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“If we knew what we were doing, it would not be called research, would it?”- Albert Einstein

The easy problem

Most work on applying AI to science has focused on what might be called the “easy problem”
of AI science (this is a relative term, since the easy problem is actually quite hard). A scientist
specifies a function that they want to optimize (e.g., a function that scores protein folding
structure or fusion reactor designs). AI optimization tools can then be applied to this problem.
So far, this kind of application has been highly successful (e.g., AlphaFold1).

What makes this problem “easy” is not the form of the solution (which may require a great deal
of engineering work) but rather the form of the problem. It is clear from the beginning what
needs to be optimized, and what kinds of tools can be brought to bear on this problem. The
engineering breakthrough comes from building much better versions of these tools. In other
words, the problem is relatively easy because it does not require any conceptual breakthroughs of
the sort involved in the discovery of relativity theory, genetics, or the periodic table.

Are these conceptual breakthroughs just patterns that can be discovered with a sufficiently
powerful pattern recognition system? In a sense yes, but before that can happen, something has
to tell the pattern recognition system what kind of patterns are interesting, important, and
useful. What problem is the pattern recognition system designed to solve, and where does this
come from?

The hard problem

The fundamental barrier to automating science is conceptual. Great scientists aren’t simply
extraordinary optimizers of ordinary optimization problems. It’s not like Einstein had a better
function approximator in his brain than his peers did, or Mendeleev had a better version of
backprop in his brain. More commonly, great scientists are ordinary optimizers of extraordinary
optimization problems. It is the formulation of the problem, not its solution, that is the truly
hard problem.

One might be tempted to relegate the hard problem to the fringes of “revolutionary science” (in
Kuhn’s sense2), which rarely erupt into mainstream scientific practice, whereas the easy problem

2 Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press..

1 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021).
Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.
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occupies the focus of the “normal science” that scientists spend most of their time on. However,
normal science is not simply optimization. This is obvious to any first-year grad student trying
to figure out what to work on. Normal science isn’t a catalog of optimization problems waiting
to be solved by a queue of grad students. The fundamental barrier for grad students is the same
one facing AI scientists: it is the conceptual problem of formulating an optimization problem.
This encompasses both major conceptual breakthroughs, like relativity theory, and the more
modest ones achieved by grad students on a regular basis, which nonetheless remain out of
reach for existing AI systems.

Looking backward

Much of the classic work on AI science (mainly by Simon, Langley, and their collaborators,3 but
also more recently by Schmidt & Lipson,4 Udrescu & Tegmark,5 and others) focused on the easy
problem. For Simon and Langley, this approach was premised on the psychological thesis that
scientific cognition was essentially the same as regular problem solving, only applied to a
different (and sometimes more challenging) set of problems. Consequently, they developed
algorithms that emulated human problem solving, and applied these to scientific discovery. This
approach was criticized by Chalmers, French, & Hofstadter6 because it endowed the algorithms
with a representation of the problem that already had the basic primitives needed for the final
theory. In other words, it skirted the problem of representation: where do the primitives come
from, and how do we know if we have the right ones? Simon insisted (contra Popper) that there
was a logic of scientific discovery, but his was in fact a logic of scientific problem solving (i.e.,
optimization), not discovery in the sense of problem creation. The latter involves representation
learning, but also something deeper, as I argue below.

Moving forward

In contemplating how to build AI systems that solve the hard problem, it is instructive to look at
how human scientists do it. At a high-level, human scientists break this into several
sub-problems:

● Domain specification.What are the relevant phenomena that need to be explained by a
theory?

● Constraint specification. What kinds of constraints need to be imposed on a theory based
on existing knowledge (both domain-specific and domain-general)?

6 Chalmers, D. J., French, R. M., & Hofstadter, D. R. (1992). High-level perception, representation, and
analogy: A critique of artificial intelligence methodology. Journal of Experimental & Theoretical Artificial
Intelligence, 4, 185-211.

5 Udrescu, S. M., & Tegmark, M. (2020). AI Feynman: A physics-inspired method for symbolic regression.
Science Advances, 6, 2631.

4 Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324,
81-85.

3 Bradshaw, G. F., Langley, P. W., & Simon, H. A. (1983). Studying scientific discovery by computer
simulation. Science, 222, 971-975.
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Once the domain and constraints have been specified, we can define an optimization problem
(theory search); hence, we have converted the hard problem into the easy problem. However, it
is uncommon to do a single pass from hard to easy, because scientists often realize that the
problem they’re solving is the wrong one. This may happen for several reasons. One is the
realization that a theory is internally inconsistent or paradoxical. Another is the realization that
the theory may (with suitable modification) be able to explain a broader range of phenomena,
prompting a respecification of the domain. Conversely, phenomena which were previously
included in a domain may need to be excluded if no adequate unifying theory is found for all
the phenomena. Respecification can also happen when new empirical phenomena are reported.
In a related vein, constraint respecification can happen when domains are merged, split,
expanded, or shrunk. The key point is that problem creation and problem solving are cyclically
coupled in scientific practice.

An important and elusive feature of problem creation is that it is not a data modeling problem. The
selection of what to model and and what constraints to condition on are antecedent to any data
modeling problem. It is also not reducible to a representation learning problem, in the sense of
figuring out how raw sensory input maps to abstract representations. Of course, that problem
also needs to be solved, but first the scientist needs to know what problems the representations
are being used to solve.

Sociological, aesthetic, and utility considerations enter at the problem creation stage. Building
an AI scientist is as much about shaping its tastes, style, and preferences as it is about endowing
it with powerful problem-solving abilities. Again, a look at how we train human scientists is
instructive: a good graduate advisor educates students about what problems matter, what
phenomena are interesting, which explanations count, and so on. These considerations can’t be
brushed aside as subjective factors irrelevant to the purely technical problems facing AI
systems; they are in fact constitutive of those technical problems. Without them, the technical
problems would not exist.

A research program for attacking the hard problem should begin with the cognitive science of
science,7 focusing on the understudied subjective, creative aspects discussed above and how
they interact with the objective aspects of problem solving. Once we understand what human
scientists are doing with enough precision that we can formalize these aspects, we can try to
leverage these insights to build scalable AI scientists. At least initially, it is unlikely that these
will be standalone systems, but rather more like research assistants or first-year grad students:
curious agents with some technical competence but in need of expert guidance. This guidance
can come in the form of natural language instruction, reading curricula, and demonstrations.

7 For an introduction, see Thagard, P. (2012). The Cognitive Science of Science: Explanation, Discovery,
and Conceptual Change. MIT Press.
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