest that we should take inspiration from a 
broader swath of models of communication to not only build 
normative theories of how teachers should select evidence, but 
also to identify what shortcuts they may take in doing so. In 
particular, our results suggest that teachers did not engage in com-
putationally costly recursive mentalizing, but instead chose exam-
ples that would be most informative to a learner who interprets 
them literally—that is, one who rules out the options that are 
contradicted by the examples provided and is indifferent among 
the rest. Further, while teachers did provide information that was 
helpful to learners, this was not the only consideration that guided 
their decisions. The best-performing model considered not only 
the benefits to the learner, but also the motor costs of providing 
particular examples and the teacher’s idiosyncratic preference for 
examples along the contours of the target concept.

These discrepancies between idealized models of teaching and 
our participants’ teaching behavior echo recent trends in models D
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of pragmatic language use. The models that best capture how 
people communicate through language tend to favor descrip-
tions that will be most informative to a simple, literal learner 
and that are shorter, more typical, or more salient in context 
(13, 16, 50). It remains an open question why teachers opted 
for these shortcuts in our task. As illustrated in the toy problem 
in Fig. 2, recursive mentalizing can accelerate learning in cases 
where the examples available cannot definitively rule out alter-
native concepts. One possibility is that teachers’ behavior in our 
task reflects the rational use of limited cognitive resources 
(51, 52). For example, teachers may have opted for this strategy 

to avoid exhaustively performing inference over all possible 
examples (53, 54), or to ensure that their examples would be 
understood by a broad audience of learners of varying degrees 
of sophistication (55, 56). If this is the case, then we may expect 
teachers to adapt their strategy based on the computational 
demands of the task and the sophistication of the learner. For 
example, teachers may engage in recursive reasoning when they 
are faced with a particularly challenging problem where a literal 
learner cannot definitively rule out any concept, or when they 
are paired with a sophisticated pedagogical learner that quickly 
converges on an answer.

A

C

G

E F

D

B

Fig. 5. fMRI results. (A) Anatomical region of interest for anterior cingulate gyrus (black) and functionally defined regions within the mentalizing network from 
a representative participant (remaining colors). (B) Schematic of the literal listener model’s beliefs, given the examples provided by the participant in Fig. 3; note 
that “A” is the correct answer. (C and D) ROI and whole-brain results using model-based regressors (GLM 1). (C) Average activations across regions of interest. 
Error bars denote bootstrapped 95% CIs; asterisks mark significant activations after Bonferroni correction (one-sample t test, P < 0.05/8). (D) Thresholded whole-
brain activations. Warm tones show significant activations in uncorrected statistical maps (yellow; P < 0.001, cluster extent > 10 voxels) and after family-wise 
error correction (orange; FWE < 0.05, cluster extent > 10 voxels). Cool tones show significant deactivations in uncorrected (light blue) and FWE-corrected (navy 
blue) maps. (E and F) ROI and whole-brain results using parametric regressors derived from human learners’ average responses (GLM 2). (G) Model comparison. 
We compared how well variability in activations in each ROI is explained by two GLMs: a control model that tracks the number of examples presented (Time, 
GLM 5), and a GLM that additionally includes parametric regressors for the learner’s belief and belief update (Time + Belief, GLM 6). The y axis shows protected 
exceedance probabilities for each GLM; red bars denote ROIs that were best fit by the control GLM, while blue bars denote ROIs that were best fit by the GLM 
that additionally tracks learners’ beliefs.
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Our results raise further questions about the neural computa-
tions that guide teaching behaviors. For instance, we found a uni-
variate neural response within the mentalizing network that tracked 
teachers’ estimates of the degree to which learners held a true belief 
about the correct answer. Our results contrast with prior work on 
the mentalizing network, which has tended to find reduced neural 
activation in response to predictable descriptions of mental states, 
relative to unexpected ones (57) and relatively great activation in 
response to false beliefs, relative to true beliefs (58). Other work 
finds multivariate neural patterns in the mentalizing network that 
are associated with the specific contents of mental state representa-
tions (34, 59), rather than univariate responses. Here, however, we 
find a strong correlate of true belief. This result may reflect the 
goal-directed structure of our task, in that participants’ goal was to 
bring about a specific true belief in the minds of learners. This hints 
at an intriguing integration of mentalizing and planning that may 
be fundamental to the power of human pedagogy (60).

Unexpectedly, although we found neural correlates of teachers’ 
representations of learners’ beliefs, we did not find the hypothe-
sized neural correlates of the learners’ updating process. While 
prior research suggests that teachers show a neural response pro-
portional to the magnitude of the update they impute to learners 
(26), here we find modest evidence for the inverse relationship. 
This result demands further study. Though it is natural to assume 
that teachers would maintain a representation of learners’ belief 
updates, it is possible that the specific period of time that we 
modeled—the moment when teachers observe the learner receiv-
ing their message—does not coincide with updating. That is, 
teachers may project updates when they select examples, obviating 
the need to recompute them upon seeing those examples pre-
sented. This is a notable dimension on which our study differs 
from that of ref. 26; future work may explore these differences 
by employing tasks where teachers observe how learners respond 
to their examples sequentially, in a real-time social interaction.

Finally, while we have identified an important commonality in 
how learners’ beliefs are represented in bilateral TPJ and MPFC, it 
is an open question how the computations implemented by each of 
these regions may differ from one another. TPJ and MPFC are 
functionally connected (61, 62) and are engaged in a variety of 
mentalizing tasks, including false belief processing, trait attributions, 
and strategic decision-making in games (63). However, while these 
regions tend to work in concert, past work also suggests that they 
may implement different computations. For example, in the domain 
of strategic decision-making, TPJ activity tracks outcomes when 
playing competitive games against another human, while MPFC 
activity reflects the deployment of particular behavioral strategies 
regardless of whether they are used against a human or a computer 
(39). These results raise questions about whether TPJ and MPFC 
also play dissociable computational roles in teaching, and to what 
extent these computations overlap with other mentalizing tasks or 
with domain-general functions such as planning (64). Future work 
may address this question through the use of nonsocial controls.

Past work on the neural bases of social cognition has largely exam-
ined the computations that underlie learning from others; this work 
has emphasized continuities between the computational principles 
and neural architectures that govern social learning and learning 
through firsthand experience with the environment (65–67). By 
contrast, less is known about the neural computations that support 
teaching (but see ref. 26), and still less is known about the extent to 
which these computations draw on specialized mechanisms for social 
cognition. The current work takes a different approach: Rather than 
probing these continuities, we instead ask whether teachers represent 
learners’ mental states as they decide what to teach—a distinctively 
social process. Overall, we find that teachers represent learners’ beliefs 

as they decide what to teach, and these beliefs are represented in 
several regions that play specialized roles in processing social infor-
mation. Our work lays an empirical and conceptual foundation for 
understanding the neural architectures that make human teaching 
efficient and powerful (68).

Materials and Methods

Participants. Twenty-eight participants (17 female, M(SD) age = 22.1(4.0) were 
recruited from the Cambridge, MA community. Participants were healthy, aged 18 
to 40, right-handed, with normal or corrected-to-normal vision; they received $80 
for their participation plus a performance bonus. Participants gave fully informed, 
written consent for the project, which was approved by the Institutional Review 
Board at Harvard University.

An additional two participants were excluded from analysis. Both participants 
had at least four runs with excessive motion (i.e., >2 mm translational motion 
or >2° rotational motion), including both runs of an independent localizer task 
(see Localizer task, below). No participants in the final sample had runs with 
excessive motion.

Scanner Task. In the main scanner task, participants selected examples to teach 
learners how to answer multiple-choice questions. Each question was composed 
of four 6 × 6 pixel drawings of light blue figures on a dark blue background. 
Participants were told that learners would receive a reward if they selected one 
of these options (the “correct answer”). Fig. 1A shows a representative question; 
the correct answer was highlighted with a gold border. Additional multiple-choice 
questions are shown in SI Appendix, Fig. S1.

Fig. 1B shows the task structure. Participants provided up to three examples 
per question. Each question began with a 3 to 7 s jittered fixation period. Teachers 
then looked at the question for 25 s (“Study question”) before being prompted 
to choose examples.

Teachers completed three test trials for each question, and each trial was 
composed of three phases. First, participants selected examples to communi-
cate to future learners by revealing parts of the correct answer on the “canvas” 
(“Give example”; 5 s), a dark gray, 6 × 6 grid placed below the four choice 
alternatives. Participants could only reveal the locations of the light blue squares 
to learners; to borrow terminology from past work (8, 42), this constraint is 
analogous to only providing positive examples that are contained within the 
target concept. Available examples were highlighted in light gray on the canvas. 
Participants selected examples by moving a cursor using a button box. At the 
start of each question, the cursor appeared in one of the four corners of the 
screen; the cursor’s starting location was counterbalanced within each run. The 
cursor appeared red when placed over an invalid example (i.e., a dark square 
or a previously selected example), blue when placed over a valid example, and 
gold once the participant confirmed their choice. After participants selected 
their first example, the cursor instead started off in the location of the most 
recently selected example.

Next, participants saw how the examples they selected would look to learners 
(“Show example to learners”; 2 s). All parametric regressors were modeled during 
this event (see fMRI analysis). Participants saw a fixation cross for .75 to 2.5 s and a 
prompt for 1 s (“Here's what students would see:”) before the display was revealed 
from the learner's perspective (Fig. 1C). In this display, the correct answer was not 
highlighted among the choice alternatives, and the canvas was a uniform shade 
of dark gray. Selected examples appeared as light blue squares on the canvas.

Finally, participants rated how likely learners would be to answer the question 
correctly, given the examples provided so far (“Rate beliefs”; 2 s). Participants 
answered this question on a five-point Likert scale, where a response of one indi-
cated that there was “No chance” that learners would get the question right, and a 
response of five indicated that learners would “Certainly” get it right. Participants 
then saw a fixation cross for .75 to 2.5 s before the next trial. Participants taught 
40 questions total, spread over 10 runs.

Localizer Task. We used an independent functional localizer task to identify 
participant-specific mentalizing regions (45). Participants read short stories 
describing a character’s mental state (Belief condition) or closely matched but 
nonmental representations, such as books, maps, and photographs (Physical 
condition). Participants completed two runs of this task, each containing five 
Belief trials and five Physical trials.D
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Learner Task.
Participants. A total of 140 participants were recruited on Amazon Mechanical 
Turk. Participants were paid $2 and a performance bonus of up to $5 (median 
time to completion: 25 min, median hourly pay: $10.64). Participants gave fully 
informed, written consent for the project, which was approved by the Institutional 
Review Board at Harvard University.
Procedure. Teachers' examples were presented, one by one, on a canvas in the top 
half of the screen. The canvas was a gray 6 × 6 array; the examples selected by the 
teacher were revealed to participants as black squares on the canvas. In the bottom 
half, learners were shown four possible answers to the question; each option was 
depicted as a pixel drawing of a black figure on a white background. Each option 
had a slider beneath it, which learners could use to place bets; the more participants 
moved a slider to the right, the more strongly they believed that that option was the 
correct answer. At the end of each question, participants received a small bonus that 
was proportional to how much they had bet on the correct answer.

We did not present teachers’ hints to learners if they failed to provide at least 
two hints during the response periods. Seven teachers had one question excluded 
from this study, and one teacher had two questions excluded.
Statistical analysis. We converted participants’ bet allocations into belief distri-
butions by rescaling them to sum to one. From these belief distributions, we then 
measured learners’ average self-reported belief in the correct answer. In our key 
analysis, we used the lme4 and lmerTest packages in R to estimate a mixed-ef-
fects linear model that predicted learners’ posterior belief in the correct answer 
as a function of time (i.e., how many examples had been presented, coded as a 
continuous variable), teachers’ predictions about how likely students would be to 
answer correctly (ranging from 1 = no chance to 5 = certainly, and also coded 
as a continuous variable), and the interaction between the two (belief_in_true ~ 
time*teacher_rating + (1|problem) + (1|learner) + (1|teacher)). Learners, teachers, 
and problems were included as random intercepts.

fMRI Analysis.
ROI analyses.

Mentalizing network. We identified participant-specific mentalizing regions 
by combining functional data from the localizer task with hypothesis spaces 
derived from activations from a large sample of adults tested on the same local-
izer (46). Each condition (Belief, Physical) was modeled as a 14 s boxcar spanning 
the length of the narrative and question. Within each subject, we contrasted 
responses to Belief > Physical (t-contrast, P < 0.001 uncorrected, minimum 
cluster size: 10) to identify ROIs. Using the resulting statistical maps, we defined 
each ROI by extracting the cluster containing the peak voxel within each region 
and by masking each cluster using that region’s hypothesis space. When no 
suprathreshold voxels were found within a hypothesis space, we repeated the 
search at P < 0.01 and P < 0.05. Finally, we masked each ROI using its hypothesis 
space so that there was no overlap in the voxels defined in each ROI. SI Appendix, 
Fig. S6 shows ROI hypothesis spaces and the distribution of ROI locations and 
extents in our sample; SI Appendix, Table S1 shows average peak voxel locations 
and ROI extents.

We also defined independent mentalizing ROIs using Neurosynth (69). 
We retrieved a statistical map testing for the presence of a nonzero association 
between voxel activation and the use of the term “mentalizing” (N = 151 studies, 
6,824 activations), thresholded to correct for multiple comparisons (FDR = 0.01). 
This association test identifies activations that occur more consistently in studies 
that include the term “mentalizing” than in studies that do not. We then binarized 
this statistical map and split it into clusters. This analysis identified seven clusters 
of activations in cortex and 2 clusters in the cerebellum (SI Appendix, Fig. S7); 
cerebellar clusters were excluded from analysis.

ACCg. We identified ACCg anatomically as bilateral cytoarchitectonic areas 
24a/b in ref. 48 (http://www.rbmars.dds.nl/CBPatlases.htm).
GLM. We defined four GLMs based on the winning behavioral model (GLM 1, 3 to 
4, 6), one GLM based on average responses in the learner task (GLM 2), and one 
control GLM that contained a single parametric regressor tracking the number of 
examples presented (GLM 5). All GLMs included six motion regressors, nuisance 
impulse regressors marking each time participants pressed a button, and boxcar 
regressors spanning each phase of a trial (Fig. 1A). In addition, for all GLMs, we 
defined parametric regressors during events where the example was presented 

to the teacher from the learners’ perspective (i.e., the “Show example to learners” 
event in Fig. 1A). These GLMs differed in which parametric regressors were included 
during this event.

Model-based GLM (GLM 1). The goal of this GLM was to identify neural signals 
that track trial-by-trial fluctuations in the learner’s beliefs and belief update. GLM 
1 included parametric regressors for model-based, trial-by-trial estimates of two 
quantities: the learner’s posterior belief in the correct answer, based on the evi-
dence provided ( PL(h |d1..t ) ), and the learner’s belief update. We defined the 
latter regressor as the Kullback–Leibler divergence between the learner’s posterior 
belief distribution after the current example was presented and their prior beliefs 
( DKL(Pt||Pt−1) ). On the first trial, we computed this belief update by comparing 
the learner’s posterior belief against a uniform prior.

Empirical GLM (GLM 2). The goal of this GLM was to identify regions that track 
learners’ beliefs in a way that is independent of our model implementation. 
As above, GLM 4 included parametric regressors for learners’ posterior belief 
and belief update. However, in GLM 4, these quantities were not estimated 
from the winning model, but rather from average responses on the learner 
task. Recall that, for each question, we presented the teacher’s examples to an 
average of five different learners, and each learner updated their bets as the 
teacher’s examples were presented sequentially. We converted learners’ bets 
into probability distributions by averaging over the bets provided by learners 
in response to a particular example, and then rescaling this average bet to sum 
to one. Measures of posterior belief and belief update were then defined from 
empirically derived probability distributions using the procedure described 
above.

Estimating model-based regressors in separate GLMs (GLM 3 to 4). These GLMs 
estimated the effects of learners’ posterior belief (GLM 3) and belief update 
(GLM 4) in separate models, using the same model predictions used to gen-
erate GLM 1.

Control GLMs (GLM 5–6). These GLMs were used to test whether activations 
found in each ROI could be explained by simpler confounding variables, namely 
the number of examples presented. Both GLMs included a parametric regressor 
that tracked the number of examples presented; GLM 6 contained additional 
parametric regressors that tracked model-based estimates of learners’ posterior 
belief in the correct answer and belief update, as in GLM 1.
Statistical analysis. We computed the average activity across a region of interest for 
a given participant by averaging beta-values across all voxels contained within that 
participant’s ROI mask. We then tested whether each of these regions reliably tracked 
learners’ posterior belief and belief update by averaging across average region-wide 
activities for each participant and conducting a one-sample t test against 0; we report 
Bonferroni–corrected results in Fig. 5 (P < 0.05/8). In addition, we compared these ROI-
based results to activations across the whole brain at two different statistical thresholds 
(P < 0.001 uncorrected and FWE < 0.05; cluster extent > 10).

For GLM 5 to 6, we additionally used Bayesian model selection to compare 
which GLM best captures variability in activations within each ROI (43). Using 
the ccnl-fmri package (https://github.com/sjgershm/ccnl-fmri), we used each 
ROI to mask statistical maps of individual participants’ estimated residual vari-
ance, and then used residual variance to compute the BIC of a given GLM within 
that ROI. The BIC reflects how closely the GLM matches the neural activity within 
a given ROI, while adding a penalty based on the number of regressors in the 
GLM to account for overfitting. Following our behavioral model comparison 
procedure, model evidences were approximated as −0.5*BIC (44) and used 
to estimate the protected exceedance probabilities for each GLM.

Data, Materials, and Software Availability. Behavioral data, unthresholded 
statistical maps, task code and other materials, analysis code data have been depos-
ited in Open Science Framework (DOI https://doi.org/10.17605/OSF.IO/SP5TC) (70).
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