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SUMMARY

Humans learn internal models of the world that support planning and generalization in complex environ-
ments. Yet it remains unclear how such internal models are represented and learned in the brain. We
approach this question using theory-based reinforcement learning, a strong form of model-based reinforce-
ment learning in which the model is a kind of intuitive theory. We analyzed fMRI data from human participants
learning to play Atari-style games. We found evidence of theory representations in prefrontal cortex and of
theory updating in prefrontal cortex, occipital cortex, and fusiform gyrus. Theory updates coincided with
transient strengthening of theory representations. Effective connectivity during theory updating suggests
that information flows from prefrontal theory-coding regions to posterior theory-updating regions. Together,
our results are consistent with a neural architecture in which top-down theory representations originating in
prefrontal regions shape sensory predictions in visual areas, where factored theory prediction errors are

computed and trigger bottom-up updates of the theory.

INTRODUCTION

Reinforcement learning (RL) is a normative framework prescrib-
ing how agents ought to act in order to maximize rewards in the
environment. In the field of artificial intelligence, RL has allowed
artificial agents to reach and surpass human-level performance
across a variety of domains previously beyond the capabilities
of computers.? In the fields of psychology and neuroscience,
RL has offered a compelling account of behavioral and brain
data across a number of species and experimental para-
digms.®® Most of this work has focused on model-free RL, a
kind of RL in which the agent directly learns a mapping from
different states in the environment to actions and/or values.
Model-based RL, on the other hand, posits that the agent learns
an internal model of the environment, which is used to simulate
the outcomes of different actions. Behavioral and neural studies
have found evidence for both kinds of RL,'>"® yet model-based
RL has received relatively less attention and is often studied us-
ing simple toy environments with small state spaces. This is
largely owing to the relative scarcity of powerful model-based
RL algorithms capable of matching human learning in complex
domains, ' leaving open the question of what the “model” in
model-based RL is and how it is learned and represented by
the brain.

One possible answer from cognitive science is theory-based
RL,"*"'" a strong form of model-based RL in which the model
is an intuitive theory—an abstract causal model of world dy-

namics rooted in core cognitive concepts such as physical ob-
jects, intentional agents, relations, and goals (Figure 1). Building
on findings in developmental psychology, theory-based RL
posits that the agent learns the theory from experience using
probabilistic inference and uses it together with an internal simu-
lator to predict and evaluate the outcomes of different action se-
quences generated by an internal planner. Theory-based RL has
captured patterns of human learning,'®"” exploration,’® and
generalization'® in complex domains where model-free and
simpler model-based RL approaches fail or learn rather differ-
ently. This has provided strong support for theory-based RL as
a concrete realization of human model-based RL.

Building on this work, our study aims to identify brain regions
involved in theory-based RL and how they map to its constituent
processes. To achieve this, we used a particular formalization of
theory-based RL'® to analyze functional magnetic resonance im-
aging (fMRI) data collected from human participants while they
learned to play Atari-style games designed to mirror some of
the richness and complexity of real-world tasks. Our analyses re-
vealed evidence that theory representations in inferior frontal gy-
rus (IFG) and other prefrontal regions are activated and updated
in response to theory prediction errors —discrepancies between
theoretical predictions and actual observations—which are in
turn computed in occipital and ventral stream regions such as
the fusiform gyrus (FFG). We also found evidence that, much
like in our theory-based RL model, theory updating in the brain
is factored into updating of objects, relations, and goals,
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Symbolic descriptions of game frames are fed to an inference engine which updates the most-likely theory, §*, using an approximation of Bayesian inference. The
theory consists of objects (sprites), relations (interactions), and goals (termination conditions). Exploitative (win) and exploratory goals based on the theory are fed
to a planner which uses a theory-based internal simulator and an intrinsic reward function to search for rewarding action sequences. The agent then takes actions

in the environment according to the best plan. Reused with permission from Tsividis et a

suggesting key differences between these cognitive compo-
nents. Finally, analyses of effective connectivity suggest that
theory inference involves both feedforward and feedback pro-
cessing reminiscent of hierarchical predictive coding.'®'®
Together, these results present the first direct evidence for the-
ory-based RL in the brain and establish a foundation for under-
standing its underlying neural processes.

RESULTS

We scanned 32 human participants using fMRI while they played
six Atari-style games (Figure 2A; Table S4). Each game had nine
levels of increasing complexity and had to be learned from expe-
rience, without any visual hints or prior information about the
rules. For data analysis purposes, games were interleaved and
balanced across pairs of runs (Figure 2B).

As a particular instantiation of theory-based RL, we used the
explore, model, plan agent (EMPA; Figure 1) proposed by Tsivi-
dis et al.'® Theories are formalized as symbolic, probabilistic pro-
gram-like descriptions of game dynamics that specify the
different object kinds, the outcomes of interactions between
them, and the win/loss conditions. EMPA performs Bayesian
inference over the space of theories and uses the most likely the-
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ory to run internal simulations and search for rewarding action
sequences. Tsividis et al."® showed that EMPA exhibits hu-
man-level learning efficiency in a large suite of Atari-style games,
including those used in our study. They also showed that EMPA
exhibits human-like object-oriented exploratory behaviors. In
contrast, model-free RL agents failed on both counts, learning
orders of magnitude more slowly and exploring much more
randomly than humans.

Consistent with these results, we found that EMPA performed
similarly to our participants (Figure 2C; no significant difference,
two-sided Wilcoxon rank-sum test based on simulated and
actual expected bonus payouts), while both humans and
EMPA performed significantly better than a pretrained deep RL
network, the double DQN (DDQN; p<10-'9), a powerful
model-free RL algorithm,?° variants of which have been put for-
ward as accounts of human model-free RL in complex domains.’
Consistent with Tsividis et al.’s'® results, we also found
that EMPA learned at a rate similar to humans (Figure S1A;
t(30) = 1.5,p = 0.13, two-sample t test of fitted linear coeffi-
cients), while the DDQN learned significantly more slowly
(t(30) = 3.9,p = 0.0005). Ablations to the intrinsic rewards,
planner, and exploration components of EMPA revealed
that intrinsic rewards are critical for this effect (t(30) = 4.1,
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Figure 2. Study design and behavioral re-
sults

(A) Participants played different Atari-style games.
The game names, colors, and textures shown were
randomized for each participant and were unre-
lated to the game rules (but were consistent across
different levels of the same game for each partici-
pant).

(B) Example scan session for single participant.
Runs were paired into balanced data partitions,
with blocks shuffled within each partition. See also
Table S4.

(C) Behavioral results from participants (green) and
generative play by EMPA (blue) and pretrained
DDQN (red). Each colored dot represents a single
real or simulated participant, respectively. White
dots depict medians, box plots depict upper and
lower quartiles, horizontal lines across kernel
density estimates depict means. ns, not significant,
wewesin < 10710 (two-sided Wilcoxon rank-sum
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p = 0.00083), while planner optimizations (t(30) = 1.5,p = 0.15)
and theory-driven exploration (t(30) = 1.0,p = 0.33) may be
less critical, at least in our design. All of our subsequent neural
analyses are based exclusively on EMPA theory learning from
human gameplay and thus do not rely on any of these compo-
nents. For a thorough comparison between the behavior of hu-
mans, EMPA, different ablations of EMPA, and different deep
RL models, refer to Tsividis et al.'®

Theory representations in prefrontal cortex

The central component of theory-based RL is the theory that
the agent continuously infers from experience. To identify brain
regions representing the inferred theory, we replayed each par-
ticipant’s gameplay through EMPA and used the inferred theory
sequences to predict the blood-oxygen-level-dependent
(BOLD) signal in each voxel using a linear encoding model fit
with Gaussian process (GP) regression (Figure 3A), a general-
ization of the more commonly used ridge regression.”’ In order
to embed the symbolic theories in a vector space for the en-
coding model, we used holographic reduced representations®”
(HRRs), a method for encoding complex compositional struc-
ture in distributed form. Similarly to previous work,”*® we
correlated the cross-validated predicted and actual BOLD
time courses; we then Fisher-z-transformed the resulting Pear-
son correlation coefficients to compute a predictivity score for
each voxel. Predictivity scores were aggregated across partic-
ipants using t tests. The resulting group-level t-maps were
thresholded at p <0.001 and whole-brain cluster family-wise er-
ror (FWE) corrected at « = 0.05. This revealed significant pre-
dictivity scores across a distributed bilateral network of regions
(Figures 3B, S4A, and S4B; Table S1). In prefrontal cortex, we
found bilateral clusters in IFG, as well as unilateral clusters in
middle (MFG) and superior frontal gyrus (SFG) and the supple-
mentary motor area. In posterior areas, we found a large bilat-
eral cluster, starting from early visual regions in occipital cortex,
extending into higher visual regions and then further into the
ventral and dorsal streams, including FFG and middle temporal

test). See also Figure S1.
Agent

gyrus in temporal cortex, and inferior parietal gyrus and angular
gyrus in parietal cortex.

We performed the same analysis using three control models®:
DDQN agents pretrained on corresponding games to control for
model-free RL representations (also used as a behavioral control
in Tsividis et al.'®), principal component analysis (PCA) to control
for low-level visual features,>*?° and a variational autoencoder
(VAE) to account for high-level visual and state features.?®>®
Similar to Cross et al.,® we compared models using a posteriori
bilateral anatomical regions of interest (ROls) based on cross-
referencing the t-maps from all models with the automated
anatomical labeling atlas®® (AAL3 atlas). We compared models
separately in each ROl based on the fraction of voxels with a sig-
nificant correlation (« = 0.05) between predicted and actual
BOLD signal. In prefrontal regions, EMPA largely outperformed
all three control models (Figures 3C, S4A, and S4B), specifically
in the triangular and opercular parts of IFG, as well as in MFG and
SFG. Additionally, EMPA outperformed all three control models
in middle temporal gyrus. A two-way ANOVA with model and
ROI group as factors in a 4 x 4 design (Figure S4B) revealed a
significant interaction between the effects of model and ROI
group (F(9,496) = 4.5,p<10~5, two-way ANOVA), with signifi-
cant simple main effects both for model (p < 10~ 8) and ROI group
(o <10~ 8). This suggests that the effects of theory representation
in those regions are not simply due to visual or model-free RL
confounds.

In order to probe which aspects of the EMPA theory drive the
encoding model results, we repeated the analysis using different
components of the theory—objects, relations, and goals—but
did not find any systematic differences (Figure S4C). We also
repeated the theory analysis using simplified object embeddings
in which every object has a single approach/avoid feature. We
found that this improved predictivity across cortex (Figure S4H),
pointing to a more parsimonious, action-related representation
of objects than the one used by EMPA.*°

In order to refute the possibility that the encoding model re-
sults are simply due to variance between games, we repeated
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Figure 3. Theory representations map to regions in prefrontal cortex and ventral/dorsal streams

(A) Encoding model analysis pipeline. State-action sequences ((a1, s1), (S2, a2), (S3, as), ...) from human gameplay were replayed through EMPA. Inferred
theory sequences (64, 62, 3, ...) were embedded in a vector space, convolved with the hemodynamic response function, and subsampled to get feature
vectors (x1,X2,Xs, ...). Preprocessed BOLD signal from each voxel (y1,y2,ys, ...) was regressed onto feature vectors using GP regression. Resulting predictivity
scores z were aggregated across participants using two-sided t tests. Resulting t-maps were thresholded at p <0.001 and whole-brain cluster FWE corrected
at « = 0.05. Analogous analyses were performed with control models (DDQN, PCA, and VAE). See also Figures S1 and S2.

(B) Group-level t-maps from (A). ROls are noted as IFGtriang, inferior frontal gyrus, triangular part; IFGoperc, inferior frontal gyrus, opercular part; MFG, middle
frontal gyrus; SFG, superior frontal gyrus; PreCG, precentral gyrus; SMA, supplementary motor area; PoCG, postcentral gyrus; IPG, inferior parietal gyrus; AG,
angular gyrus; SMG, supramarginal gyrus; ROL, rolandic operculum; PCUN, precuneus; |IOG, inferior orbital gyrus; MOG, middle orbital gyrus; SOG, superior
orbital gyrus, FFG, fusiform gyrus; MTG, middle temporal gyrus; LING, lingual gyrus; CAL, calcarine fissure; CUN, cuneus. See also Figure S3 and Table S1.
(C) Fraction of voxels with significant correlation (« = 0.05) between predicted and actual BOLD in anatomical ROls, aggregated across participants. Medians
with boxes representing top and bottom participant quartiles and whiskers representing data range, excluding outliers (outliers plotted in Figure S4A and included
in all statistical tests). *p <0.05, **p<0.01, **p <0.001, ***p <0.0001 (two-sided Wilcoxon signed rank tests). See also Figure S4.
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the analysis for each game separately and averaged the results
across games. We found that EMPA still outperformed all control
models in prefrontal cortex (Figure S4D), indicating that these re-
sults are not merely due to game differences unrelated to theory
learning, such as different sensory properties or sensorimotor
contingencies. To investigate whether there are any systematic
differences in theory encoding between games, we repeated
this analysis for games that require more planning and games
that require less planning. EMPA outperformed all control
models in prefrontal cortex for games that require more
planning (Figure S4E), but not for games that require less
planning (Figure S4F). A direct comparison revealed stronger
theory encoding in prefrontal cortex for games that require
more planning compared with games that require less planning
(Figure S4G).

Theory update signals in inferior frontal gyrus, occipital
gyri, and fusiform gyrus
After identifying regions representing the inferred theory, we next
sought to identify brain regions involved in theory inference.
Based on our previous work,®' we reasoned that such regions
might show greater activity during theory updating, reflecting
the temporary increase in computational demands. Because
theory updates are triggered by surprising events which violate
theoretical predictions, such an increase in neural activity could
also beinterpreted as a kind of theory prediction error. We used a
general linear model (GLM) with impulse regressors at theory up-
date events—frames at which EMPA switched from one most
likely theory to another based on the participant’s gameplay
(Figures 4A and S5; Table S2). The group-level contrast for
theory updating (Figures 4B and S7A, Table S3; thresholded at
p <0.001 and whole-brain cluster FWE corrected at « = 0.05)
revealed a distributed bilateral network of regions that largely
overlapped with the regions from our theory representation anal-
ysis. Most notably, in prefrontal cortex, we found bilateral clus-
tersin IFG, in addition to unilateral clusters in SFG, orbital frontal
cortex, and the supplementary motor area. We also found a large
bilateral posterior cluster covering early and late visual regions in
occipital cortex, extending into angular gyrus and precuneus in
the dorsal stream, and extending into FFG in the ventral stream.
To ensure enough power for this analysis, the game levels in
our experiment were specifically designed to elicit learning
throughout the entire session (Figure S5B; see experimental
design). Nevertheless, the frequency of theory update events
tended to decrease over the course of the session (Figure S5A:
all games; 7, = — 021,n = 540,z = — 7.34,p< 1072,
two-tailed Mann-Kendall test; p<10~8 for individual games,
except for Avoid George, p = 0.7). This led us to hypothesize
that the neural theory update effect might differ between earlier
levels, when there is more theory learning, and later levels,
when there is less theory learning (Figure S5). To investigate
this hypothesis, we repeated this analysis separately for each
data partition (Figures S7B-S7D). We found that the theory up-
date effect qualitatively diminished over time, with fewer and
smaller clusters surviving cluster FWE correction in later parti-
tions. However, a direct contrast between the first data partition
(Figure S7B) and the third data partition (Figure S7D) showed that
this difference is not significant (no voxels survived cluster FWE

¢ CellP’ress

correction), suggesting that EMPA is able to consistently capture
theory updating throughout the entire session.

To control for potential confounds, we included a number of
nuisance regressors in the GLM for events of non-interest,
including visual changes, key presses, and game events rele-
vant for theory updating (Table S2). A follow-up analysis using
anatomical ROIs from the theory updating contrast for the
entire session revealed that some nuisance regressors also
show a significant effect (Figure S6). To directly compare the
neural responses to different event types, we generated peri-
event time histograms (PETHs) from the baseline-adjusted
BOLD signal following theory updates and other control events
(Figures 4C and 4D) in bilateral anatomical ROIs with a signifi-
cant theory update effect (Figure S6). Notice that this is not a
confirmatory analysis but rather a complementary analysis
that (1) verifies whether the effect in those regions is driven
by a positive BOLD response to theory updates rather than
some combination of theory updates and nuisance regressors
and (2) verifies whether the BOLD response to theory updates
in those regions is stronger than the BOLD response to control
events. We found that, in contrast to other control events, the
increase in BOLD signal was larger and more sustained after
theory updates in IFG, all three occipital gyri, and FFG (two-
sided t tests in Figure 4C, paired t tests in Figure 4D). These
results suggest that these regions respond specifically to the-
ory updating, pointing to their potential involvement in
computing theory-prediction errors—discrepancies between
the perceived world state and the predicted world state based
on the theory—or in performing the theory update computation
in response to such errors. It is also noteworthy that these re-
gions also appear in the theory representation brain maps (Fig-
ure 3B), with IFG specifically representing the learned theory
(Figure 3C).

Separate update signals for different theory
components

The EMPA theory consists of three components: a set of ob-
ject types and their physical and/or intentional properties
(because they could be other agents), a set of relations be-
tween objects describing the outcomes of object-object
interactions, and a set of goals that the agent pursues. For
tractability, EMPA factors theory inference into separate infer-
ence processes for objects, relations, and goals.'® However,
the theory update GLM described above does not distinguish
between updates for separate theory components. Rather,
theory update events occur when either objects, relations,
or goals are updated (Figure 5A, top). When we repeated
the PETH analysis described above for individual theory
component updates, we found that some regions respond
differentially to different component updates (Figures S7E
and S7F). This led us to hypothesize that the brain might fac-
tor theory learning similarly to EMPA.

To investigate this hypothesis, we fit a GLM in which theory
updating was split into three separate regressors for object, rela-
tion, and goal updates (Figure 5A, bottom). We additionally fit
three control GLMs, each with a single component update (Fig-
ure 5A, middle). We compared GLMs using random effects
Bayesian model selection®” in the ROIs showing a significant
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Figure 4. Theory learning signals in prefrontal cortex and ventral/dorsal streams

(A) GLM analysis pipeline. Similarly to Figure 3A, frame-by-frame state-action sequences ((a1,s1),(s2,a2),(S3,a3),...) from human gameplay were replayed through
EMPA. Corresponding theory update sequences (/[01 = 02],/[0> =03],/[03 =04],...) from EMPA were entered as regressors in a GLM. Resulting theory update beta
estimates (Biheory_update) fOr individual voxels were aggregated across participants using two-sided t tests. Resulting t-maps were thresholded at p < 0.001 and

whole-brain cluster FWE corrected at « = 0.05. See also Figure S5 and Table S2.
(B) Group-level t-maps from GLM analysis in (A). ROIs noted as OFCant, anterior orbital gyrus; SFGmedial, superior frontal gyrus, medial, and the rest as in

Figure 3B. See also Figures S6 and S7 and Table S3.
(C) Peri-event time histograms showing the average change in BOLD signal following theory updates and different control events in ROIs with significant
Btneory_update- Colored fringes depict error bars (SEM) across participants. Stars indicate significance for theory updates for each time point. *p <0.05, *p < 0.01,

**p <0.001, ***p <0.0001, ****p <0.00001, ****p <10~ © (two-sided t tests).
(D) Change in BOLD signal from (C) averaged over 20 s following corresponding event. Error bars depict SEM across participants. Significance notation as in (C)

(paired t tests).

and all three occipital gyri (Figure 5B; Table 1). This suggests
that, similarly to EMPA, the brain also performs a factored theory
update.

BOLD increase in response to all three individual component up-
dates (Figures S7E and S7F). We found that the GLM with sepa-
rate component updates best explains the BOLD signal in IFG
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Table 1. GLM comparison results

AALS region

GLM PXPs

Theory updates

Object updates

Relation updates

Goal updates

Object, relation, goal updates

IFG pars triangularis
IFG pars opercularis
Superior occipital gyrus
Inferior occipital gyrus
Middle occipital gyrus
Fusiform gyrus

<0.0001
0.1717
0.0004
<0.0001
<0.0001
0.7140

<0.0001
0.1717
<0.0001
<0.0001
<0.0001
0.0097

<0.0001 <0.0001 0.9998
0.1586 0.1649 0.3328
<0.0001 <0.0001 0.99953
<0.0001 <0.0001 0.99998
<0.0001 <0.0001 0.99996
0.0004 0.0004 0.2756

PXP, protected exceedance probability; IFG, inferior frontal gyrus.

Theory representations activated during updating

The overlap (Figure 6A) between the brain regions representing
the theory (Figure 3) and the brain regions responding to theory
updating (Figure 4) was somewhat surprising. A priori, these re-
gions do not necessarily have to be the same: one analysis looks
for regions consistently representing the theory, without any in-

crease in activity around change points, while the other analysis
looks for regions with increased activity at theory change points,
without regard for the content of the theory itself. Indeed, we
found no significant correlation between theory embeddings
and theory updates (Figures S8A and S8B) derived from
EMPA. This led us to hypothesize that the two computations

Figure 5. Separate update signals for

A
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(A) lllustration of GLMs with impulse regressors for
Theory updates ” | , , | unified theory updates (top GLM; same as in Fig-
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GLMs), and separate updates for all three com-
Object updates , | ponents (bottom'GLl\./I). . o
(B) GLM comparison in ROls showing a significant
increase in BOLD signal for all three theory com-
. ts (Figures S7E and S7F). ROIs noted as
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P in Figure 3B. Bars denote GLM BICs relative
to theory update GLM BIC. Error bars denote
SEM across participants. *p<0.05, *p<0.01,
Goal uDdateS , , , , ***p<0.001, ***p <0.0001 (two-sided t tests). BIC,
Bayesian information criterion. See also Figure S7.
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Figure 6. Theory representations activated during updating

«©

(A) Overlap between significant clusters for theory representations (Figure 3B) and theory updating (Figure 4B). ROIs noted as in Figure 3B.

(B) Peri-event time histograms showing the average change in predictivity score following theory updates and different control events in the overlapping ROls.
Notation as in Figure 4C. Note that, in contrast to Figure 4C, the y axis is Az, which quantifies how well an encoding model based on theory representations can
predict instantaneous patterns of brain activity after a theory update, compared with before the update. See also Figure S8.

(C) Change in predictivity score from (B) averaged over 20 s following corresponding event. Notation as in Figure 4D.

are related in the brain. Specifically, we conjectured that theory
representations are preferentially activated during theory updat-
ing, akin to being “loaded” into working memory for the neces-
sary update.

To investigate this hypothesis, we plotted PETHs of the
baseline-adjusted predictivity time course from the encoding
model (Figure 3A) following theory updates and other control
events in the ROIs from the overlap. This shows, at each time
point after the event, how well the pattern of BOLD activity
can be predicted based on the inferred theory, compared
with immediately before the event. We found a significant sus-
tained increase in predictivity after theory updates in IFG (trian-
gular and opercular parts), all three occipital gyri (inferior, mid-
dle, superior), and FFG (Figure 6B; two-sided t tests).
Furthermore, the magnitude of this increase was significantly
greater for theory updates compared with other events (Fig-
ure 6C; paired t tests), suggesting that theory representations
are activated in these regions specifically during theory updat-
ing. Additionally, among a set of a priori ROIs thought to be
involved in the relational and semantic representations,>°
we found a significant effect in parahippocampal cortex
(Figures S8C and S8D).

8 Neuron 7177, 1-14, April 19, 2023

To investigate whether this effect varies between individual
theory components, we repeated this analysis for separate
component updates using the corresponding encoding models
fit for objects, relations, or goals only. We found that most re-
gions did not show a significant difference (Figures S8E and
S8F), with the exception of FFG in which object representations
were activated after object updates more strongly compared
with relation and goal representations during their respective up-
dates (p<0.001, Bonferroni corrected), suggesting a specific
role for FFG in object updating.

Effective connectivity during theory updating is
consistent with predictive coding

Having identified brain regions involved in theory representation
(Figure 3), theory updating (Figures 4 and 5), and the dynamic
interplay between these processes (Figure 6), we finally sought
to characterize the pattern of information flow between these re-
gions. Using a beta series GLM,*® we extracted estimates of
instantaneous neural activity during theory update events from
ROlIs that showed a significant effect in the previous analyses.
We additionally extracted estimates from visual and motor
ROIls in order to include potential inputs and outputs to and
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A 0 s after theory update

from theory-coding and theory-updating regions. We entered
the resulting estimates into the independent multiple-sample
greedy equivalence search (IMaGES) algorithm®®*” from the
TETRAD software package for causal modeling,®® which
greedily searches the space of effective connectivity patterns
for the one that best fits the data. Our hypothesis was that, during
theory updating, information would flow in a bottom-up fashion,
from early visual regions through theory-updating regions in oc-
cipital and temporal cortex to theory-coding regions in prefrontal
cortex, where the updated theory is putatively stored.

To the contrary, we found the opposite pattern, with informa-
tion flowing in a top-down fashion from prefrontal theory-coding
regions to theory-updating regions in occipital and temporal cor-
tex to early visual regions (Figure 7A). When we repeated the
same analysis, except using neural activity 2 s after theory up-
dates, we found a bottom-up pattern consistent with our prior
expectations (Figure 7B). These findings are consistent with a
predictive coding interpretation: information about the brain’s in-
ternal model of the world (in our case, the theory) is flowing top-
down from higher areas in prefrontal cortex, shaping sensory
predictions in lower visual areas; when an inconsistency be-
tween predictions and observations is detected, this results in
a theory prediction error that triggers a theory update, reversing
the flow of information so that the new sensory data can be used
to update the theory in the higher regions.

DISCUSSION

A longstanding question in neuroscience is how the brain repre-
sents the structure of the environment in order to support effi-
cient learning and flexible generalization. One possible answer
from cognitive science is that the brain learns a rich, abstract,
causal model grounded in core cognitive concepts such as ob-
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Figure 7. Effective connectivity during the-
ory updating is consistent with predictive
coding

(A) Best-fitting effective connectivity pattern based
on neural responses to theory update events esti-
mated using beta series GLM. ROls noted as in
Figure 3B.

(B) Same results using neural responses 2 s after
theory update events.

jects, relations, and goals, which is used
to simulate the outcomes of different
courses of action during planning.'>~'7+%°
We found support for this kind of theory-
based RL using fMRI data from human
participants learning to play different
Atari-style games. The theory inferred by
a theory-based RL agent can explain vari-
ance in IFG and other prefrontal regions
better than control models, suggesting
that those regions encode theory-like rep-
resentations above and beyond visual
and model-free RL features. In an over-
lapping network of regions, including
IFG, occipital gyri, and FFG, we found theory learning signals
that could not be explained by visual events, motor actions, or
theory-related nuisance variables, suggesting those regions
play a role in theory inference. In a subset of those regions, we
found evidence for separate learning signals for objects, rela-
tions, and goals, suggesting that the brain factors theory infer-
ence similarly to our theory-based RL agent. We additionally
found that the striking overlap between theory-coding and the-
ory-learning regions is not coincidental, with theory representa-
tions being activated following theory updates. Finally, we found
that the effective connectivity pattern during theory updates is
consistent with predictive coding,'®'® with feedback connec-
tions conveying theory predictions and feedforward connections
conveying theory prediction errors.

The idea that animals learn rich, structured representations of
their environments dates back to Tolman’s work on latent
learning.”®*" Tolman observed that rats were able to quickly
find newly placed rewards in a maze after repeated unrewarded
exposures to the maze, leading him to hypothesize that this flex-
ible generalization is supported by “cognitive maps**~**” —inter-
nal models of the world which allow animals to mentally search
through space and find efficient paths to goals. Neural evidence
for cognitive maps was famously identified in the hippocam-
pus,*® where place cells appear to encode an animal’s location
in space. Subsequent studies found evidence that cognitive
maps can represent nonspatial domains*®*” and also appear
in other parts of the brain,"*°° such as ventral prefrontal
cortex, which includes IFG, a region our study implicates in the-
ory coding. Our study found some evidence of theory represen-
tations in parahippocampal cortex but not in the hippocampus.
This is likely due to the fact that the theory on its own does not
constitute a map per se, but rather a set of abstract relational
rules that, when grounded in a particular world state (such as a
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video game frame), can be used to predict future world states.
We conjecture that the hippocampus and medial entorhinal cor-
tex might be involved in such grounded representations, encod-
ing a theory-based transition structure between concrete world
states that directly supports planning, rather than the abstract
theory itself.

Our findings resonate with recent studies that have used
computational modeling to identify a more specific role for pre-
frontal cortex in representing and/or updating an internal causal
model of the world.”" In an fMRI study comparing model-based
and model-free RL prediction errors, Glascher et al.'® reported
state prediction error signals—discrepancies between the
observed state and the state predicted by the brain’s internal
model, akin to theory prediction errors in our study—in similar
prefrontal regions, particularly in bilateral IFG. Another fMRI
study by Lee et al.°® reported evidence of rapid, one-shot
learning of causal associations encoded in ventrolateral prefron-
tal cortex, including the IFG. An fMRI study of causal structure
learning from our lab®' found causal structure learning signals
in a distributed bilateral network of regions, including IFG,
MFG, and SFG, regions in occipital cortex, and regions in the
ventral stream such as FFG. In that study, we also reported evi-
dence of beliefs about causal structure being activated in
response to feedback in a frontoparietal network of regions,
including IFG. Another study from our lab®® also reported evi-
dence of beliefs about causal structure being activated in IFG
during belief updating.

A separate line of work has implicated similar prefrontal re-
gions in relational reasoning.’**® Knowlton et al.°® unified
some of these findings using a role-based relational reasoning
model (LISA), according to which prefrontal cortex encodes ab-
stract relational rules as distributed role-filler bindings at
increasing levels of abstraction, from objects to relations to
propositions, somewhat reminiscent of our HRR theory code.
In LISA, rules are rapidly updated via spike-timing dependent
plasticity in the anterior prefrontal cortex and are activated in
working memory by long-distance connections from semantic
units in posterior cortex. This bears a striking resemblance to
our proposal and suggests that theory-based RL could serve
as a unifying lens for results from the neuroscience literature
on model-based RL, causal inference, and relational reasoning.
According to this view, these findings could be interpreted as
signatures of the same theory inference machinery applied to
different, narrower domains, with IFG serving as the key locus
of theory computation/storage in the prefrontal cortex and pos-
terior regions computing theory prediction errors for theory
learning.

Video games have long served as microcosms in which to
compare human and machine intelligence in naturalistic, com-
plex environments.”'* Most closely related to our work is a
recent study by Cross et al.’ in which fMRI data from human par-
ticipants playing Atari games was analyzed using a deep RL
network (DQN), a powerful model-free RL algorithm. The authors
found evidence of DQN representations across a distributed
network of regions, most notably in the dorsal visual stream
and posterior parietal cortex. Despite similar methodology, there
are crucial differences between our studies. The most critical dif-
ference is that we are interested in how people learn to play these
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games—an aspect of human behavior that is particularly well-
captured by theory-based RL compared with model-free deep
RL—whereas Cross et al.® are interested in the sensorimotor
transformations that support gameplay after learning has pla-
teaued. This in turn dictates important design decisions that
differ between the two studies. Most importantly, we focus on
games in which—according to our prior work—people’s
behavior seems to be model-based and, in particular, seems
to follow the predictions of theory-based RL, whereas Cross
et al.? focus on games in which people’s behavior follows the
predictions of the model-free DQN. As a result, our study in-
cludes more games which are played over shorter timescales
and have less visually distinct features, more complex rules,
and levels designed to maximize learning. This could explain
the relatively poor performance of our model-free RL control in
matching human performance and brain activity.

However, our results are not mutually exclusive with those of
Cross et al.” Multiple studies have shown that brains employ a
mix of model-free and model-based RL strategies.'®'® Indeed,
the results from Cross et al.® point to the dorsal stream, posterior
parietal cortex, and motor areas as being the loci of model-free
sensorimotor transformations, whereas they report little evi-
dence for model-free representations in prefrontal regions and,
in particular, they do not report any results in IFG. In contrast,
our results point to prefrontal cortex—and IFG in particular—as
the locus of theory encoding, and to occipital and ventral stream
regions as the loci of theory learning; at the same time, we find
little evidence for theory-based representations in the dorsal
stream, posterior parietal cortex, or motor cortex. Thus, the re-
sults from the two studies can be seen as complementary, point-
ing to hybrid architecture that includes both theory-based and
model-free components. Although EMPA in its current form is
purely model-based, it can straightforwardly be extended to
include learned policy and/or value components to help guide
the search toward promising action plans. In the field of artificial
intelligence, such hybrid approaches have recently achieved
remarkable success in learning to play board games®* and video
games,® suggesting that this could be a fruitful avenue for future
neuroscience research.

Although our results and the results of Tsividis et al.'® cannot
be accounted for purely by relatively straightforward deep RL
approaches like DDQN, they certainly do not rule out more so-
phisticated deep RL architectures. For example, deep model-
based RL architectures equipped with planning and model
learning modules have shown much faster learning and superior
performance on Atari games.”>’ Similar to EMPA, such ap-
proaches can learn a model of the environment from scratch
and use it to plan efficiently. Alternatively, deep meta-RL ap-
proaches use a model-free RL algorithm to learn a model-based
RL algorithm.58'59 Such models could in principle learn theory-
like representations or even an EMPA-like theory-based RL algo-
rithm from scratch. However, even if such models were able to
capture human behavior and brain activity, their opacity would
still leave open the question of what humans are actually
learning. In contrast, EMPA and theory-based RL more generally
characterize the structure and content of inductive biases and al-
gorithms from the beginning to the end of gameplay, which was
the original goal of our work and which other models have not
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been able to explain. Beyond that, theory-based RL could be
seen as the outcome of another learning process—perhaps
spread across both evolution and development—which could
in principle be modeled by deep RL.°®°° We leave this as the
subject of future work.

Our model relies on the same theory inference machinery for
all games. This is somewhat at odds with the finding that games
which require less planning show weaker theory representations
(Figures S4E-S4G). Indeed, there is no way for EMPA to “know”
that a game requires less planning until it has already inferred a
theory for it and played it for a while. One possible explanation
is that the reactive nature of these games prompts an alternative
mechanism for generating actions that relies less on the theory.
Model-free RL offers one such mechanism,® which once again
points to the possibility of a hybrid theory-based/model-free ar-
chitecture, highlighted above, and could be investigated in
future work.

Relatedly, our model predicts that theory representations
should be persistently active as they continuously inform plan-
ning during gameplay. The finding that theory representations
are activated preferentially during theory updates is somewhat
at odds with this prediction (Figure 6). One possible explanation
is that the increased BOLD activity during theory updates results
in an increased signal-to-noise ratio, allowing the encoding
model to achieve better predictivity. If that could fully account
for the effect, we would expect to see transient changes in pre-
dictivity for other events that elicit an increased (albeit to a lesser
extent) BOLD response in those regions (Figure 4C), something
we did not observe (Figure 6B). An alternative explanation is
that the theory is not stored as a persistent pattern of neural ac-
tivity but is rather stored “silently,”®° perhaps in the pattern of
synaptic weights, and is only activated when updated by the the-
ory inference circuitry.

Our effective connectivity analysis suggests that top-down in-
formation about the theory from prefrontal regions flows to oc-
cipital and ventral stream regions for predicting sensory inputs
and that when a discrepancy occurs—a kind of theory prediction
error—information flows the other way for updating the theory in
prefrontal regions based on sensory input from occipital and
ventral stream regions. This is broadly consistent with hierarchi-
cal predictive coding’®'®: the idea that top-down (feedback)
connections convey model predictions originating in higher
cortical areas that shape neural activity in lower cortical areas,
which in turn compute prediction errors that are conveyed to
higher areas via bottom-up feedforward connections for model
updating. Despite this affinity, there are important differences
between our proposal and traditional predictive coding ac-
counts. First, the predictive coding interpretation only pertains
to information flow between regions representing the learned
theory and regions computing theory prediction errors. Impor-
tantly, it does not account for the processes of learning, plan-
ning, and exploration, which are core aspects of theory-based
RL. Second, predictive coding models are usually employed in
narrow domains, often focusing on simple problems of low-level
perception'® or simple RL problems.®’ In contrast, EMPA and
theory-based RL more broadly focus on solving richer and
more structured problems. Our approach considers perception
and inference in the context of a complete modeling, planning,
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and exploring agent; the models and plans generated by
EMPA—and those generated by the brain—have more structure
to them than those generated by standard predictive coding ap-
proaches. Finally, theory-based RL and predictive coding are
frameworks at fundamentally different levels of description®:
theory-based RL is a computational-level proposal of explora-
tion, modeling, and planning based on Bayesian inference over
intuitive theories (with EMPA being a particular algorithmic
instantiation of it), whereas predictive coding is an implementa-
tion-level proposal of neural coding and dynamics of modeling
and perception.®® Viewed in this light, our results suggest that
the general predictive coding framework could be a promising
starting point for studying theory predictions, theory prediction
errors, and theory updating at the neural level. Future work could
formally relate EMPA to particular predictive coding formula-
tions, which could provide a richer theoretical framework for un-
derstanding the interplay between top-down and bottom-up
inferential processes in the brain, as well as the interplay be-
tween model learning, exploration, and planning, relative to cur-
rent predictive coding models.

One puzzling aspect of our results is the prevalence of visual
regions, which raises the possible concern that our analysis
was not selective enough to exclude visual confounds. This
concern is partly addressed by our control analyses. In our en-
coding model analysis (Figure 3), we found that EMPA consis-
tently outperformed all of our control models in prefrontal re-
gions, but not in other cortical areas; indeed, in most other
regions, EMPA was no better than PCA, suggesting that the the-
ory effects in those areas could be partly explained by visual fea-
tures. The theory update GLM (Figure 4) included visual nuisance
regressors that showed a stronger effect in some regions, partic-
ularly in early visual areas, suggesting that those regions play a
role in visual processing that is not specific to theory updating.
Accordingly, we excluded early visual areas from reporting and
follow-up analyses. Theory learning effects in higher visual areas
could be partly explained by our effective connectivity results:
according to the predictive coding interpretation, it is precisely
visual regions that ought to compute theory prediction errors—
discrepancies between theory-based predictions and sensory
observations—which in turn serve as the basis for updating the
theory in prefrontal regions. It is also worth noting that previous
work on causal structure learning®' has also reported evidence
for model updating in visual areas. Additionally, to some extent
our experimental design already controls for visual confounds
by having participants play the same level on repeat for 1 minute.
If they do end up playing the same level for multiple episodes,
most learning occurs during the first episode(s), with the other
episodes serving as implicit controls with nearly identical visual
inputs but little-to-no theory learning. This idea could be taken
further by having participants watch a replay of their own game-
play immediately after the game or in a subsequent scan ses-
sion. We leave this kind of control study as future work.

In summary, our results are consistent with a neural architec-
ture of theory-based RL in which theory representations in IFG
and other prefrontal regions are activated and updated in
response to theory prediction errors computed in occipital and
ventral stream regions, such as FFG, in a way consistent with hi-
erarchical predictive coding. Additionally, we hope that our work
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highlights the benefits of combining sophisticated, interpretable,
end-to-end cognitive models such as EMPA with naturalistic
experimental environments such as video games. By comparing
the internal representations of such models with brain activity,
researchers can begin to uncover how the brain learns and rep-
resents an internal model of the environment that supports adap-
tive behavior in complex, naturalistic tasks.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

fMRI and behavioral data this paper https://doi.org/10.18112/openneuro.
ds004323.v1.0.0

Software and algorithms

MATLAB R2022b MathWorks https://www.mathworks.com/

SPM 12 Rosa et al.®* https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/

CCNL fMRI Samuel Gershman https://github.com/sjgershm/ccnl-fmri

EMPA, fMRI task, fMRI regressor
generation

DDQN

data analysis code

Tsividis et al.'®; this paper

van Hasselt et al.’’; Tsividis et al.'®;
this paper
this paper

https://github.com/tsividis/vgdl/tree/
refactor_fMRI_cannon

https://github.com/tomov/RC_RL/tree/fmri

https://github.com/tomov/VGDL-fMRI-

Data-Analysis

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Momchil Tomov
(mtomov@g.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
o De-identified human behavioral and functional MRI data have been deposited at OpenNeuro and are publicly available as of the
date of publication. DOls are listed in the key resources table.
® Task and analysis code is publicly available as of the date of publication. DOIs are listed in the key resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty-two healthy participants were recruited from the Cambridge, MA community: 15 female, 17 male, 19-36 years of age, mean
age 24 + 4 years, all right-handed and with normal or corrected-to-normal vision. The study was approved by the Harvard University
Institutional Review Board and all participants gave informed consent. All participants were paid for their participation.

METHOD DETAILS

Experimental Design
Each participant played 6 different Atari-style games adapted from Tsividis et al. ° over the course of 6 scanner runs in a single ses-
sion (Figure 2B). Six games were played across 6 scanner runs. Each run consisted of 3 blocks. Each block consisted of 3 levels of a
given game. Each level was played on repeat for 1 minute total: if the episode ended before 1 minute had elapsed, a new episode
began on the same level. Nine levels were played in total for each game. Scanner runs were grouped in 3 data partitions for cross-
validation. Game order was pseudo-randomized such that each data partition contained one block of each game, ensuring that
games and levels were balanced across partitions.

For each participant, games were randomly assigned names that were unrelated to the game rules (Archeplan, Deception Eagle,
Dreams of Origins, Giants of Solitude, Questtide, Fuseville, Prime Origin). At the beginning of each block, the game name was shown
for 2 s (Figure 2A). During an episode, the game name and the current score were displayed at the top of the screen. At the end of an
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episode, the outcome (“You WON!” or “You LOST!”) was shown at the bottom of the screen and the final frame was frozen for 2 s.
Timing was adjusted such that each level was played for one minute total. After one minute, the current episode was interrupted with
a “End of level” outcome (to distinguish it from a win or loss) shown for 2 s, unless the participant was already on a win/loss screen.
There was a 10-s fixation cross at the beginning and end of each run to account for scanner stabilization and the hemodynamic lag,
respectively. Each run was 566 s in total.

Following Tsividis et al.,'® in order to avoid biasing learning with semantic priors based on object appearance, all games were
played in “color-only” mode: all objects were visualized as colored squares with symbols on them. Objects of the same kind had
the same color and symbol, while objects of different kinds had different colors and symbols. Color and symbol assignments
were randomized across games and participants. The game descriptions were inspired by and/or drawn from the General Video
Game Al (GVGAI) competition®® and expressed in the Video Game Description Language®® (VGDL). Participants 1 through 11 played
Chase, Helper, Bait, Zelda, Lemmings, Plaque Attack. Participants 12 through 32 played the same games, except for Plaque Attack
which was replaced by Avoid George. These games are a subset of the games used by Tsividis et al.’® and, in choosing them, we
aimed to cover a large and heterogeneous space in order to demonstrate the flexibility of human gameplay behavior and the versa-
tility of our model. All games were fully observable, i.e. no memory of past states is required to win. Each game had 5 actions: move
left, move up, move down, move right, action key. The levels were designed to ensure continuous learning about the game rules.
Specifically, different levels involved different object layouts and later levels occasionally introduced opportunities to learn about
game rules that were not available in earlier levels. Game descriptions, winning strategies, and example screenshots are shown in
Table S4. Level descriptions are available at https://github.com/tomov/RC_RL/tree/fmri/fmri_all_games.

Participants were told that they would be playing a sequence of Atari-style games with different rules and that they will have to learn
the rules of each game from experience. The game and level order and timing was explained to them (Figure 2B), as well as that they
would be playing all games in color-only mode and what that is. Specifically, they were told that the colors, symbols, and game names
convey no information about the game rules, except that objects of the same kind look the same in a given game. They were also told
that colors and symbols in one game convey no information about objects in another game. All participants were paid a base of $80
for their participation. Additionally, to incentivize learning, we paid participants a bonus based on performance. Specifically, for each
participant, we randomly chose a level and paid them the maximum score they achieved (in dollars) at the end of any episode on that
level, counting only episodes which they won. If they never won that level, the bonus was $0. This bonus scheme was explained to
them in detail. They were also told that it is meant to encourage efficient learning and gameplay: they should aim to maximize the
score and win each level within 1 minute.

In the scanner, participants played using a 5-finger button box, with each button corresponding to a game action (index finger =
move left, middle finger = move up, ring finger = move down, pinky finger = move right, thumb = action key). Before entering the scan-
ner, participants practiced by playing 3 levels (1 block) of a different game (Sokoban) on the laptop using a similar key setup. This
game was not played in the scanner. Overall, the entire scan session took 2.5 hrs per participant, 1.5 hrs of which was spent in
the scanner, 1 hr of which was spent on BOLD acquisition and gameplay.

fMRI Data Acquisition
We followed a similar protocol to our previous work.®” All participants were scanned using a 3T Siemens Magnetom Prisma MRI
scanner with the vendor 32-channel head coil (Siemens Healthcare, Erlangen, Germany) at the Harvard University Center for Brain
Science Neuroimaging. A T1-weighted high-resolution multi-echo magnetization-prepared rapid-acquisition gradient echo
(ME-MPRAGE) anatomical scan®® of the whole brain was acquired for each participant prior to any functional scanning: 176 sagittal
slices, voxel size =1.0x1.0x1.0 mm, TR = 2530 ms, TE = 1.69-7.27 ms, Tl = 1100 ms, flip angle = 7°, FOV = 256 mm. Functional
images were acquired using a T2*-weighted echo-planar imaging (EPI) pulse sequence that employed multiband RF pulses and
Simultaneous Multi-Slice (SMS) acquisition.®®~"" We collected 6 functional runs for each participant, each with 283 timepoints (Fig-
ure 2B). Scan parameters: 87 interleaved axial-oblique slices per whole-brain volume, voxel size = 1.7x1.7x1.7 mm, TR = 2000 ms,
TE =30 ms, flip angle = 80°, in-plane acceleration (GRAPPA) factor = 2, multi-band acceleration factor = 3, FOV = 211 mm. Functional
slices were oriented to a 25° tilt towards coronal from AC-PC alignment. The SMS-EPI acquisitions used the CMRR-MB pulse
sequence from the University of Minnesota.

All 32 participants were included in the analysis. Scanner runs with excessive motion (> 3 mm translation or > 3° rotation) were
excluded from the analysis.

fMRI Preprocessing

Following our previous work,®” we preprocessed functional images using the SPM12 MATLAB toolbox (Wellcome Department of Im-
aging Neuroscience, London, UK). Each functional scan was realigned to correct for small movements between scans, producing an
aligned set of images and a mean image for each participant. The high-resolution T1-weighted ME-MPRAGE images were then co-
registered to the mean realigned images and the gray matter was segmented out and normalized to the gray matter of a standard
Montreal Neurological Institute (MNI) reference brain. The functional images were then normalized to the MNI template (resampled
voxel size 2 mm isotropic), spatially smoothed with a 8-mm full-width at half-maximum (FWHM) Gaussian kernel, high-pass filtered at
1/ 128 Hz, and corrected for temporal autocorrelations using a first-order autoregressive model.
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EMPA

A detailed technical description of EMPA can be found in Tsividis et al., '® which we summarize here. EMPA learns a model (or theory),
8, of each game expressed in VGDL.®® VGDL breaks down the game rules into three different components corresponding to core
aspects of human intuitive theories®®"?: objects (sprites), relations (interactions) between objects, and goals.

A VGDL game description consists of a SpriteSet, s, which specifies the type, appearance, and dynamic properties each object
(e.g., “red objects chase the avatar at a speed of 3 squares per second”); an InteractionSet, 4;, which specifies what happens when
two objects interact (e.g., “when a red object collides with the avatar, the avatar dies”); and a TerminationSet, 67, which specifies the
win/loss conditions of the game (e.g., “when the avatar dies, the game is lost with a score of 0”). A VGDL description thus procedur-
ally defines a Markov Decision Process: the state at every timestep is described by the object instances and locations, the avatar’s
internal state, and any events due to collisions between pairs of objects; the transition function is defined by the SpriteSet, the
InteractionSet, and the TerminationSet; and the reward function is defined by the InteractionSet and the TerminationSet.

EMPA learns the rules of each game by inferring a probability distribution over the space of possible VGDL theories, ®, from expe-
rience using Bayesian inference:

p(0|s1.7,a1.7-1)xp(S1.7]0,a1.7_1)P(8), (Equation 1)

where 6 = (6s, 6, 67) is the inferred theory describing the game rules, T is the current timestep, s1.7 is the history of observed states,
ay.T—1 is the history of avatar actions, and p(6) is a minimum description length prior favoring simpler theories.

To choose actions, EMPA uses the maximum a posteriori theory, 6%, together with a simulation-based planner that searches for
action sequences that lead to rewarding outcomes under 6*. Specifically, EMPA pursues exploitative goals that lead to winning (ac-
cording to 67), as well as exploratory goals that reduce the uncertainty in ¢ (e.g., inducing an unobserved collision). Pursuit of these
sparse goals is aided by subgoals, which represent partial progress towards goals (e.g., “3 blue objects remaining”), and goal gra-
dients, which represent preferences for states that are spatially closer to achieving a subgoal (e.g., “the closest blue object is 3
squares away”). Planning is further aided by state pruning and re-planning based on prediction errors, as described in Tsividis et al.'®

In our study, we used the same EMPA parameters and settings as those in Tsividis et al.'® The code for EMPA will be available at
https://github.com/tsividis/vgdl upon publication.

To investigate the contribution of different EMPA components to behavior, we additionally performed three ablations from Tsividis
et al.’® (Figure S1A):

® no intrinsic rewards — no subgoals or goal gradients, leaving the planner to rely only on the sparse environmental rewards,

® no iterative width —the planner cannot rely on the iterative width heuristic, which prunes states that are similar to already visited
states and greatly ameliorates the combinatorial explosion associated with longer plans,

® c-greedy — theory-driven exploration favoring novel interactions is replaced with e-greedy exploration (¢ = 0.1).

DDQN

Following Tsividis et al.,'® as a control model we trained a deep reinforcement learning network (DDQN) based on the public repos-
itory https://github.com/dxyang/DQN_pytorch with parameter settings « = 0.00025,y = 0.999,7 = 100, experience-replay max =
50, 000, batch size = 32, and image input recrop size = 64 X 64 x 3. The exploration parameter, ¢, was annealed linearly from 1 to 0.1
using a decay rate of 200 steps. Following,” the DDQN had 3 convolutional layers (conv1: 32 filters with size = 8x8 and stride = 4;
conv2: 64 filters with size = 4x4 and stride = 2; conv3: 64 filters with size = 3x3 and stride = 1), followed by a fully connected layer
(linear1: 512 units), followed by the output layer (linear2: 5 units). Each convolutional layer was followed by batch normalization and
linear rectification (ReLU). ReLU units also followed the fully connected layer. The input was a 64 x64 x3 scaled game frame with 3
color channels (RGB). To ensure a fair comparison with EMPA, we pretrained a separate DDQN for each game using a VGDL envi-
ronment for 100 epochs of 250, 000 steps. Levels were alternated across epochs to ensure exposure to all levels. Specifically, in each
epoch, the DDQN was trained on a given level for one or more episodes, restarting the level if it was won or lost. During epoch 1, we
trained on level 1, during epoch 2, we trained on level 2, and so on, starting over from level 1 after level 9. We used the same pretrained
DDQNs for both the behavioral and the neural analyses.

The code for the DDQN is available at https://github.com/tomov/RC_RL.

Generative play

To compare human performance with EMPA and DDQN performance, we valuated the models on the same games and levels as the
human participants. We simulated each participant with EMPA by having a separate EMPA instance play all levels of each game gen-
eratively, in order. As with human participants, each level was played for 1200 frames (60 sec at 20 Hz), restarting the level if won or
lost before that. Similarly to humans, performance was evaluated based on the expected bonus payout, namely the maximum per-
level winning score, averaged across all levels and games. We simulated 32 participants independently, each simulation correspond-
ing to a single human participant. We similarly simulated 32 participants with the pretrained DDQNSs. Note that, unlike the DDQNs,
EMPA does not require pretraining.

Neuron 7711, 1-14.e1-e8, April 19, 2023 e3



https://github.com/tsividis/vgdl
https://github.com/dxyang/DQN_pytorch
https://github.com/tomov/RC_RL

Please cite this article in press as: Tomov et al.,, The neural architecture of theory-based reinforcement learning, Neuron (2023), https://doi.org/
10.1016/j.neuron.2023.01.023

¢ CellPress Neuron

QUANTIFICATION AND STATISTICAL ANALYSIS

Human and model behavior

We compared human and model generative performance using two-sided Wilcoxon rank sum tests based on actual (for participants)
and simulated (for models) expected bonus payouts (Figure 2C). To compare human and model learning, we fitted a second-degree
polynomial (no intercept) to the average learning curve (Figure S1A) and compared the resulting linear coefficients for humans and
models using two-sample t-tests.

Encoding model analysis

To compare EMPA theories to brain activations, we used an encoding model®”*"* that maps EMPA theory embeddings to BOLD
signal (Figure 3A). For each participant, we first replayed the sequence of states, actions, and rewards from their gameplay in the
scanner through EMPA, using a separate EMPA instance for each game. This produced an EMPA theory for each frame, correspond-
ing to the theory that EMPA would have inferred at that timepoint if it had observed the same sequence of events as the participant
(Figure S1D). We embedded each theory in a vector space using holographic reduced representations (HRRs; see below), resulting in
a sequence of HRR embeddings. To account for the stochasticity inherent in HRRs, we independently generated 100 such se-
quences, each with a different random HRR initialization. Each sequence was convolved with the canonical hemodynamic response
function from SPM and subsampled at the scanner frequency (TR = 2 s, or 0.5 Hz).

For each voxel, we predicted the BOLD signal with Gaussian process (GP) regression (see below) using cross-validation across the 3
data partitions (Figure 2B). We quantified accuracy by correlating the predicted with the actual BOLD signal for each partition, averaging
the resulting Pearson correlation coefficients across partitions, and Fisher z-transforming the result to obtain a single predictivity score z
for that voxel. To aggregate across participants, we performed a two-sided t-test against 0 across participants for each voxel, producing
agroup-level statistical map (t-map). Following our previous work,®” we thresholded single voxels at p < 0.001 and applied cluster family-
wise error (FWE) correction at significance level « = 0.05. We visualized the corrected t-maps using the bspmview toolbox in MATLAB.

Anatomical regions of interest (ROIs) were extracted by cross-referencing the peak voxels in each cluster (up to 3 peaks peaks per
cluster, minimum 20 voxels apart) with the automated anatomical labeling atlas®® (AAL3 atlas). Confirmatory ROI analyses were per-
formed using bilateral anatomical ROls from all models (see Control models below). In a given ROI, for each participant we computed
the fraction of significant voxels as the number of voxels with a significant Pearson correlation at the o = 0.05 significance level,
divided by the total number of voxels in the ROI. We compared models in each ROI using Wilcoxon signed rank tests across partic-
ipants. To aggregate ROIs into ROI groups (Figures S4C and S4D), we simply merged ROls from a given cortical region into a single
“macro-ROI” and performed the same analysis.

We similarly applied GP regression with our control models.

For the within-games model comparison (Figures S4D-S4G), we repeated this analysis separately for each game, only using the
BOLD signal from TRs corresponding to that game. To aggregate across games, we averaged the fraction of significant voxels across
games for each participant.

To look for differences between games (Figures S4E-S4G), we designated games that involve reasoning sequentially over multiple
kinds of interactions (e.g., picking up a key to unlock a door to reach a goal, as in Bait; pushing an object into another object to destroy
it, as in Helper; destroying objects so that other agents can reach a goal, as in Lemmings) as requiring more planning, and the rest as
requiring less planning.

Gaussian Process regression
For the encoding model we used Gaussian process (GP) regression,”' a nonparametric method for predicting values of unseen data
points based on similarity with observed data points. Ridge regression —a more commonly used encoding model®’® - can be derived
as a special case of GP regression. However, unlike ridge regression, GP regression avoids the need to fit weights to individual HRR
components (which by design are random) and allows for straightforwardly accounting for the randomness of HRRs.

To justify the use of GP regression, first consider the standard general linear model (GLM) formulation:

y =f(0)+e, (Equation 2)
f(0) = o(6) "W =x"w, (Equation 3)
e~ N(0,07), (Equation 4)

where y is the neural signal at a given time point, 6 is the EMPA theory, ¢(8) = x is the HRR embedding of 4, w are the component
weights (often referred to as beta coefficients), and e is Gaussian noise with zero mean and variance ¢2. Such GLMs are routinely used
to fit brain data and the resulting weights w — often fit using maximum likelihood estimation — are used to interpret whether a given
feature is represented in brain activity.
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High-dimensional feature spaces pose a challenge to this approach, as the weights might be underconstrained. One way around
this is to impose a prior distribution on the weights:

w~ N(0,Z,), (Equation 5)

where X, is the prior weight covariance matrix. The maximum a posteriori solution to this Bayesian linear regression problem is
equivalent to ridge regression, where a regularization term that constrains the weights arises naturally from the weight prior.

The challenge with applying ridge regression is that HRR embeddings are random, which 1) renders the weights meaningless, and 2)
necessitates averaging over that randomness. These issues can both be addressed by GP regression. First, the predicted neural signal
y . for a theory 6. can be directly computed in closed form from the training data 0,y,”" bypassing the need to compute the weights:

y.10.,0,y = %X*TAqu? (Equation 6)

n

A=o2XXT +2., (Equation 7)

where 0 = [01,02,05,...] " andy = [y1,y2,ys,...]" are the training theory and neural activation sequences, respectively, 6, and y.
are the held-out theory and neural activation, respectively, x. = ¢(6.) is the HRR embedding of the held-out theory, and
rX = [X1,X2,Xs,...] = [0(601),9(02), 9(03), ... ] is the training data design matrix (Figure S2A). Note that we are only using the posterior
means and omitting the variances for ease of exposition.

This can be further rearranged by applying the “kernel trick®'”, resulting in GP regression:

y.16.,0,y =k (K+a§/)71y7 (Equation 8)
k, = X" Z.x., (Equation 9)
K=X"Z,X. (Equation 10)

Here, the covariance matrix (or kernel) K quantifies the similarity between every pair of theories in the training data (Figure S2B), and
the covariance vector k. quantifies the similarity between every training theory and the held-out theory. In our case, they were
computed based on the HRR design matrix X, but in principle we could use a similarity metric that does not rely on explicitly
computed features. We used X, = /, so our similarity metric for each pair of theories was effectively the dot product of their
HRR embeddings. Intuitively, Equation 8 says that the predicted held-out neural activation is the average of the training neural ac-
tivations, weighted by the similarity between the corresponding training theories and the held-out theory.

Finally, we can account for the randomness of HRRs by marginalizing over different HRR embedding functions ¢ resulting from
different HRR initializations:

y.16.,0,y = /kT (K+a,27/)71yp(ga)dgo. (Equation 11)

4

From the central limit theorem and the stochasticity of HRRs, the resulting distributions of K and k. are approximately Gaussian, so
we chose to simplify further by approximating them using Dirac delta functions around their means, K = E,(K) and k, = E,(k.),
yielding the final GP formulation that we used:

y.10..0,y=k, (R+aﬁl)71y. (Equation 12)

We used a sampling approximation for K and k, by averaging over the kernels for 100 different HRR initializations. In practice, dur-
ing cross-validation, we had a set of held-out data points .., y, (rather than a single data point) with a corresponding covariance ma-
trix K. between the training and held-out data points. So for each HRR initialization we computed a single kernel for all three data
partitions, averaged the kernels across different HRR initializations, and then selected submatrices of the average kernel to get K
and K, accordingly for each cross-validation fold.

Our initial results indicated that our analysis is confounded by game identity: it produces nearly identical results to those of a simple
model were the feature vector x is a 6-dimensional one-hot vector representing the game currently being played (Figure S3). To
address this, we regressed out game identity from the BOLD signal and the model:

y =Ry, (Equation 13)
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K' = RKR™, (Equation 14)

whereR =1 — XgX; is the residual forming matrix for the game identity encoding model defined by the design matrix X, (t denotes
the Moore-Penrose pseudoinverse). This is equivalent to using the residuals from a game identity GLM fit to the BOLD signal.

Holographic reduced representations

We embedded EMPA theories in a vector space using holographic reduced representations®® (HRRs), a kind of vector symbolic
architecture’® that can represent compositional structure in distributed form. HRRs were originally proposed as a model of associa-
tive memory and have since been used for modeling structured memories of past events.”” HRRs use circular convolution (®) to
associate pairs of items, represented by vectors, and addition to create bags of associations. The resulting vectors can be further
associated or grouped together to represent higher-order compositions. Individual items could be extracted from the resulting vector
using circular correlation, although we do not take advantage of this in our work.

An EMPA theory consists of three components — objects (SpriteSet), relations (InteractionSet), and goals (TerminationSet) — that we
embed separately and then combine into a single vector (Figure S1B).

The SpriteSet is a set of object (sprite) classes, each consisting of a set of properties with given values (e.g., type=Missile,
color=blue, speed=slow). The base vectors corresponding to properties (e.g., type) and their values (e.g., Missile) are drawn from
isotropic D-dimensional Gaussian distributions /\/(0, aﬁl), where g, = 1/+/D, bound together using circular convolution, and added
to produce the vector for the corresponding sprite class (e.g., c3 = type ® Missile + color ® blue + speed ® slow). The vectors for different
sprite classes are scaled to unit length and added together to produce the SpriteSet vector, which is also normalized to unit length.

The InteractionSet is a set of relations (interactions) between pairs of sprite classes, each describing the outcome of an interaction.
Each interaction has three key properties: an agent sprite class, a patient sprite class, and an interaction type describing the outcome
of the interaction (e.g., killObject). In addition, there may be other optional properties (e.g., scorelncrement). As with the SpriteSet, the
base vectors for properties and their values are drawn from D-dimensional isotropic Gaussian distributions, with the exception of
values for agent and patient vectors which are the SpriteSet vectors for the corresponding sprite classes. The property and
value vectors are bound together and added to produce the interaction vector (e.g., i3 = patient ® c0 + agent ® c3 + interaction
® killObject). The vectors for different interactions are normalized to unit length and added together to produce the InteractionSet
vector, which is also normalized to unit length.

The TerminationSet is a set of exploitative goals (termination conditions) and exploratory goals. Each termination condition has a
type (e.g., counter), a sprite class, an outcome (e.g., loss), as well as any additional properties (e.g., count). Exploratory goals have
two sprite classes whose interaction is yet unobserved, as well as other optional properties. As with the InteractionSet, the base vec-
tors for properties and their values are drawn from D-dimensional isotropic Gaussian distributions, with the exception of spite classes
whose vectors are the corresponding SpriteSet vectors. The property and value vectors are bound together and added to produce
the goal vector (e.g., t0 = type ® counter + sprite ® c0 + outcome ® loss). The values for different goals are normalized to unit length
and added together to produce the TerminationSet vector, which is also normalized to unit length.

The resulting SpriteSet, InteractionSet, and TerminationSet vectors are finally added to produce the theory vector, which is also
normalized to unit length. Following Plate,?* we chose the dimension D of the vectors as:

D = 3.16(k — 0.25)In%:348 (Equation 15)

Where k = 10 is the number of stored vectors, m = 10 is the vocabulary size, and g = 0.05 is the probability of retrieval error.

For an intuitive example of HRRs, see Figure S1C. Notice that while individual HRR features are meaningless by design (Figure S1C,
second panel), the similarity between HRR embeddings reflects their semantic similarity (Figure S1C, third panel), which is in turn
captured by the GP kernel (Figure S1C, fourth panel) and exploited by GP regression for prediction. For a real example of HRRs
for an actual participant and how they evolve over time, see Figure S2.

For the encoding model analysis using simplified object embeddings (Figure S4H), each sprite class had a single property whose
value could be either approach, avoid, or neutral, based on whether the avatar ought to approach, avoid, or not be concerned with
sprites of that class, respectively. The approach sprites were (for each game): scared (Chase); box1, box2, box3 (Helper); mushroom,
key, goal, box (Bait); goal, lemming (Lemmings); deadMolarinf, deadMolarSup, hotdog, burger (Plaque Attack); annoyed (Avoid
George); key, goal (Zelda). The avoid sprites were: angry (Chase); hole (Bait); hole (Lemmings); annoyed (Avoid George); monster-
Quick, monsterNormal, monsterSlow (Zelda). All other sprites were neutral. The rest of the theory embedding was generated as
described above.

Note that we are not making a strong commitment to HRRs as a neural code. Specifically, we are not testing the hypothesis that the
brain encodes theories in a form similar to HRRs; rather, we are using HRRs as a cognitively plausible theory embedding to construct
the theory similarity kernel K for our encoding model. We leave the question of theory coding as the topic of future work.
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Control models
We performed a similar encoding model analysis with 3 control models:

e DDAQN, to account for model-free RL representations,
@ PCA, to account for low-level visual representations,
® VAE, to account for higher-level state representations.

Deep RL networks (DQNSs) have achieved human-level performance on Atari games® and have been put forward as an account of
human model-free RL in complex domains.® Following Tsividis et al.,'® we used a double DQN (DDQN), which is a version of the orig-
inal DDQN with improved convergence properties.”® We ran the sequence of frames (scaled to 64 x 64 x 3), actions, and rewards
from each participant through DDQNs pre-trained for the corresponding games, as described above. Following Cross et al.,® we per-
formed PCA on the resulting activations for each layer separately (except the output layer, which has only 6 units). This balances the
number of features for different layers and facilitates comparisons between DDQNSs across games. For each frame, we concatenated
the top 100 principal components from all layers into a single 406-dimensional feature vector. The resulting feature vector sequences
were fed through the same analysis pipeline as the EMPA theory embeddings (Figure 3A).

Principal component analysis (PCA) has been used to explain brain activity in the visual pathway and has been utilized as a
control model for human RL in Atari games.® We first extracted principal components from 430,000 randomly chosen frames (scaled
to 64 x 64 x 3) across all participants. We used the incremental PCA algorithm from the sklearn Python library with a batch size of
10,000. We then projected the frame sequence from each participant’s gameplay on to the top 100 principal components and fed the
resulting feature vectors through the same analysis pipeline as the EMPA theory embeddings.

Variational autoencoders (VAEs) extract a latent representation of an input space by learning to compress and then reconstruct
the input data using a deep neural network.?*~?® VAEs have also been used as a control model for human RL in Atari games.® We
used an open-source VAE implementation (https://medium.com/dataseries/variational-autoencoder-with-pytorch-2d359cbf027b).
The encoder had 3 convolutional layers (conv1: 8 filters with size = 3% 3 and stride = 2; conv2: 16 filters with size = 3% 3 and stride = 2;
conv3: 32 filters with size = 3x3 and stride = 2), followed by 2 fully connected layers (linear1: 128 units, linear2: 128), followed by the
bottleneck layer (latent: 128 units). The decoder had a correspondingly inverted architecture, with 2 fully connected layers followed
by 3 convolution transpose layers. The VAE was trained by maximizing the evidence lower bound (ELBO) on the marginal likelihood of
the training data. As with PCA, we trained on 430,000 random frames across all participants. We used batch size = 256 and trained for
1,000 epochs using the Adam optimizer with learning rate = 0.001 and weight decay = 10~ 5. We then ran the frame sequence from
each participant’s gameplay through the VAE and used the bottleneck activations as the feature vectors which were fed through the
same analysis pipeline as the EMPA theory embeddings.

24,25

GLM analyses

To look for brain regions sensitive to theory updates, we employed a standard GLM approach using SPM12 (Figure 4A). We created a
GLM with impulse regressors at time points when the theory inferred from EMPA changed (6; # 6; _ 1). We also included nuisance re-
gressors for visual and motor confounds, variables relevant for theory updating, as well as motion estimates derived from realignment
and run-specific intercepts (Table S3). All regressors were convolved with the canonical hemodynamic response function. As in our
previous work,®” group-level statistical maps were thresholded at p <0.001 and cluster FWE corrected at « = 0.05.

As with the encoding model, ROIs were extracted by cross-referencing the peak voxels from the group-level t-map (up to 3 peaks
peaks per cluster, minimum 20 voxels apart) with the AAL3 atlas.?® For our confirmatory analysis, we used all anatomical ROls with an
average beta coefficient for theory updating which was significantly different from zero across participants (Figure S6). We generated
PETHSs for a given participant and ROI by taking the 20-s (10 TRs) BOLD timecourse following every theory update event, averaged
across all voxels in the ROI, and subtracting a baseline BOLD signal averaged over the preceding 4 s (2 TRs) to obtain the change in
BOLD signal in response to theory updating. The resulting traces were averaged across theory update events and aggregated across
participants to obtain the final PETHSs (Figure 4C). The same analysis was performed for the control events. To directly compare the
change in BOLD signal in response to different kinds of events (Figure 4D), we averaged the BOLD timecourse within the 20-s window
following each event before averaging across event instances and aggregating across participants.

To check if theory updating exhibits a monotonic trend over time, we performed a two-tailed Mann-Kendall test using the theory
update histogram averaged across all games (Figure S5A: All Games), downsampled to 1 Hz for ease of computation. We also per-
formed the same test using theory update histograms for individual games (Figure S5A, panels 1-7).

GLM comparison

To identify regions which are sensitive to different update events, we constructed 4 additional GLMs analogous to the theory update
GLM: 3 GLMs for single component updates (objects, relations, and goals, respectively) and a single GLM with separate regressors
for all three component updates (Figure 5A). Following our previous work,®"*® we compared GLMs using random effects
Bayesian model selection,®” a standard method for comparing models in fMRI studies.®* We approximated the log model evidence
as LME =-0.5 * BIC, where BIC is the Bayesian information criterion based on the maximum likelihood estimate of the GLM param-
eters. This quantifies how well the GLM fits the BOLD signal in the ROI for a given participant (penalizing for model complexity), with
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lower values indicating a better fit. We report the protected exceedance probability (PXP), which is the posterior probability that a
given model is most prevalent in the population (Table 1).

Theory activation timecourse

We generated the overlap between our theory representation and theory updating t-maps by taking the voxels that were significant in
both group-level t-maps (Figure 6A). To generate PETHs with predictivity scores (Figure 6B) for a given ROl and participant, we first
obtained a predictivity timecourse by computing the Fisher z-transformed Pearson correlation between the predicted and actual
pattern of BOLD activity across voxels at each TR. We then proceeded in a similar fashion to the BOLD PETHs described above:
the 20-s predictivity timecourses following theory updates were baseline-subtracted (average of preceding 4 s), averaged across
theory update events, and aggregated across participants to obtain the PETHs. The same analysis was performed for the control
events. As with the BOLD PETHSs, to directly compare the change in predictivity score in response to different kinds of events
(Figure 6C), we averaged the predictivity timecourse within the 20-s window following each event before averaging across event in-
stances and aggregating across participants. When performing this analysis for separate theory component updates (Figure S8), we
used predictivity scores from encoding models fit separately for objects, relations, and goals, respectively.

Effective connectivity

Following our previous work,>® we investigated the pattern of effective connectivity between brain regions during theory updating
using structural equation modeling.***"""® We constructed a beta series GLM with separate impulse regressors for individual theory
update events. Since the BOLD signal is highly autocorrelated, which violates the structural equation modeling assumptions, we only
included events that are at least 10 s apart, using a rolling window starting from the first theory update event in each run. The resulting
beta coefficients are estimates of the instantaneous neural activity at each theory update event. For each ROI, we averaged the es-
timates across voxels. We searched the space of connectivity patterns using the IMaGES (independent multiple-sample greedy
equivalence search) algorithm®®3” from the TETRAD software package for causal modeling.®® IMaGES is a version of greedy equiv-
alence search’® (GES), which starts with an empty causal graph and greedily adds edges that improve the fit to the data according to
the BIC. IMaGES extends GES to multiple datasets (e.g., multiple fMRI participants) by averaging the BICs across datasets. To find
the effective connectivity pattern 2 s after theory updating, we performed the same analysis except with all theory updates shifted
back by 2 s.
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