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Abstract

Models of concept learning and theory acquisition often in-
voke a stochastic search process, in which learners generate
hypotheses through some structured random process and then
evaluate them on some data measuring their quality or value.
To be successful within a reasonable time-frame, these mod-
els need ways of generating good candidate hypotheses even
before the data are considered. Schulz (2012a) has proposed
that studying the origins of new ideas in more everyday con-
texts, such as how we think up new names for things, can pro-
vide insight into the cognitive processes that generate good hy-
potheses for learning. We propose a simple generative model
for how people might draw on their experience to propose
new names in everyday domains such as pub names or action
movies, and show that it captures surprisingly well the names
that people actually imagine. We discuss the role for an anal-
ogous hypothesis-generation mechanism in enabling and con-
straining causal theory learning.
Clerk: Occupation?
Comicus: Stand-up philosopher. I coalesce the vapors of hu-
man experience into a viable and meaningful comprehension.
Clerk: Oh, a bullshit artist!

(History of the World, Part 1. Dir. Mel Brooks)

Introduction
How do people come up with new concepts, causal models or
theories, to make sense of their world? Whether it is scien-
tists trying to explain the natural world with formal theories
of physics or chemistry, or children and adults trying to ex-
plain their experience with common-sense theories such as
folk biology or folk psychology, the question of how funda-
mentally new ways of thinking unfold over time and change
in response to evidence has long been of interest to cogni-
tive science (Carey, 2009; Gopnik & Wellman, 2012; Schulz,
2012b).

This paper is about the more everyday aspects of this pro-
cess: New thoughts of on-the-fly explanations and causal
models to make sense of everyday problems and puzzles. The
difference between radical conceptual change and prosaic
concept generation is one of degree, like the difference be-
tween coming up with a general explanation for how objects
balance and fall – a difficult process that may take months
or years (Baillargeon, 2008) – and coming up with an off-
the-cuff explanation for why soda tastes fizzy, or a plausible
name for a new action movie.

While everyday creativity is not categorically different
from scientific creativty, the specific challenge of explaining
creativity in everyday idea generation has been pointed out
by Schulz (Magid, Sheskin, & Schulz, 2015; Schulz, 2012a).

Schulz called for both empirical and theoretical research on
the issue. On the theoretical side, everyday creative thought
poses a problem for computational models that have been de-
veloped to capture more radical theory change (Goodman,
Ullman, & Tenenbaum, 2011; Ullman, Goodman, & Tenen-
baum, 2012). Briefly put, these models see humans as rea-
soning over a hypothesis space (“theory space”) that contains
explanations and concepts. People do not know in advance
what the right concepts and theories are, so they must stochas-
tically search through these large (potentially infinite) spaces,
adjusting and discarding their concepts as they go. If a newly
proposed concept or theory better fits the data, and is more
likely under a general prior favoring such things as ‘simplic-
ity’, then that newly proposed concept will be accepted.

Such a process might make sense for theory-change that
takes years to unfold, but surely (Schulz argues) it is under-
constrained when it comes to everyday thought. The search
spaces are too large, and the process does not take into ac-
count the specific constraint of a task. For example, suppose
a friend asks you to come up with a name for their hip new
Thai restaurant, located near a cluster of start-ups. You may
never have been faced with such a problem before, but after
some thought you might come up with “Thai-Tech”. It is not
a particularly good name, but it is at least a relevant one. It
is better than “Mummified Ragdoll Fifteen” or “Croatian de-
light”, or any of the other infinite combinations of words that
language affords. Such proposals would not just be rejected
if proposed, they would not be thought of in the first place.

That people do not waste time with nonsense (in the sense
of proposing gibberish answers used above) seems almost
trivial, and suggesting a concept-production algorithm that
runs through all combinations in the English language for
any given task seems like a clear non-starter. And yet, many
stochastic search algorithms for hypothesis generation suf-
fer from exactly this problem. How can such algorithms be
amended to not consider ‘obviously wrong’ proposals with-
out actually proposing them first?

The challenge of everyday thinking is the challenge of re-
ducing hypothesis spaces quickly and on-the-fly, in response
to a task that might never have been considered before. The
reduced hypothesis spaces might still be large, and they might
still contain ‘bad’ ideas and concepts. But these concepts and
ideas would at least be relevant to the task. They would be
capable of being wrong, in the sense that a human would rec-
ognize them as a bad or good response to the task, as opposed
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to completely unconnected.
In this paper we take up the computational challenge of

everyday reasoning, and propose a structured approach for
narrowing hypothesis spaces by inferring a generative model
over relevant examples taken from memory. The result-
ing “Bounded-Space” model (or, BS model, for short) can
generate reasonable proposals for learning or problem solv-
ing within a domain, but it does not exempt a thinker from
stochastically searching within the reduced space and evalu-
ating the proposals. Ideas generated in the reduced space may
be bad ones. They may even be, for lack of a more polite term,
mostly bullshit. But by quickly cutting down the space of pos-
sible thoughts from ‘mostly nonsense’ to, at worst, ‘mostly
bullshit’, everyday thinking and learning can be powerfully
and usefully constrained.

    Towards a Better 
Designed Belgian Office

The Red Queen

Figure 1: A space of possible names for things. Only a small
subregion contains names relevant for a given task (dark area,
in this case pub names). A stochastic search over the entire
space would result in many examples that are not even bad.

We develop and test our BS model using the relatively sim-
ple task of coming up with new names for items, specifically
movies of different genres and pubs (this is similar to a task
proposed in Magid et al., 2015). We compare its proposals to
those of people, and to real world data. We find that the ba-
sic BS model fares worse than people, but is already within a
reasonable range. A cognitively plausible extension to the BS
model that evaluates a small number of samples before select-
ing one is surprisingly consistent with the range of people’s
novel name generation behavior. The BS model provides an
initial proposal for capturing everyday thought, but extend-
ing it beyond the (relatively) simple task of proper names to
tasks such full-blown explanations is not trivial, a point that
we take up in the discussion.

Modeling on-the-fly thought
Generating new thoughts and concepts can be seen as a
stochastic search through a hypothesis space, guided by some
metric of success or quality (Ullman et al., 2012). Ideally,
the hypothesis space should be large enough to encompass
any possibly correct or useful theory or concept. Infinite
hypothesis spaces that fit this bill can be easily specified
through grammars over conceptual primitives (Piantadosi,

Tenenbaum, & Goodman, 2012), and in principle it is pos-
sible to stochastically search through such spaces by propos-
ing and rejecting amendments to the current hypothesis. But
the problem of everyday thinking suggests that these propos-
als must be strongly constrained by abstract domain know-
eldge, such that most of the proposals that can potentially be
considered (a-priori of any data or constraint) will never be
considered, and our actual proposals focused efficiently on
candidates that have some hope of being useful.

To see the problem more clearly, try to come up with a
name for a new pub. Perhaps you never faced such a task,
but presumably you can do it with some degree of success.
Such a thought process could be implemented by a stochas-
tic search through all the possible phrases in the English lan-
guage, but this would lead to a ridiculous proportion of not
only bad proposals, but completely irrelevant proposals. In
Figure 1 we consider a fictional space of all possible names
for things. Only a tiny portion of that space can even be called
‘Pub Space’.

Assuming a thinker (such as yourself) was never asked to
come up with a new pub name before, how can they quickly
reduce the space of all possible new names to just ones rel-
evant for pubs? Presumably you thought of a better pub
name than “Towards a Better Designed Belgian Office”, and
if someone posed that as a suggestion you could evaluate it
as a bad proposal. 1 But “Towards a Better Designed Belgian
Office” is a potentially good answer to a different question.
Again, the issue is that before any particular question, puz-
zle or problem is posed, we wish to have a large search space
that can generate many possible concepts, thoughts and so-
lutions. But after a particular task is set, we wish to restrict
the space to only the relevant solutions. How can we know
ahead of time what counts as a ‘relevant’ solution, without
first proposing it and evaluating it?

We propose a method (Bounded-Space, or BS) for con-
structing new, relevant concept spaces on-the-fly, illustrated
through the pub example in Figure 2. For any particular task
the thinker first draws from memory several examples that
match the desired concept (Figure 2.1). For example, if asked
to come up with a new pub name, the thinker might first draw
some known pub names from memory. We assume that rele-
vant examples are available in memory, even if they are rel-
evant in a broad sense. “Broad sense” here means that the
examples match the general structure of the task. For exam-
ple, if the task is coming up with an explanation for why the
Roman Empire fell, relevant examples can include causal ex-
planations in general (“State changes in X can be caused by
an outside Y”), rather than particular reasons why the Roman
Empire fell (“Crises of legitimacy”). Without any relevant ex-
amples that come to mind the question itself is a non-starter,
e.g. “Can you ganoosh a new Floop?”. The initial retrieval of
relevant examples might rely on associative memory, but is a
problem outside the scope of this paper.

The thinker then uses inverse inference, conditioned on the

1Or rather, as “not even bad’, just ridiculous.
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Figure 2: An illustration of the BS model applied to the do-
main of pub names.

examples, to construct a generative model that can produce
these examples. Such a thinker might focus on the form of the

examples, noticing for instance that all the examples share a
certain abstract causal structure. In our particular case study,
which is restricted to new names for pubs and movies, we
consider a grammatical analysis of the examples from mem-
ory (Figure 2.1), although many other structural constraints
are possible in the general case. For example, the thinker
would notice that “The Rose and Crown” share the same syn-
tactic structure as “The Horse and Groom”, namely “The
[Noun] and [Noun]”. The thinker then stores the relevant
underlying structure without the particular terminals (Figure
2.3). This database of structures is a proxy for a generative
model over the space containing the examples.

In order to come up with a new example (Figure 2.4),
the thinker chooses a structure in proportion to the number
of times it was used in any of the examples from memory.
For instance, the thinker might generate from “The [Noun]
and [Noun]”. When reaching any particular terminal (e.g.
[Noun]), the speaker either reuses an appropriate part from
a stored example (e.g. any of the nouns in the examples) or a
semantically similar part (“Ox” rather than “Horse”). In this
paper we use high-dimensional word embeddings via Global
Vectors (Pennington, Socher, & Manning, 2014) to imple-
ment a similarity space. Word-vectors that are close together
in this space (in a Euclidean or cosine distance sense) tend
to be semantically similar in psychological tasks. At the end
of this process, the thinker might for instance come up with
“The Bear and Ox” as a plausible pub name.

It is important to stress that this model only implements
the proposal stage of a conceptual search process. An addi-
tional evaluation step – not modeled here – is necessary to ac-
cept or reject a particular proposal. There may be additional
constraints that one considers in the evaluation, such as the
catchiness of the name. “The Bear and Ox” might be a terri-
ble name for a pub for any number of reasons under additional
evaluation, but at least it appears reasonable, as opposed to “A
Floral and Tasty Essence Wrapped in Chamomile”2. The role
of the BS proposal model is to get the thinker within a space
where good and bad proposals can be evaluated, rather than
having to spend the majority of the time with non-starters.

Under the assumption that an evaluation function exists, it
is possible to extend the model so that the thinker draws a
number of examples at a time, and only reports one of them.
This is natural if the thinker must provide an example or se-
ries of examples, and cannot choose to simply refuse to pro-
vide an example even if it is evaluated as poor. We consider
such an extension by having the model draw k samples (BS-
k), and choosing among them in proportion to their quality
(provided by the assumed evaluation function), relative to the
total quality of the sample. If k = 1, we recover the original
BS model. The k parameter has the psychological interpre-
tation of ’the number of examples people draw and evaluate
internally before reporting a single answer’. In order to com-
pare this model to people, we consider the task of coming up

2Which is better as an example response for ‘make up a wine
review’.



with new names for things, specifically movies of different
genres and pubs.

Experiment
Participants, materials and methods
Two groups of participants, Producers (N = 40, 18 female,
median age 29) and Raters (N = 50, 16 female, median age
33), were recruited through Amazon’s Mechanical Turk ser-
vice and paid a small monetary sum for their participation.

The Producers were asked to come up with 5 new names
for 4 different movie genres (action, horror, comedy and ro-
mance give 20 movie names in total per participant), and 5
new names for pub names. Producers entered their responses
using a free-form text field. The Raters were asked to rate
names for different categories on a 1-5 scale (“Very Bad” to
“Very Good”). Names were category specific, meaning a par-
ticular question might be “How good is the title Parade of
Bullets as a name for a action movie?”

In order to construct different names, we used an equal
mixture of names from the Production experiment, names
from real instances of the category, and names from the BS
model. To keep the task manageable for Raters, we used 25
names from each source (Production, Real, BS) per category,
creating 375 names in total. Each Rater saw half of these
names, such that each name was rated by 25 raters.

The Production names were selected by randomly choos-
ing 5 Producers for each category (we chose this method,
rather than randomly selecting from all the production data,
in order to asses whether Producers come up with better or
worse names as their guesses progress). The real names were
selected by randomly choosing among all Wikipedia entries
for that category (for movies) and from a list of popular pub
names (for pubs). The model names were selected by first
choosing examples at random from the Wikipedia entries for
movie genres, and a list of popular pub names. There were
on the order of 1,000 examples for each movie genre, and
260 pub names.3 These examples were syntactically parsed
using a variant of the NLTK package in Python (Bird, Klein,
& Loper, 2009), and a library of syntax trees was built for
each genre. Syntax trees were then chosen in proportion to
how often they appear in the examples, and terminals in each
tree were chosen from the appropriate part of speech as it
appears in the examples, or randomly replaced with a seman-
tically similar part of speech using GloVe (Pennington et al.,
2014) with probability Preplacement = 0.2. Once examples
are available, generating a new BS example takes less than a
second.

Results
Participants rated both the Production names (those made up
by people) and the Real names (those taken from Wikipedia)

3A more psychologically plausible version of example recall
would use likelihood sampling over the space of movies, and would
require asking a different group of subjects to recall actual movies
in response to genre prompts.

similarly: the mean ratings were 3.12 for Production and 3.07
for Real. People rated the BS model names lower on average
(mean rating was 2.57, difference is significant at p < 0.001).
The BS-k model with k = 5 achieves a mean rating of 2.99,
which is still statistically different from the average rating for
Production and Real names, but the difference is now much
smaller (we expand on why we chose k = 5 below).

Figure 3 shows the comparison in more detail, as a dis-
tribution over the ratings from 1 to 5. A c2 test shows the
distributions for the Production names and the Real names are
not distinguishable, while the BS and BS-5 models are highly
distinguishable from both and from each other (p < 0.0001).
Table 1 illustrates examples of high quality, low quality and
average names for different genres.

Figure 3: The distribution of ratings for different names, by
the source of the name.

The ordinary BS model is not as successful at producing
new examples as people, but it is not far. As mentioned, the
idea of the BS model is to construct a reasonable space to
sample from, as a first step towards in a propose-evaluate cy-
cle. It is likely that people are also considering bad names
but not reporting all of them, and this evaluation step is not
captured by the BS model. The BS-k extention of the model
uses the rating of the model names as a proxy for an evalua-
tion step, considering k samples at a time and choosing one
in proportion to its ratings relative to the total rating in the k
samples. If k = 1, we recover the original model. But as k
grows larger, we come closer to the rating distribution of the
Production and Real names (Figure 4), where ‘closer’ means
a lower Kullback-Leibler divergence (KL), between the distri-
bution of quality scores for the names produced by the BS-k
model and the Production or Real names. As Figure 4 indi-
cates, considering only around 3 to 7 samples at a time can
make a marked improvement to the BS model. Larger values
of k provide diminishing returns, and so for the analyses here
we considered k = 5. Note that the limiting behavior of in-
creasing k is not to produce higher and higher rated names,
but rather to converge on a steady-state distribution reflecting
a two-stage generate-and-evaluate loop for new names. It is
striking how quickly this distribution converges to that of the



names made up by people (or the Real names), suggesting
that the BS-k model represents at least a plausible first guess
for how people come to produce the new names they do.

Figure 4: Kullback-Leibler divergence (KL) between the dis-
tribution of ratings over model names and Production names,
for different values of k in the BS-k model. Error bars show
95% confidence intervals.

Discussion
There is something magical about everyday thought, and
something odd about how people can respond quickly and
reasonably to new questions they never heard with answers
no one else has heard. A child could take years to come up
with an intuitive biology that unites trees and animals into one
concept (Carey, 2009), but a 5-year-old can answer ’What
makes the wind?’ at the speed of thought. And even if their
answer is wrong it might be amusing (”The trees waving their
arms make the wind”), rather than absurd (”The wind blows
because the moon is bigger than a bag of Doritos”).

Such magical stuff deserves hard-nosed experimental
scrutiny (Magid et al., 2015), and a better computational an-
swer than ”People search randomly through all possible con-
cepts and explanations and evaluate each candidate by how
well it explains the data” (Ullman et al., 2012). Here we con-
sidered one particular proposal for constructing a reasonable
hypothesis space on the fly by using a structural analysis of
examples that match the task at hand. This BS model pre-
supposes that thinkers have a way of carrying out such a struc-
tural analysis (in our particular case, we assumed a thinker
can use grammar to recognize the structural similarity be-
tween instances, using ”Saving Private Ryan” and ”Chasing
Amy” to construct a general ”VERBing PROPER-NAME”
movie schema).

The BS model serves as just one part in a propose-evaluate
search, where the evaluation step is difficult to capture and
can involve a large amount of world knowledge. Still, for
the limited task considered it appears to produce reasonable-
sounding new examples for a given category. Within the lan-
guage domain, the model can potentially be extended beyond

short titles to include such things as wine reviews (”The fin-
ishing notes are not supported by the light body”). Outside
language, a similar approach to idea generation can take ad-
vantage of other structures used to organize thoughts. For ex-
ample, a causal-explanation BS model could analyze the un-
derlying Bayes-net structure of examples from memory, and
use those to propose new explanations from a common struc-
ture (say, X ^Y� > Z, the Roman Empire fell because of a
combination of tribal invasions and Jewish thought4). Ap-
plying this approach to generate good hypotheses for causal
learning and intuitive theory formation is, we hope, a promis-
ing next step – perhaps wrong, but at least not ridiculous, as
an account of where learners’ new concepts come from.
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Rating BS Model Production Real

High The Raging V (3.7)
Phoenix First (3.4)

War Hawks (4.1)
Retribution (3.9)

Bloodfist II (3.9)
Marked for Death (3.8)

ACTION Average Drop (3.0)
Conspiracy Mars (2.7)

Stunt Man (3.1)
Run Faster (3.1)

Blue Steel (3.2)
Bullet in the Head (3.1)

Low Of Art (1.9)
Teenage Chinese (1.5)

The State of Iraq (2.6)
Eat It (2.1)

I Come in Peace (2.3)
Curry and Pepper (1.5)

High The Dawn (3.5)
The Prophecy on One (3.4)

The House of Death (4.2)
Cabin of the Dead (4.0)

The Dunwich Horror (4.1)
Murders in the Rue Morgue (4.0)

HORROR Average Sharks (2.7)
Seed 5 (2.4)

Silence (3.1)
Blood Draws (3.0)

The Headless Eyes (3.3)
The Wizard of Gore (3.0)

Low Space Vegas (1.9)
Family (1.5)

Paid Maidens 3000 (2.1)
Cat Napping (1.7)

Count Yorga, Vampire (2.7)
Mephisto Waltz (2.2)

High Love Punch Drunk (3.0)
All American Rita (2.8)

Hot Mess (3.5)
Tame Your Own Shrew (3.4)

Above the Limit (3.0)
Mr. Flip (3.0)

COMEDY Average Puddles of Max (2.6)
America Dave (2.6)

Come on Man (2.8)
Match This (2.7)

The Enchanted Drawing (2.6)
Those Awful Hats (2.6)

Low Princess Year (2.2)
West (2.1)

Jane 2 (2.1)
Ha Ha Ha (1.8)

New Pillow Fight (2.3)
Clowns Spinning Hats (2.0)

High Love in a Separation (3.5)
Private Woman (3.4)

When You Least Expect It (3.7)
Daydreaming in New York (3.7)

At First Sight (4.0)
Bed of Roses (3.7)

ROMANCE Average The Pearl Rollercoaster (2.7)
Walls of Sky (2.5)

Take it Slow (3.3)
Cool Happiness in New York (3.0)

Bitter Moon (3.2)
Ballistic Kiss (2.9)

Low A Speckled McKee (2.2)
Death (1.4)

Cheeky (2.5)
Red Beans and Rice (1.9)

1871 (2.3)
The 5th Monkey (2.0)

High The Hound’s Head (3.5)
The Royal Hood (3.1)

The Old Barrel (3.8)
The Rusty Spur (3.8)

The Rose & Crown (3.8)
The White Lion (3.7)

PUBS Average The Green Bay (2.6)
The Garter (2.4)

The Dark Forest (3.0)
The Dog’s Ear (3.0)

The Castle (3.2)
The Cross Keys (3.1)

Low The Cow (2.2)
The Pear (1.9)

The Cat’s Meow (2.6)
The Paper Cut (2.3)

The White Hart (2.5)
The New (1.8)

Table 1: Examples of different names, organized by source and average rating, with their rating indicated in parenthesis. The
names were assigned as Low, Average and High based on their relative position compared to the median rating for that source
and genre. 90 names are shown out of the total 375.
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