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Abstract

We propose that humans spontaneously organize environments into clusters of states that

support hierarchical planning, enabling them to tackle challenging problems by breaking

them down into sub-problems at various levels of abstraction. People constantly rely on

such hierarchical presentations to accomplish tasks big and small—from planning one’s

day, to organizing a wedding, to getting a PhD—often succeeding on the very first attempt.

We formalize a Bayesian model of hierarchy discovery that explains how humans discover

such useful abstractions. Building on principles developed in structure learning and robotics,

the model predicts that hierarchy discovery should be sensitive to the topological structure,

reward distribution, and distribution of tasks in the environment. In five simulations, we show

that the model accounts for previously reported effects of environment structure on planning

behavior, such as detection of bottleneck states and transitions. We then test the novel pre-

dictions of the model in eight behavioral experiments, demonstrating how the distribution of

tasks and rewards can influence planning behavior via the discovered hierarchy, sometimes

facilitating and sometimes hindering performance. We find evidence that the hierarchy dis-

covery process unfolds incrementally across trials. Finally, we propose how hierarchy dis-

covery and hierarchical planning might be implemented in the brain. Together, these

findings present an important advance in our understanding of how the brain might use

Bayesian inference to discover and exploit the hidden hierarchical structure of the

environment.

Author summary

Human planning is hierarchical. Whether planning something simple like cooking dinner

or something complex like a trip abroad, we usually begin with a rough mental sketch of

the goals we want to achieve (“go to Spain, then go back home”). This sketch is then pro-

gressively refined into a detailed sequence of sub-goals (“book flight”, “pack luggage”),

sub-sub-goals, and so on, down to the actual sequence of bodily movements that is much
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more complicated than the original plan. Efficient planning therefore requires knowledge

of the abstract high-level concepts that constitute the essence of hierarchical plans. Yet

how humans learn such abstractions remains a mystery. In this study, we show that

humans spontaneously form such high-level concepts in a way that allows them to plan

efficiently given the tasks, rewards, and structure of their environment. We also show that

this behavior is consistent with a formal model of the underlying computations, thus

grounding these findings in established computational principles and relating them to

previous studies of hierarchical planning. We believe our results pave the way for future

studies to investigate the neural algorithms that support this essential cognitive ability.

Introduction

Imagine you have a sudden irresistible craving for your favorite ice cream that is only made by

a boutique ice cream shop in Lugo, Spain. You must get there as soon as physically possible.

What would you do? When faced with this unusual puzzle, most people’s first response is that

they will look up a flight to Spain. When asked what they would do next, most people say that

they would order a taxi to the airport, and when questioned further, that they would walk to

the taxi pickup location. Importantly, nobody says or even thinks anything like “I will get up,

turn left, walk five steps, etc.”, or even worse, “I will contract my left quadricep, then my right

one, etc.”. This example illustrates hierarchical planning (Fig 1): people intuitively reason at

the appropriate level of abstraction, first sketching out a plan in terms of transitions between

high-level states (in this case, countries), which is subsequently refined in progressively lower

Fig 1. Example of hierarchical planning. How someone might plan to get from their office in Cambridge to their favorite ice cream shop in Lugo,

Spain. Circles represent states and arrows represent actions that transition between states. Each state represents a cluster of states in the lower level.

Thicker arrows indicate transitions between higher-level states, which often come to mind first.

https://doi.org/10.1371/journal.pcbi.1007594.g001
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levels and specific steps [1]. This is often done in an online fashion, with details being resolved

on-the-fly as the plan is being executed (for example, you would not ponder what snack to buy

at the airport before actually getting there). This ability of humans [2] and animals [3] to orga-

nize their behavior hierarchically allows them to flexibly pursue distant goals in complex envi-

ronments, even for novel tasks that they may have never encountered previously.

The study of hierarchical behaviors has deep roots in psychology and neuroscience [4].

Much work has been done to characterize the emergence of such behaviors in humans and

animals, often focusing on the acquisition of temporally extended action sequences or action
chunks that unfold over different time scales. Action chunking occurs after extensive training,

involves a specific set of brain regions, and is thought to be essential for pursuing long-term

goals and planning [5, 6].

Yet in order to leverage action chunks for planning, an agent must also be equipped with a

hierarchical representation of the environment, with clusters of states or state chunks repre-

senting parts of the world at different levels of abstraction. In our ice cream example, the cur-

rent country, city, neighborhood, building, room, and location within the room are all valid

representations of the agent’s current state and are all necessary in order to plan effectively.

Correspondingly, research shows that people spontaneously discover hierarchical structure [1,

7], that the discovered hierarchies are consistent with formal definitions of optimality [8], and

that people use these hierarchies to plan [2]. Some of these studies have uncovered distinct

neural correlates of high-level states, which are sometimes referred to as state clusters, commu-

nities, contexts, abstract states, or state chunks [2, 7]. Research has also begun to uncover

the neural correlates of hierarchical planning and action selection [2, 9]. Yet despite these

advances, the computational mechanisms underlying the discovery of such hierarchical repre-

sentations remain poorly understood.

In this study, we propose a Bayesian model of hierarchy discovery for planning. Drawing

on the structure learning literature [10] and on concepts developed in robotics [11], the model

provides a normative account of how agents with limited cognitive resources should chunk

their environment into clusters of states that support efficient planning. The central novel con-

tributions of this paper are both empirical and theoretical. Our main empirical contribution is

to show that the distribution of tasks (experiments one through five) and rewards (experiments

six and seven) in the environment can influence the inferred state chunks, whereas past studies

have focused exclusively on the effects of environment topology. Our main theoretical contri-

bution is to unify these and previous findings under a single normative model that explains

why these phenomena occur, and that encompasses a class of process models that could be lev-

eraged to investigate the implementational details of state chunking in the brain.

In simulations one through five, we demonstrate that the model accounts for previously

reported behavioral effects of the environment topology, such as detection of transitions across

state clusters [7], identification of topological bottlenecks [8], preference for routes with fewer

state clusters [8], and slower reaction times to transitions that violate topological structure

[12]. Additionally, the model makes specific predictions about the way in which the distribu-

tions of tasks and rewards constrain hierarchy discovery, which in turn constrains planning.

We test these novel predictions in a series of eight behavioral experiments. Experiment one

shows that the distribution of tasks encountered in the environment can induce different state

clusters, even when the topological structure of the environment does not promote any partic-

ular clustering. Experiment two shows how this in turn could lead to either improved or ham-

pered performance on novel tasks. Experiment three examines the progression of inferred

hierarchies as a function of which tasks participants have seen so far and reveals that partici-

pants are sensitive to changes in both the uncertainty and the mode of the posterior distribu-

tion over hierarchies. Experiments four and five replicate the results of experiments one and
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two in a fully visible environment, showing that the effects cannot be explained by incorrect

inferences about topological structure. Experiment six shows how rewards generalize within

state clusters, while experiment seven shows how rewards can induce clusters that constrain

planning even in the absence of state clusters. Finally, experiment eight (see S1 Appendix) sug-

gests that people explore in a way that maximally reduces uncertainty about the hierarchy,

implying that people consider a probability distribution over hierarchies rather than a single

hierarchy. Together, these results provide strong support for a Bayesian account of hierarchy

discovery, according to which the brain implicitly assumes that the environment has a hidden

hierarchical structure, which is rationally inferred from observations. No existing theory of

hierarchy discovery can account for all of these effects (Table 2).

Results

Theoretical background

The question of how agents should make rewarding decisions is the subject of reinforcement

learning (RL; [13]). With a long history crisscrossing the fields of psychology, neuroscience,

and artificial intelligence, RL has made major contributions to explaining many human and

animal behaviors [14], the neural circuits underlying these behaviors [15], and allowing artifi-

cial agents to achieve human-level performance on tasks that were previously beyond the capa-

bilities of computers [16]. Approaches rooted in RL therefore offer promising avenues to

understanding decision making and planning.

Most RL algorithms assume that that an agent represents its environment as a Markov deci-

sion process (MDP), which consists of states, actions and rewards that obey a particular condi-

tional independence structure. At any point in time, the agent occupies a given state, which

could denote, for example, a physical location such as a place in room, a physiological state

such as being hungry, and abstract state such as whether a subgoal has been achieved, or a

complex state such as a conjunction of such states. The agent can transition between states by

taking actions such as moving or eating. Some states deliver rewards, and it is assumed that the

agent aims to maximize reward. In an MDP, the transitions and rewards are assumed to

depend only on the current state and action.

Following previous authors [2, 8], we assume for simplicity that states are discrete and that

transitions between states are bidirectional and deterministic (although these restrictions

could be relaxed; see Discussion). In this case, states and actions could be represented by an

undirected graph G in which the vertices correspond to states and the edges correspond to

actions. We will use the graph G in place of the transition function T that is traditionally used

to characterize MDPs.

In graph theoretic notation, G = (V, E), where

• V is the set of vertices (or nodes) such that each node v 2 V corresponds to a state that the

agent can occupy, and

• E: {V × V} is a set of edges such that each edge (u, v)2E corresponds to an action that the

agent can take to transition from state u to state v or vice versa.

In the following analysis, we use the terms node and state interchangeably. We also treat

edges, actions, and transitions as equivalent. For simplicity, we restrict our analysis to

unweighted graphs, which is equivalent to assuming that all actions carry the same cost and/or

take the same amount of time (our analysis extends straightforwardly to weighted graphs; see

Discussion). We also assume the agent has learned G, which is equivalent to model-based RL

in which the agent learns the transition function.
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The task of planning to get from a starting state s to a goal state g efficiently can thus be

framed as finding the shortest path between nodes s and g in G. This is a well-studied problem

in graph theory and the optimal solution in this setup is the breadth first search (BFS) algo-

rithm [17]. BFS works by first exploring the neighbors of s, then exploring the neighbors of

those neighbors, and so on until reaching the goal state g. States whose neighbors haven’t been

explored yet are maintained in an active queue, with states getting removed from one end of

the queue as soon as their neighbors are added to the other end. Intuitively, this corresponds

to a forward sweep that begins at s and spreads in all directions across the edges until reaching

g, akin to the way in which water might spread in a network of pipes. Its simplicity and perfor-

mance guarantees have made BFS a standard tool for planning in classical artificial intelligence

[18].

However, the time and memory that BFS requires is proportional to the number of states

(assuming an action space of constant size) since the size of the active queue and the potential

length of the plan grow linearly with the size of the state space. Formally, the time and memory

complexity of BFS is O(N), where N = |V| is the total number of states. In environments in

which real-world agents operate, this number can be huge; in the realm of navigation alone,

there could be billions of locations where a person has been or may want to go. Assuming that

online computations such as planning involve systems for short-term storage and symbol

manipulation, this far exceeds the working memory capacity of people who can only accom-

modate a few items (note that we assume the graph is already stored in a different system for

long-term storage of relational information, such as the hippocampus) [19]. Furthermore,

even without such working memory limitations, artificial agents such as robots would still take

a long time to plan the route before they can take the first step. When using a naive or “flat”

representation in which the agent plans over low-level actions (for example, individual steps or

even joint actuator commands), computing a plan is at least as complicated as actually execut-

ing it (Fig 2A), and in reality the complexity could be much larger.

To overcome this limitation, work in the field of robotics has led to the development of data

structures and algorithms for hierarchical planning [11]. Similar ideas have been put forward

in other fields; see Discussion. The key idea is that an agent can group neighboring states from

the flat low-level graph G into state clusters (state chunks), with each cluster represented by a

single node in another graph H (the high-level graph), which will be smaller and hence easier

to plan in. When tasked to get from state s to state g in G, the agent can first plan in the high-

level graph H and then translate this high-level plan into a low-level plan in G. Crucially, after

finding the high-level path in H, the agent only needs to plan in the current state cluster in G,

that is, it only needs to plan how to get to the next cluster (Fig 2B), and then repeat the process

in the next cluster, and so on, until reaching the goal state in the final cluster.

This can drastically reduce the working memory requirements of planning, since the agent

only needs to keep track of the (much shorter) path in H and the path in the current state clus-

ter in G. Importantly, this also reduces planning time, allowing the agent to begin making

progress towards the goal without computing the full path in G—the agent can now follow the

high-level plan in H and gradually refine it in G on-the-fly, during execution. This approach

can be applied recursively to deeper hierarchies in which high-level states are clustered in turn

into even higher-level states, and so on until reaching a single node at the top of the hierarchy

that represents the entire environment (Fig 2C). Planning using such a hierarchical representa-

tion can be orders of magnitude more efficient than “flat” planning, and also accords with our

intuitions about how people plan in everyday life.

A particular instantiation of this form of hierarchical planning is the hierarchical breadth

first search (HBFS) algorithm, which is a natural extension of BFS (see Methods). It can be

shown that with an efficient hierarchy of depth L (that is, consisting of L graphs, with each
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graph representing clusters in the lower graph), the time and memory complexity of HBFS is

Oð
ffiffiffiffi
NL
p
þLÞ [11]. Thus in a graph with N = 1, 000, 000, 000 states and a hierarchy L = 9 levels

deep, HBFS will only require on the order of 19 memory and time units to compute a plan,

compared to 1,000,000,000 time and memory units for BFS, or any other flat planner. Note

that while executing the plan would still take O(N) time, HBFS quickly computes the first few

actions in the right direction, and can then be applied repeatedly to keep computing the fol-

lowing actions in an online fashion. While it may seem that this hierarchical scheme simply

transfers the burden to the long-term storage system, which now needs to remember L graphs

instead of one, it can be shown that the storage requirements of an efficient hierarchical repre-

sentation are O(N) [11], comparable to those of a flat representation of G alone. Following pre-

vious authors, [8, 20], we restrict our analysis to L = 2 levels for simplicity, noting that our

approach extends straightforwardly to deeper hierarchies (see Discussion).

However, in order to reap the benefits of efficient planning, the hierarchical representation

necessarily imposes a form of lossy compression. In particular, each successive graph in the

hierarchy loses some of the detail present in the lower level graph. This could lead to hierarchi-

cal plans that correspond to suboptimal paths in G. For example, in Fig 3A, there is a direct

edge that can take the agent from starting state s to go state g in a single action. However, since

the edge is not represented by the high-level graph H, HBFS will compute a detour through the

state cluster w, akin to real-life situations in which people prefer going through a central loca-

tion rather than taking an unfamiliar shortcut.

Since finding the shortest path will not always be possible, some hierarchies will tend to

yield better paths than others. The challenge for the agent is then to learn an efficient hierarchi-

cal representation of the environment that facilitates fast planning across many tasks, without

placing an overwhelming burden on working memory and long-term memory systems. How

Fig 2. Hierarchical representations reduce the computational costs of planning. A. Planning in the low-level graph G takes at

least as many steps as actually executing the plan. All nodes and edges are thick, indicating that they must all be considered and

maintained in short-term memory in order to compute the plan. B. Introducing a high-level graph H alleviates this problem. At any

given time during plan execution, the agent only needs to consider the high-level path and the low-level path leading to the next

cluster, recomputing the latter on-the-fly. Gray arrows indicate cluster membership. C. The hierarchy can be extended recursively,

further reducing the time and memory requirements of planning.

https://doi.org/10.1371/journal.pcbi.1007594.g002
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agents accomplish this in the real world is the central question of this paper, to which we pro-

pose a solution in the following section.

A Bayesian model of hierarchy discovery

Our proposal assumes two main computational components:

1. An online planner that can flexibly generate plans and select actions on-demand with mini-

mal time and memory requirements.

2. An off-line (and possibly computationally intensive) hierarchy discovery process that,

through experience, incrementally builds a representation of the environment that the plan-

ner can use.

The focus of this paper is the second component, which must satisfy the constraints

imposed by the first component. For the first component, we use HBFS in order to link the

hierarchy to behavior, noting that any generic hierarchical planner will make similar predic-

tions. Note that we assume only the online planner is constrained by working memory

Fig 3. Generative model for environments with hierarchical structure. A. Example low-level graph G and high-level graph H.

Colors denote cluster assignments. Black edges are considered during planning. Gray edges are ignored by the planner. Thick edges

correspond to transitions across clusters. The transition between clusters w and z is accomplished via the bridge bw,z = (u, v). B.

Generative model defining a probability distribution over hierarchies H and environments G. Circles denote random variables.

Rectangles denote repeated draws of a random variable. Arrows denote conditional dependence. Gray variables are directly observed

by the agent. Uncircled variables are constant. c, cluster assignments; p0, graph density of H; E0, edges in H; E, edges in G; b, bridges

connecting the clusters; p, within-cluster graph density in G; q, cross-cluster graph density penalty in G. Refer to main text for

variable definitions. C. Incorporating tasks into the generative model. The rest of the generative model is omitted for clarity. p@,
cross-cluster task penalty; task = (s, g), task as pair of start-goal states. D. Incorporating rewards into the generative model. The rest

of the generative model is omitted for clarity. �y, average reward for G; σθ, standard deviation of that average; θ, average cluster

rewards; σμ, standard deviation around that average; μ, average state rewards; σr, standard deviation around that average; r,
instantaneous state rewards.

https://doi.org/10.1371/journal.pcbi.1007594.g003
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limitations and time demands—as in the ice cream example, the high-level sketch of a plan is

often computed within seconds of the query. In contrast, the hierarchical representation that

supports this computation—a rich abstraction of the world, with knowledge of particular loca-

tions that belong to cities that belong to countries connected by flights—has been refined

through years of experience and is deeply ingrained in long-term memory.

One approach to deriving an optimal hierarchy discovery algorithm would be to define the

constraints of the agent, such as memory limitations and computational capacity, its utility

function, and the constraints of the environment, such as the expected structure and tasks.

Here we adopt an alternative approach, motivated by the literature on structure learning

which has been used to successfully account for a wide range of phenomena in the animal

learning literature [10]. The key idea is that the environment is assumed to have a hidden hier-

archical structure that is not directly observable, which in turn constrains the observations the

agent can experience. The agent can then infer this hidden hierarchical structure based on its

observations and use it to plan efficiently. Assuming that some hierarchies are a priori more

likely than others, this corresponds to a generative model for environments with hierarchical

structure, which the agent can invert to uncover the underlying hierarchy based on its experi-

ences in the environment.

Formally, we represent the observable environment as an unweighted, undirected graph

G = (V, E) and the hidden hierarchy as H = (V0, E0, c, b, p0, p, q), where:

• V is the set of low-level nodes or states, corresponding to directly observable states in the

environment,

• E: {V × V} is the set of edges, corresponding to possible transitions between states via taking

actions,

• V0 is the set of high-level nodes or states, corresponding to clusters of low-level states,

• E0: {V0 × V0} is the set of high-level edges, corresponding to transitions between high-level

states,

• c: V! V0 are the cluster assignments linking low-level states to high-level states,

• b: E0 ! E are the bridges which link high-level transitions back to low-level transitions,

• p0 2 [0, 1] is the density of the high-level graph,

• p 2 [0, 1] is the within-cluster density of G,

• q 2 [0, 1] is the across-cluster density penalty of G.

Here we use the term graph density to denote the probability that a pair of nodes are con-

nected by an edge. Together, (V0, E0) define the high-level graph, which we also refer to as H
for ease of notation. Each low-level state u is assigned to a cluster w = cu. Each high-level edge

(w, z) has a corresponding low-level edge (the bridge) (u, v) = bw,z, such that cu = w and cv = z
(see Fig 3A). Bridges (sometimes referred to as bottlenecks or boundaries) thus specify how

different clusters are connected in H. Bridges are the only cross-cluster edges considered by

the hierarchical planner; all other edges between nodes in different clusters are ignored, lead-

ing to lossy compression that improves planning complexity but could lead to suboptimal

paths. In contrast, all edges within clusters are preserved. The purpose of the cluster assign-

ments c is to translate the low-level planning problem in G into an easier high-level planning

problem in H. The purpose of the bridges is to translate the solution found in H back into a

low-level path in G. For a detailed description of how HBFS uses the hierarchy to plan, see the

Methods section. For simplicity, we only allow a single bridge for each pair of clusters, noting
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that our approach generalizes straightforwardly to multigraphs (i.e., allowing multiple edges

between pairs of nodes in E and E0) and maintains its performance guarantees as long as the

maximum degree of each node is constant (that is, the size of the action space is O(1)).

Informally, an algorithm that discovers useful hierarchies would satisfy the following

desiderata:

1. Favor smaller clusters.

2. Favor a small number of clusters.

3. Favor dense connectivity within clusters.

4. Favor sparse connectivity between clusters [21], with the exception of the bridges that con-

nect clusters.

Intuitively, having too few (for example, one) or too many clusters (for example, each state

is its own cluster) creates a degenerate hierarchy that reduces the planning problem to the flat

scenario, and hence medium-sized clusters are best (desiderata 1 and 2). Additionally, the hier-

archy ignores transitions across clusters, which could lead to suboptimal paths generated by

the hierarchical planner. It is therefore best to minimize the number of cross-cluster transi-

tions (desiderata 3 and 4). The exception is bridges, which correspond to the links between

clusters.

These desiderata can be formalized as a generative model for hierarchies and environments

(Fig 3B):

c � CRPðaÞ cluster assignments ð1Þ

p0 � Betað1; 1Þ density in H ð2Þ

Pr½ðw; zÞ 2 E0� ¼ p0 edges in H ð3Þ

Pr½bw;z ¼ ðu; vÞ j ðw; zÞ 2 E0; cu ¼ w; cv ¼ z� ¼
1

nwnz
bridges ð4Þ

p � Betað1; 1Þ within‐cluster density in G ð5Þ

q � Betað1; 1Þ cross‐cluster density penalty in G ð6Þ

Pr½ðu; vÞ 2 E j cu ¼ cv� ¼ p within‐cluster edges in G ð7Þ

Pr½ðu; vÞ 2 E j cu 6¼ cv; bcu ;cv 6¼ ðu; vÞ� ¼ pq cross‐cluster edges in G ð8Þ

Pr½ðu; vÞ 2 E j bcu;cv ¼ ðu; vÞ� ¼ 1 bridge edges in G ð9Þ

Where nw = |{u: cu = w}| is the size of cluster w and CRP is the Chinese restaurant process, a

nonparametric prior for clusterings [22]. We additionally impose the constraint that no cluster

is disconnected, that is, the induced subgraph for each cluster forms a single connected com-

ponent (see Methods).

Eq 1 fulfills desiderata 1 and 2, with the concentration parameter α determining the

trade-off between the two: lower values of α favor few, larger clusters, while higher values of

α favor more, smaller clusters. Eqs 2 and 3 generate the high-level graph H, with higher
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values of p0 making H more densely connected. Eq 4 generates the bridges by connecting a

random pair of nodes (u, v) for each pair of connected clusters (w, z). Eqs 5 and 7 fulfill

desideratum 3 by generating the low-level edges in G within each cluster, with higher values

of p resulting in dense within-cluster connectivity. Eqs 6 and 8 fulfill desideratum 4 by gen-

erating the low-level edges across clusters, with higher values of q resulting in more cross-

cluster edges. Note that pq< p and hence the density of cross-cluster edges will always be

lower than the density of within-cluster edges. Finally, Eq 9 ensures that each bridge edge

always exists.

This generative model captures the agent’s subjective belief about the generative process

that gave rise to the environment and the observations. This belief could itself have been

acquired from experience or be evolutionarily hardwired. The assumed generative process

defines a joint probability distribution P(G, H) = P(G|H)P(H) over the observable graph G and

the hidden hierarchical structure H that generated it. Importantly, the generative process is

biased to favor graphs G with a particular “clustered” structure. In order to discover the under-

lying hierarchy H and to use it to plan efficiently, the agent must “invert” the generative model

and infer H based on G.

Formally, hierarchy discovery can be framed as performing Bayesian inference using the

posterior probability distribution over hierarchies P(H|G):

PðHjGÞ ¼
PðGjHÞPðHÞ

PðGÞ
/ PðEjc; b; p; qÞPðpÞPðqÞPðbjE0; cÞPðE0jp0ÞPðp0ÞPðcÞ

ð10Þ

This predicts that neighboring states which are more densely connected will tend to be clus-

tered together. We assess this prediction in simulations one through five.

Note that while our generative model is motivated by normative considerations, it does

not comprise a formal analysis of optimality. Such analyses have been reported previously [8]

and fail to capture all the effects reported here (Table 2). Furthermore, any such analysis

would require, at minimum, the assumption of a probability distribution over graphs, tasks,

and rewards. Our generative model is equivalent to precisely such a probability distribution,

from which we can directly derive a recognition model by framing hierarchy discovery as

inference over that probability distribution, thus obviating the need for any additional

assumptions.

Task distribution. Previous studies have demonstrated that people discover hierarchies

based on topological structure (simulations one through five). However, other factors may also

play a role. In particular, the distribution of tasks that an agent faces in the environment may

make some hierarchies less suitable than others [11], independently of the graph topology. For

example, if the agent has to frequently navigate from state s to state g in the graph G in Fig 3A,

then the current hierarchy H would clearly be a poor choice, even if it captures the topological

community structure of G well. Since hierarchical planning is always optimal within a cluster,

one way to accommodate tasks is to cluster together states that frequently co-occur in the same

task.

Casting hierarchy discovery as hidden state inference allows us to formalize this intuition

with a straightforward extesion to our model. Following previous authors [2, 23], we assume

the agent faces a sequence of tasks in G, where each task is to navigate from a starting state s 2
V to a goal state g 2 V. We assume the agent prefers shorter routes. Defining tasks = {taskt}
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and taskt = (st, gt), we can extend the generative model with (Fig 3C):

p00 � Betað1; 1Þ cross‐cluster task penalty ð11Þ

Pr½st ¼ u� ¼
1

N
starting states ð12Þ

Pr½gt ¼ v j st ¼ u� /
1 if cu ¼ cv

p00 otherwise
goal states

(

ð13Þ

where cu and cv are the cluster assignments of states u and v, and N = |V| is the total number of

states. Eq 12 expresses the agent’s belief that a task can start randomly in any state. Eq 13

expresses the belief that tasks are less likely to have goal states in a different cluster, with p@
controlling exactly how much less likely that is.

If we denote the observable data as D = (tasks, G), the posterior becomes:

PðHjDÞ / PðDjHÞPðHÞ

¼ PðtasksjG;HÞPðGjHÞPðHÞ

¼
Y

t

Pðgtjst; p
00;G;HÞPðstjG;HÞ

" #

Pðp00ÞPðGjHÞPðHÞ;

ð14Þ

where the last two terms are the same as in Eq 10.

The model will thus favor hierarchies that cluster together states which frequently co-occur

in same tasks. This predicts that, in the absence of community structure, hierarchical planning

will occur over clusters delineated by task start and goal states. This is a key novel prediction of

our model which we assess in experiments one through five.

Reward distribution. Besides topology and tasks, another factor that may play a role in

hierarchy discovery is the distribution of rewards in the environment. In accordance with RL,

we assume that each state delivers stochastic rewards and the agent aims to maximize the total

reward [13]. Hierarchy discovery might account for rewards by clustering together states that

deliver similar rewards. This is consistent with the tendency for humans to cluster based on

perceptual features [2] and would be rational in an environment with autocorrelation in the

reward structure [24–26]. Note that from the perspective of planning alone, rewards or mere

perceptual similarity should be irrelevant. This highlights one way in which our model departs

from formal notions of optimality. Adhering to the idea of hidden states in structure learning

[10], it treats state chunks akin to latent causes which generate similar observations, so it can

use those observations to infer the unobservable state chunks.

We can incorporate this intuition into the generative model by positing that states in the

same cluster deliver similar rewards (Fig 3D):

yw � N ð�y; s2
y
Þ average cluster rewards ð15Þ

mv � N ðycv ; s
2
m
Þ average state rewards ð16Þ

rv;t � N ðmv; s
2
r Þ rewards ð17Þ

where w 2 V0 and v 2 V. �y is the average reward of all states, θw is the average reward of states

in cluster w, μv is the average reward of state v, rv,t is the actual reward delivered by state v at

time t, and s2
r is the variance of that reward.
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The observable data thus becomes D = (r, tasks, G) and the posterior can be computed as:

PðHjDÞ / PðDjHÞPðHÞ

¼ Pðrjtasks;G;HÞPðtasksjG;HÞPðGjHÞPðHÞ

¼
Y

v

Y

t

Pðrv;tjmvÞ

" #

Pðmvjycv ;HÞ

" #
Y

w

PðywjHÞ

" #

PðtasksjG;HÞPðGjHÞPðHÞ

ð18Þ

The model will thus favor hierarchies that cluster together states which deliver similar

rewards. This predicts a certain pattern of reward generalization, with states inheriting the

rewards of other states in the same cluster. Importantly, this implies that boundaries in the

reward landscape will induce clusters that in turn will influence planning. This is another key

novel prediction of our model which we assess in experiments six and seven.

Inference. We approximated Bayesian inference using Markov chain Monte Carlo

(MCMC) sampling (see Methods) to draw samples approximately distributed according to

P(H|D). We simulate each participant by drawing a single hierarchy H (the sampled hierarchy)

from the posterior and then using it to make decisions. This is equivalent to assuming partici-

pants perform probability matching in the space of hierarchies.

In all simulations, we assume perfect (lossless) memory for the observations D = (r, tasks,
G). While the process of learning the graph structure and the task and reward distributions is

interesting in its own right, our focus is on inferring the hidden hierarchy H. We thus aim to

develop a computational-level theory (in the Marrian sense) [27] of hierarchy discovery that

remains agnostic of the particular algorithmic and implementational details but rather instan-

tiates an entire class of process models that could approximate the ideal Bayesian observer.

Choices. For simulations one through five, we simulate choices based on H using linking

assumptions analogous to those used by the authors of the original studies. For experiments

one through five and experiment seven, we simulate hierarchical planning based on H using

HBFS. For experiment six, we assume participants prefer the state with the highest expected

reward. For experiment eight (see S1 Appendix), we assume participants prefer to reduce the

entropy of the posterior as much as possible. In order to account for choice stochasticity, for

each decision, we simulate the appropriate choice as dictated by the model with probability �,

or choose randomly with probability 1 − �. We picked all model parameters by hand based on

simulations one through five and based on the design for experiments six and seven. We used

the same parameters throughout all simulations and experiments (Table 1).

Simulations

Our hierarchy discovery framework can account for a wide range of behavioral effects which

present difficulty for existing models (Table 2). To assess its basic predictions, we simulate a

Table 1. Model parameter settings. These were held constant across all simulations and experiments.

Parameter Range Role Value

α [0, +1) CRP concentration parameter: larger values favor more clusters 1

� [0, 1] choice stochasticity: larger values lead to more deterministic choices 0.6

# samples [1, +1) number of MCMC iterations per simulated participant 10000

�y (−1, +1) average reward of entire graph 15

σθ (−1, +1) standard deviation of average cluster rewards around �y 10

σμ (−1, +1) standard deviation of average state rewards 10

σr (−1, +1) standard deviation of state rewards 5

https://doi.org/10.1371/journal.pcbi.1007594.t001
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series of behavioral experiments reported in the literature. Our primary focus is on validating

the foundational assumptions behind our model without committing to any particular param-

eterization. We therefore use the same set of generic handpicked parameters across all of our

simulations (Table 1) and focus primarily on reliable qualitative effects that are independent of

the particular choice of parameters.

Simulation one: Bottleneck transitions. Schapiro et al. [7] demonstrated that people can

detect transitions between states belonging to different clusters in a graph with a particular

topological structure, such that nodes in certain parts of the graph are more densely connected

with each other than with other nodes. This type of topology is also referred to as community
structure (Fig 4A), with the clusters built into the graph topology referred to as communities.
Thirty participants viewed sequences of stimuli representing random walks or Hamiltonian

Table 2. Model comparison. Summary of which results could potentially be accounted for by alternative models and which results rule out certain models.

Model Efficient state space modularization

[34]

Optimal behavioral

hierarchy [8]

Temporal community structure [7]

Result

Simulation one: bottleneck transitions YES YES YES

Simulation two: bottleneck states YES YES YES

Simulation three: hierarchical planning YES YES NO (representations not suitable for

planning)

Simulation four: shorter hierarchical paths YES YES NO (representations not suitable for

planning)

Simulation five: cross-cluster jumps YES YES YES

Experiment one: task distributions YES NO (fixed task distribution) NO (no task distribution)

Experiment two: task distributions and suboptimal

planning

YES NO (fixed task distribution) NO (no task distribution)

Experiment three: learning effects NO (no uncertainty) NO (fixed task distribution) NO (no task distribution)

Experiment four: perfect information YES NO (fixed task distribution) NO (no task distribution)

Experiment five: perfect information and suboptimal

planning

YES NO (fixed task distribution) NO (no task distribution)

Experiment six: reward generalization NO (no reward distribution) NO (no reward distribution) NO (no reward distribution)

Experiment seven: rewards and planning NO (no reward distribution) NO (no reward distribution) NO (no reward distribution)

Experiment eight (S1 Appendix): uncertainty and

active learning

NO (no uncertainty) NO (no uncertainty) NO (no uncertainty)

https://doi.org/10.1371/journal.pcbi.1007594.t002

Fig 4. Detecting transitions between communities. A. Graph from Schapiro et al. [7]. Colors visualize the communities of states.

Participants never saw the graph or received hints of the community structure. B. Results from Schapiro et al. [7], experiment 1,

showing that participants were more likely to parse the graph along community boundaries. Participants indicated transitions across

communities as “natural breaking points” more often than transitions within communities. Error bars are s.e.m. (30 participants). C.

Results from simulations showing that hierarchy inference using our model is also more likely to parse the graph along community

boundaries. Error bars are s.e.m. (30 simulations).

https://doi.org/10.1371/journal.pcbi.1007594.g004

PLOS COMPUTATIONAL BIOLOGY Hierarchy discovery for planning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007594 April 6, 2020 13 / 42

https://doi.org/10.1371/journal.pcbi.1007594.t002
https://doi.org/10.1371/journal.pcbi.1007594.g004
https://doi.org/10.1371/journal.pcbi.1007594


paths in the graph. Participants were instructed to press a key whenever they perceived a natu-

ral breaking point in the sequence. The authors found that participants pressed significantly

more for cross-community transitions than for within-community transitions (Fig 4B). Partic-

ipants did this despite never seeing a bird’s-eye view of the graph or receiving any hints of the

community structure.

Following experiment 1 from Schapiro et al. [7], for each simulated participant, we sampled

a hierarchy H based on the graph G and performed 18 random walks of length 15 initiated at

random nodes, and 18 random Hamiltonian paths. For simplicity, we simulated key presses

deterministically. In particular, we counted a transition from node u to node v as a natural

breaking point if and only if the nodes belonged to different clusters in the inferred hierarchy

H, that is, if cu 6¼ cv, where c are the cluster assignments in H. This recapitulated the empirical

results (Fig 4C; random walks: t(58) = 7.35, p< 10−9; Hamiltonian paths: t(58) = 7.32,

p< 10−9, two sample, two-tailed t-tests).

The dense connectivity within communities and sparse connectivity across communities

drives the posterior to favor hierarchies with cluster assignments similar to the true underlying

community structure. This arises due to Eqs 7 and 8 in the generative model, corresponding to

desiderata 3 and 4, respectively. This posits that, during the generative process, edges across

clusters are less likely than edges within clusters, resulting in a posterior distribution that

penalizes alternative hierarchies in which many edges end up connecting nodes in different

communities.

Simulation two: Bottleneck states. Solway et al. [8] performed several experiments dem-

onstrating that people spontaneously discover graph decompositions that fulfill certain formal

criteria of optimality. Similarly to Solway et al. [7], in their first experiment, forty participants

were trained on a graph with community structure (Fig 5A). As before, participants never saw

the full graph or were made aware of its community structure but instead had to to rely solely

on transitions between nodes. Participants were then asked to designate a single node in the

graph as a “bus stop”, which they were told would reduce navigation costs in a subsequent part

of the experiment. Participants preferentially picked the two bottleneck nodes on the edge that

connects the two communities (Fig 5B), which are the optimal subgoal locations under these

constraints. This suggests that participants were able to infer the graph topology based on adja-

cency information only, and to decompose it in an optimal way.

Fig 5. Detecting bottlenecks states. A. Graph from Solway et al. [8], experiment 1, with colors indicating the optimal

decomposition according to their analysis. B. Results from Solway et al. [8], experiment 1, showing that people are more likely to

select the bottleneck nodes as bus stop locations. Gray circles indicate the relative proportion of times the corresponding node was

chosen. Inset, proportion of times either bottleneck node was chosen. Dashed line is chance (40 participants). C. Results from

simulations showing that our model is also more likely to pick the bottleneck nodes since they are more likely to end up as endpoints

of a bridge. Notation as in B. Inset error bars are s.e.m (40 simulations).

https://doi.org/10.1371/journal.pcbi.1007594.g005
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As in simulation one, for each participant we sampled a hierarchy H based on the graph G
used in the experiment. Since participants were asked to identify three candidate bus stops, we

randomly sampled three nodes among all nodes that belonged to bridges in H, i.e. {u: bw,z = (u,

v), for some (w, z)2E0 and u 2 V}, where the b and E0 are the bridges and edges in the sampled

hierarchy, respectively. This replicated the empirical result (Fig 5C; 65% of choices, p< 10−20,

right-tailed binomial test), with most simulated participants inferring hierarchies respecting

the underlying community structure. Similarly to simulation one, this was due to the higher

connectivity within communities than across communities.

Simulation three: Hierarchical planning. In their second experiment, Solway et al. [8]

trained 10 participants to navigate between pairs of nodes in a different graph (Fig 6A). On

some trials, participants were asked to indicate a single node that lies on the shortest path

between two nodes in different communities. They found that participants overwhelmingly

selected the bottleneck node between the two communities (Fig 6B), suggesting that they not

only discovered the underlying community structure, but also leveraged that structure to plan

hierarchically, “thinking first” of the high-level transitions between clusters of states.

As in simulations one and two, we sampled H based on the graph G for each participant.

We then used the hierarchical planner to find 50 hierarchical paths between random start loca-

tions in the left community and random goal locations in the right community. For each such

path, we counted the first node that belongs to a bridge as the response on the corresponding

trial, since this is the first node considered by the planner and is therefore the closest approxi-

mation to what a participant would think of first (see definition of HBFS in the Methods). This

replicated the empirical results, with a strong tendency for the bottleneck location to be

selected (Fig 6C; 60% of choices, p< 0.001, right-tailed Monte Carlo test). The discovered

hierarchies resembled the underlying community structure for the same reason as in simula-

tions one and two, resulting in the bottleneck node frequently becoming part of a bridge that

all paths between the two communities would pass through.

Simulation four: Shorter hierarchical paths. In their final experiment, Solway et al. [8]

demonstrated hierarchical decomposition and planning in the Towers of Hanoi task, which

can be represented by a graph (Fig 7A) in which each node is a particular game state and each

edge corresponds to move that transitions from one game state to another. They leveraged the

Fig 6. Planning transitions across communities first. A. Graph from Solway et al. [8], experiment 2, with colors indicating the

optimal decomposition according to their analysis. The nodes labeled s and g indicate an example start node and goal node,

respectively. B. Results from Solway et al. [8], experiment 2, showing that people are more likely to think of bottlenecks states first

when they plan a path between states in different communities. Notation as in Fig 5B (10 participants). C. Results from our

simulation demonstrating that our model also shows the same preference. Using the hierarchy identified by our model, the

hierarchical planner is more likely to consider the bottleneck state first, since it is more likely to end up as the endpoint of a bridge

connecting the two clusters. Error bars are s.e.m (10 simulations).

https://doi.org/10.1371/journal.pcbi.1007594.g006
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fact that there are two different shortest paths between some pairs of states (for example, the

start and goal states in Fig 7A), but those paths cross a different number of community bound-

aries as defined by their optimal decomposition analysis. Hierarchical planning predicts that

participants will prefer the path which crosses fewer community boundaries, and this is indeed

what the authors found (Fig 7B).

After choosing a hierarchy H for each simulated participant as in the previous simulations,

we then used the hierarchical planner to find paths between the six pairs of states that satisfy

the desired criteria. In accordance with the data, this resulted in the path with fewer commu-

nity boundaries being selected more frequently (Fig 7C; 71.4% of choices, p< 10−10, right-

tailed binomial test). Similarly to the previous simulations, the model tended to carve up the

graph along community boundaries. Since the planner first plans in the high-level graph, it

prefers the path with the fewest clusters, and hence with the fewest cluster boundaries.

Simulation five: Cross-cluster jumps. In our final simulation, we considered a study per-

formed by Lynn et al. [12], in which participants experienced a random walk along the graph

shown in Fig 8A. This was a self-paced serial reaction time task in which participants had to

press a different key combination for each node. A small subset of transitions violated the

graph structure and instead “teleported” the participant to a node that is not connected to the

current node. Importantly, there were two types of violations: short violations of topological

distance 2 and long violations of topological distance 3 or 4. The authors found that partici-

pants were slower to respond to longer than to shorter violations, suggesting that participants

had inferred the large scale structure of the graph.

While this is not a planning task, we assumed that reaction times (RTs) for cross-cluster

transitions would be slower for the same reason as in experiment three: a cross-cluster transi-

tion requires planning in the high-level graph, imposing a kind of context switch cost that

would slow RTs.

Like in the previous simulations, we sampled H for each participant and then simulated a

random walk along the graph G, with occasional violations as described in Lynn et al. [12]. In

order to model RTs, we assumed a bimodal distribution of RTs, with fast RTs for transitions

within clusters and slow RTs for transitions across clusters, consistent with the notion that

cross-cluster transitions are more surprising. Instead of actually simulating RTs, we simply

Fig 7. Preferring paths with fewer community boundaries. A. Graph representing the Towers of Hanoi task used in Solway et al.

[8], experiment 4. Vertices represent game states, edges represent moves that transition between game states. The start and goal

states (s, g) show an example of the kinds of tasks used in the experiment. Colored arrows denote the two shortest paths that could

accomplish the given task, with the red path passing through two community boundaries and the green path passing through a single

community boundary. B. Results from Solway et al. [8], experiment 4, showing that participants preferred the path with fewer

communities, or equivalently, the path that crosses fewer community boundaries. Bar graph shows fraction of participants (35

participants). Dashed line is chance. C. Results from simulations showing that our model also exhibits the same preference. Bar

graph shows the fraction of simulations that chose the path with fewer community boundaries. Error bar is s.e.m. (35 simulations).

https://doi.org/10.1371/journal.pcbi.1007594.g007
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counted the number of cross-cluster transitions during the random walk. This revealed a

greater number of cross-cluster transitions for long violations than for short violations, consis-

tent with the data (Fig 8B; t(154) = 4.50, p = 0.00001, two-sample t-test). This occurs because

nearby nodes are more likely to be clustered together, and hence violations of greater topologi-

cal distance increase the likelihood that the destination node would be in a different cluster

than the starting node, resulting in a greater surprise and a slower RT.

Experiments

Framing hierarchy discovery as a particular kind of hidden state inference allows us to

straightforwardly extend our framework to account for the distribution of tasks and rewards

in the environment. The best of our knowledge, the effect of tasks and rewards on hierarchy

discovery has not been systematically investigated in prior empirical work. In particular, our

model predicts that people will cluster together adjacent states that regularly co-occur in the

same task (Eqs 12 and 13) as well as adjacent states that deliver similar rewards (Eqs 15, 16 and

17). Note that these novel predictions are not accounted for by any existing models (Table 2).

Some of these predictions are counterintuitive—for example, is not clear why states associated

with the same reward should be relevant from the perspective of planning. Understanding

state chunks as hidden states which deliver observations from the same distribution—similar

in spirit to latent cause models in structure learning [10, 28] – sheds insight into these phe-

nomena, which we assess in a series of eight behavioral experiments. Each experiment aims to

verify a unique prediction of our framework, or to provide a nuance or address a potential

concern related to a previous experiment. As such, we believe that no experiment stands on its

own and that our empirical results should be considered together, providing convergent evi-

dence that hierarchy discovery is a form of structure learning in which the inferred state

chunks are shaped by tasks and rewards in addition to environment topology.

Experiment one: Task distributions

In our first experiment, we sought to validate the prediction of our model that clusters could

be induced by the distribution of tasks alone, even when the graph topology does not favor any

particular clustering. In particular, our model predicts that states which frequently co-occur in

Fig 8. Slower reactions to cross-cluster transitions. A. Graph used in Lynn et al. [12]. Each node (white) is connected to its

neighboring nodes and their neighbors (green). Blue nodes are 2 transitions away from the white node, while red nodes are 3 or 4

transitions away. B. Results from Lynn et al. [12] showing that, on the test trial, participants were slower to respond to long violations

than to short violations. Change in RT is computed with respect to average RT for no-violation transitions. Error bars are s.e.m (78

participants). RT, reaction time. C. Results from simulations showing that long violations are more likely to end up in a different

cluster, which would elicit a greater surprise and hence a slower RT, similar to crossing a cluster boundary.

https://doi.org/10.1371/journal.pcbi.1007594.g008
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the same task should be clustered together, since the hierarchical planner is optimal within

clusters.

Participants. We recruited 87 participants (28 female) from Amazon Mechanical Turk

(MTurk). All participants received informed consent and were paid $3 for their participation.

We reasoned that paying participants a fixed amount would incentivize them to complete the

experiment in the least amount of time possible, which entails balancing path length with plan-

ning time in a way that is characteristic of many real-world tasks. The experiment took 17 min-

utes on average. All experiments were approved by the Harvard Institutional Review Board.

Design. We asked participants to navigate between pairs of nodes (“subway stops”) in a

10-node graph (the “subway network”, Fig 9A, left). The training trials (Fig 9A, right) were

designed to promote a particular hierarchy: the task to navigate from node 1 node 3 would

favor clustering nodes 1,2,3 together; the task to navigate from node 4 to node 6 would favor

clustering nodes 4,5,6 together; and the task to navigate from node 10 to node 7 would favor

clustering nodes 7,8,9,10 together (Fig 9A, left). The normative reason for this is that hierarchi-

cal planning is always optimal within a cluster. In the generative model, this is taken into

account by Eq 13, which leads to a preference to cluster together start and goal states from

the same task. The purpose of the tasks with random start and goal states was to encourage

participants to learn a state representation for efficient planning and not simply to respond

habitually.

In order to test the model prediction, after training, we asked participants to navigate from

node 6 node 1. Note that the two possible paths are of the same length and a planner with a flat

representation of the graph would show no preference for one path over the other. Further-

more, since there is no community structure and the graph is perfectly symmetric, any cluster-

ing strategy based on graph structure alone would not predict a preference. Conversely, our

model predicts that participants will tend to choose the path through node 5 since it passes

through a single cluster boundary, whereas the path through node 7 passes through two cluster

boundaries.

Procedure. The experiment was implemented as a computer-based game similar to Bala-

guer et al. [2] in which participants had to navigate a virtual subway network. At the start of

each trial, participants saw the names of the starting station and the goal station. After 2 s, they

Fig 9. Hierarchy discovery is sensitive to the task distribution. A. (Left) graph used in experiment one with no topological community structure.

Colors represent clusters favored by the training protocol (right). Numbers serve as node identifiers and were not shown to participants. “Rand”

denotes a node that is randomly chosen on each trial. (middle) trial instruction (top) and screenshot from the starting state (bottom). B. Results from

experiment one showing that, on the test trial, participants were more likely to go to state 5 than to state 7, indicating a preference for the route with

fewer cluster boundaries. Dashed line is chance. Error bars are s.e.m. (87 participants) C. Results from simulations showing that our model also

preferred the transition to state 5. Notation as in B.

https://doi.org/10.1371/journal.pcbi.1007594.g009
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transitioned to the navigation phase of the trial, during which they could see the name of the

current station in the middle of the screen, surrounded by the names of the four neighboring

stations, one in each cardinal direction. If there was no neighboring station in a particular

direction, participants saw a filled circle instead of a station name. The name of the goal station

was also indicated in the top left corner of the screen as a reminder. The navigation phase

began with a 3-s countdown during which participants could see the starting station and its

neighbors but could not navigate. Participants were instructed to plan their route during the

countdown. After the countdown, participants could navigate the subway network using the

arrow keys. Transitions between stations were instantaneous. Once participants reached the

goal station, they had to press the space bar to complete the trial. This was followed by a

500-ms “success” message, after which the trial ended and the instruction screen for the next

trial appeared. Pressing the space bar on a non-goal station resulted in a “incorrect” message

flashing on the screen. Attempting to move in a direction without a neighboring station had

no effect. Following Balaguer et al. [2], stations were named after cities, with the names ran-

domly shuffled for each participant.

The subway network corresponded to the graph in Fig 9A. In order to assign arrow keys to

edges, we first embedded the graph in the Cartesian plane by assigning coordinates to each

vertex, which resulted in the planar graph shown in the figure. Then we assigned the arrow

keys to the corresponding cardinal directions. For each participant, we also randomly rotated

the graph by 0˚, 90˚, 180˚, or 270˚. Participants performed 80 training trials (20 in each condi-

tion; Fig 9, right) in a random order. After the training trials, we showed a message saying that

now the subway system was unreliable, so that some trips may randomly be interrupted mid-

way. This was followed by the test phase, during which participants performed the test trial

6! 1 and two additional test trials. In order to prevent new learning during the test phase, all

test trials were interrupted immediately after the first valid keypress. The two additional test

trials were not included in the analysis or any of the following experiments. We used the desti-

nation of the first transition on the test trial as our dependent measure in the analysis. We rea-

soned that the direction in which participants attempt to move first is along what they perceive

to be the best route to the goal station. Since participants were paid a fixed fee for the whole

experiment, they were incentivized to complete it as fast as possible, which can be best

achieved by planning the shortest route during the 3-s countdown and then following it.

Results and discussion. In accordance with our model predictions, more participants

moved to state 5 on the test trial, rather than to state 7 (Fig 9B; 58 out of 87, p = 0.003, two-

tailed binomial test). Notice that this could not be explained by habitual responding: while par-

ticipants may have learned action chunks that solve the corresponding tasks (for example,

pressing right and down from state 1 to state 3), the actions from state 6 to its neighboring

states were never reinforced as part of a stimulus-response association or as part of a longer

action chunk. In particular, state 6 is never a starting state or an intermediary state, except pos-

sibly in the random tasks, in which both directions have equal probability of being reinforced.

The effect cannot be explained by state familiarity either, since participants experienced states

5 and 7 equally often, on average. Finally, it is worth noting that a model-free RL account

would make the opposite prediction, since state 7 would on average have a higher value than

state 5, as it gets rewarded directly.

This result was consistent with the model predictions (Fig 9C; 57 out of 87, p = 0.005, two-

tailed binomial test), suggesting that people form hierarchical representations for planning in

a way that tends to cluster together nodes that co-occur in the same tasks.

In order to rule out the possibility that the preference for the 6! 5 transition on the test

trial was simply due the frequent 5! 6 transitions during training, which might have some-

how reinforced the reverse action, we performed a logistic regression of test trial choices on
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the total number of 6! 5, 5! 6, 6! 7, and 7! 6 transitions during training. This did not

show a significant effect for any of the transitions (F(1, 83)<2.8, p> 0.09 for all coefficients),

thus disproving such a “flat”, non-hierarchical associative account.

Experiment two: Task distributions and suboptimal planning

Since both paths on the test trial in the previous experiment were of equal length, the bias that

participants developed would make no difference for their performance on that task. Next we

asked whether such a bias would occur even if it might lead to suboptimal planning, as the

hierarchical planner would predict. For example, most of us have had the experience of navi-

gating between two locations through other, more familiar location, even though a shorter but

less familiar route might exist (see also [29]).

Participants. We recruited 241 participants (112 female) from MTurk. Of those, 78 were

assigned to the “bad” clusters condition, 87 were assigned to the “control” condition, and 76

were assigned to the “good” clusters condition. Participants were paid $2.50 for their participa-

tion. The experiment took 15 minutes on average.

Design and procedure. We used the same paradigm as experiment one, with the only dif-

ference that node 10 was removed from the graph (Fig 10A, left). Now the analogous training

regime (Fig 10A, right) would promote “bad” clusters that lead to suboptimal planning on the

test trial. We also performed a control version of the experiment with different participants

using random training tasks only, as well as a “good” condition with a third group of partici-

pants that promotes clusters that lead to optimal planning on the test trial (Fig 10A).

Results and discussion. On the test trial, participants preferred the suboptimal move

from 6 to 5 in the “bad” clusters condition (Fig 10B; 53 out of 78, p = 0.002, two-tailed bino-

mial test), significantly more than the control condition (χ2(1, 165) = 6.52, p = 0.01, chi-square

test of independence) and the “good” condition (χ2(1, 154) = 10.4, p = 0.001). This was in

Fig 10. Different task distributions can induce different hierarchies in the same graph. A. (Left) graph used in experiment two with colors

representing clusters favored by the training protocol in the “bad” (left) and “good” (middle) condition. (Right) training and test protocols for all three

conditions. B. Results from experiment two showing that, on the test trial, participants were more likely to go to state 5 than to state 7 in the bad

condition, leading to the suboptimal route. The effect was not present in the control condition or in the good condition. Dashed line is chance. Error

bars are s.e.m. (78, 87, and 76 participants, respectively). C. Results from simulations showing that our model exhibited the same pattern. Notation as

in B.

https://doi.org/10.1371/journal.pcbi.1007594.g010
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accordance with the model predictions (Fig 10C; 58 out of 78 simulated participants,

p = 0.00002, in the bad condition; χ2(1, 165) = 18.2, p = 0.00002 for bad vs. control condition;

χ2(1, 154) = 30.0, p< 10−7 for bad vs. good condition). This suggests that participants formed

clusters based on the distribution of tasks and used these clusters for hierarchical planning,

even when that was suboptimal on the particular test task.

Note that the model showed a slight preference for the 6! 7 transition in the control con-

dition, which did not reach significance. This occurs because there are fewer nodes along that

path and, in the presence of random clusters induced by the random tasks, there will be, on

average, fewer cluster boundaries along that shorter path. Participants exhibited a similar qual-

itative pattern, which however was not significant. Somewhat surprisingly, there was also no

significant difference between the control condition and the good condition in the data (χ2(1,

163) = 0.6, p = 0.5) and the model (χ2(1, 163) = 2.2, p = 0.14), although both showed a slightly

greater preference for the 6! 7 transition compared to the control condition. This suggests

that in this particular scenario, the “good” clusters have a relatively weaker effect.

Experiment three: Learning effects

While the experiments so far demonstrate the key predictions of our model, they only test

asymptotic behavior and as such do not assess how beliefs about hierarchy evolve over the

course of learning. Further, these results could conceivably be explained by simpler, non-hier-

archical accounts, such as a bidirectional association forming between states 5 and 6 due to the

frequent transition from 5 to 6 during training. While we addressed this in our previous analy-

sis, in our next experiment we sought to definitively rule out such “flat” associative explana-

tions and to study the dynamics of learning.

Participants. We recruited 127 participants (54 female) from MTurk. Participants were

paid $8.50 for their participation. The experiment took 47 minutes on average.

Design. We trained participants on the same graph experiment one, but using a different

training regimen, with two stages of training and multiple probe trials (Fig 11A). The first

stage of training (trials 1-103) promoted clustering states 2 and 3 together, separately from

state 1, and similarly promoted clustering states 4 and 5 together, separately from state 6 (Fig

11A, first panel). In order to investigate the dynamics of hierarchy discovery, we interspersed

three probe trials that tasked participants to navigate from state 6 to state 1 throughout the

first stage, expecting participants’ preferences to become stronger over time. Note that predic-

tions on the probe trials are the opposite of predictions on the test trial in experiment one: the

path from 6 to 1 through state 5 now crosses three cluster boundaries, whereas the path

through state 7 crosses only two cluster boundaries, so participants should prefer the path

through state 7. This cannot be explained by a naive associative account since state 6 is no

more likely to co-occur with state 7 than with state 5.

To further assess learning, which sought to reverse this effect during the second stage of

training which promoted the same clusters as experiment one (Fig 11A, second panel). Our

prediction was that, in accordance with the results of experiment one, this would eliminate

participants’ preference for going to state 7 on the probe trials in favor of state 5, since the path

through state 5 now crosses a single cluster boundary.

Procedure. We used the same procedure as experiment one, with the following changes.

First, there was no information indicating to participants that something had changed between

stages (i.e., between trials 103 and 104). Additionally, instead of having a test stage in the end,

we interspersed six probe trials 6! 1, spaced evenly throughout training (trials 34, 68, 103

during the first stage and trials 150, 197, 246 during the second stage). Unlike the test trials in

experiment one, probe trials were indistinguishable from training trials and were not
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interrupted after the first move. Another difference from experiment one was that instead of

being rotated, the graph was randomly flipped horizontally and/or vertically for each partici-

pant. Finally, unlike experiment one, participants did not see the names of adjacent stations

but instead saw arrowheads indicating they could move in the corresponding direction

(Fig 11A, third panel).

Results and discussion. Consistent with our predictions, participants showed a signifi-

cant preference for moving to state 7 on the last probe trial of the first stage (Fig 11B, probe

trial 3; 75 out of 127 participants, p = 0.05, two-tailed binomial test). This effect was modulated

by the amount of training, with the smallest effect on the first probe trial and the largest effect

on the third probe trial (slope = -0.27, F(1, 379) = 3.96, p = 0.05, mixed effects logistic regres-

sion with probe trials 1-3). The effect was reversed during the second stage (slope = 0.73, F(1,

252) = 8.10, p = 0.005, mixed effects logistic regression with probe trials 3-4).

These results were consistent with the model predictions (Fig 11C). The model preference

for state 7 on the third probe trial (92 out of 127 simulated participants, p< 10−6, two-tailed

binomial test) is once again due to the preference of the hierarchical planner for paths with

fewer state clusters. As in our empirical data, this effect became stronger over time (slope =

-0.34, F(1, 379) = 5.58, p = 0.02, mixed effects logistic regression with probe trials 1-3). The rea-

son is that, as the hierarchy inference process observes more tasks, it accumulates more evi-

dence (i.e., more terms in the product in Eq 14) which sharpens the posterior distribution P
(H|D) around its mode (i.e., the most probable hierarchy, Fig 11A, first panel). This corre-

sponds to a decrease in the uncertainty over H, which makes it more likely that the sampler

will draw the hierarchy in Fig 11A, first panel, and plan according to it. Hence this effect of

learning occurs due to the decrease in uncertainty resulting from the additional observations.

Finally, like our participants, the model reversed its preference during the second stage of

Fig 11. Learning dynamics. A. Experiment three used the same graph as experiment one, with main difference that training (right panel) took part in

two stages that promoted different hierarchies (first and second panel), with probe trials interspersed throughout training. Notation as in Fig 9A. B.

Results from experiment three showing that (1) the first stage of training makes participants more likely to go to state 7 on the probe trials, which could

not be explained by a “flat” associative account, (2) this tendency appears gradually as participants accumulate more evidence, and (3) this preference is

reversed during the second stage of training. Error bars are s.e.m. (127 participants). C. Results from simulations showing that our model exhibited the

same learning dynamics. Notation as in B.

https://doi.org/10.1371/journal.pcbi.1007594.g011
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training (slope = 2.13, F(1, 252) = 53.43, p< 10−11, mixed effects logistic regression with probe

trials 3-4). This effect occurs because tasks during the second stage of training shift the mode

of the posterior (Fig 11A, second panel). Together, these results rule out simple, nonhierarchi-

cal associative accounts and demonstrate that our model can account for learning dynamics

due to changes in uncertainty and changes in the mode of the posterior distribution over

hierarchies.

It is worth noting that there is a significant discrepancy between the effect size predicted by

the model and the effect size observed in the data, particularly with regard to the difference

between the first stage and the second stage of training. We believe this is attributable to the

lack of any adjacency information in this experiment, which ameliorates the potential associa-

tive confound, but by the same token renders the low-level graph G more difficult to learn

compared to the other experiments. This results in noisier choices, which could be modeled by

adjusting the noise parameter �. However, since our aim was to assess robust qualitative effects

that are independent of particular parameterizations, for consistency we preferred using the

same set of parameters as in simulations one through five (Table 1).

One prediction of our hierarchical planner is that transitions across cluster boundaries

should take longer, since they involve planning both in the high-level graph H as well as the

low-level graph G, whereas transitions within clusters only involve planning in G. We therefore

analyzed log-transformed RTs during the first stage of training as a function of transition type

using mixed effects linear regression. We classified each transition in one of three types:

• Action chunk: transitions along the shortest path for any of the training tasks (2! 3, 4! 5,

10! 9, 9! 8, 8! 7).

• State chunk: transitions along the shortest path for any of the training tasks, but in the

reverse direction (3! 2, 5! 4, 9! 10, 8! 9, 7! 8).

• Boundary: all other transitions (1! 2, 2! 1, 1! 10, 10! 1, 6! 7, 7! 6, 6! 5, 5! 6,

3! 4, 4! 3).

We separated within-cluster transitions into action chunk transitions and state chunk tran-

sitions in order to account for the fact that actions along frequently occurring task solutions

are reinforced much more frequently and are thus likely to be chunked together into stereo-

typed action sequences by the motor system. Consistent with this, we found that boundary

transitions and state chunk transitions were both significantly slower than action chunk transi-

tions (F(1, 46592) = 121.00, p< 10−27 and F(1, 46592) = 69.56, p< 10−16, respectively). In con-

trast, state chunk transitions are reinforced as frequently as boundary transitions, on average.

Despite this, boundary transitions were slower than state chunk transitions (F(1, 46592) =

10.68, p = 0.001), as predicted by our hierarchy discovery account. Together, these results fur-

ther support our hypothesis that task boundaries delineate cluster boundaries and are consis-

tent with the notion that state abstraction drives temporal abstraction [30] – humans first

decompose the environment into clusters that then constrain the chunking of actions into

sequences that operate within those clusters.

Experiment four: Perfect information

One downside of experiments one and two is that effects of memory confound hierarchy infer-

ence and planning. In particular, it is unclear that participants are able to learn and represent

the full graph G. This is most evident in the control condition of experiment two (Fig 10B), in

which our model predicts that participants should be better than chance, when in fact they are

not, thus questioning whether they are learning the graph or planning efficiently in the first
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place. Note that this does not pose a significant challenge to our hierarchy discovery account;

people’s choices could still be accounted for without invoking a hierarchical planner, for exam-

ple by assuming a preference to remain in the same cluster (moving to state 5) rather than

crossing a cluster boundary (moving to state 7). Nevertheless, we sought to overcome this limi-

tation by ensuring participants know the full graph G.

Participants. We recruited 77 participants (33 female) from MTurk. Participants were

paid $2.00 for their participation. The experiment took 10 minutes on average.

Design. We used the same graph and training protocol as experiment one, except this

time participants could see the whole graph at any given time (Fig 12A). This put participants

on an equal footing with the hierarchy inference and hierarchy planning algorithms, both of

which assume perfect knowledge of the graph G.

Procedure. The procedure was similar to experiment one, with the main difference that

participants had a bird’s-eye view of the entire subway network throughout the experiment

(Fig 12A, middle panel). Subway stations were represented by squares connected by lines

which represented the connections between stations. The current station was highlighted with

a thick border and the goal station was in green font.

Since planning is significantly easier in the setting, we removed the 3-s countdown, so that

participants could start navigating immediately after the 2-s instruction. Additionally, instead

of rotating the map, we randomly flipped it horizontally for half of the participants. We also

omitted the “unreliable trips” warning before the test phase since participants now only saw a

single test trial, which was immediately interrupted after the first move. The experiment took

10 minutes on average and participants were paid $2.00.

Results and discussion. We found that, even with full knowledge of the graph, partici-

pants still developed a bias (Fig 12B; 51 out of 77 participants, p = 0.0014, right-tailed binomial

test), consistent with the predictions of our model (Fig 12C; 55 out of 77, p = 0.0002, two-tailed

binomial test). This provides strong support for our hierarchy discovery account, suggesting

tasks constrain cluster inferences above and beyond constraints imposed by graph topology,

which in turn constrain hierarchical planning on novel tasks.

Experiment five: Perfect information and suboptimal planning

We next asked whether hierarchy discovery could lead to suboptimal planning even when the

full graph is visible.

Fig 12. Hierarchy discovery based on task distribution in fully visible graphs. A. (Left) experiment four used the same graph as

experiment one, however this time the graph was fully visible on each trial (middle). Notation as in Fig 9A. B. Results from

experiment four showing that, like in experiment one, participants were more likely to go to state 5 on the test trial. Dashed line is

chance. Error bars are s.e.m. (77 participants) C. Results from simulations showing that our model also preferred the transition to

state 5. Notation as in B.

https://doi.org/10.1371/journal.pcbi.1007594.g012
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Participants. We recruited 386 participants (175 female) from MTurk. Of those, 119 were

assigned to the “bad” clusters condition, 90 were assigned to the “control 1” condition, 88 were

assigned to the “control 2” condition, and 89 were assigned to the “good” clusters condition.

Participants were paid $2.00 for their participation. The experiment took 9 minutes on

average.

Design and procedure. We used the same graph and training protocol as experiment

two, except this time participants could see the whole graph at any given time (Fig 13A), as in

experiment four. Additionally, we included two control conditions, one with 20 training trials

(“control 1”) and one with 80 training trials (“control 2”). The first control condition ensured

participants received the same number of random tasks as the bad and good conditions, while

the second control condition ensured that participants received the same total number of tasks

as in the bad and good conditions. We used the same experimental procedure as experiment

four.

Results and discussion. As in experiment two, inducing “bad” clusters still led to signifi-

cantly worse performance on the test trial than either control condition (Fig 13B; χ2(1, 209) =

9.35, p = 0.002 for bad vs. control 1; χ2(1, 207) = 7.7, p = 0.006 for bad vs. control 2, chi-square

test of independence). Inducing “good” clusters (89 participants) led to significantly better per-

formance than “bad” clusters (χ2(1, 208) = 9.03, p = 0.003 for bad vs. good), although not sig-

nificantly better than the control conditions (χ2(1, 179) = 0.002, p = 0.96 and χ2(1, 177) = 0.05,

p = 0.8 for good vs. control 1 and good vs. control 2, respectively). This accords with our

model predictions (Fig 13C; χ2(1, 209) = 10.1, p = 0.002 for bad vs. control 1; χ2(1, 207) = 4.8,

p = 0.03 for bad vs. control 2; χ2(1, 208) = 17.7, p = 0.00003 for bad vs. good) and strongly

suggests that people default to hierarchical planning over clusters influenced by the task distri-

bution, even in simple, fully observable graphs. Notice that in both control conditions, partici-

pant preferred the shorter path (21 out of 90 participants, p< 10−6 for control 1; 22 out of 88

participants, p< 10−6 for control 2, two-tailed binomial tests), indicating that they were indeed

able to plan effectively when given the full graph without tasks to bias them towards particular

clusters, thus overcoming the limitation of experiment two.

Fig 13. Task distributions can bias hierarchical planning even in fully visible graphs. A. (Left) experiment five used the same

graph as experiment two, however this time the graph was fully visible on each trial. Notation as in Fig 10A. B. Results from

experiment five showing that participants were still biased by the training tasks in the bad condition, performing worse on the test

trial compared to the other conditions. Dashed line is chance. Error bars are s.e.m. (119, 90, 88, and 89 participants, respectively). C.

Results from simulations showing that our model exhibited the same pattern. Notation as in B.

https://doi.org/10.1371/journal.pcbi.1007594.g013
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One notable difference between our model predictions and the empirical data is that our

model predicts a preference for state 5 in the “bad” condition (78 out of 119 simulated partici-

pants, p = 0.0009, two-tailed binomial test), whereas participants did not show significant pref-

erence (52 out of 119 participants, p = 0.2, two-tailed binomial test). We believe this occurs

because the task is much simpler when the graph is fully visible and participants could easily

perform optimal “flat” planning, rather than having to resort to hierarchical planning. This

effect could be captured straightforwardly using a mixture of BFS and HBFS for planning,

rather than just HBFS.

Experiment six: Reward generalization

In this experiment, we tested the prediction that rewards generalize within clusters. While this

prediction is not unique to our model and could be accounted for by Gaussian processes over

graphs [26, 31] or by the successor representation [32, 33], the idea that clusters generate simi-

lar rewards is a core assumption of our model that we sought to validate before assessing how

clusters inferred based on rewards could influence planning (experiment seven).

Participants. We recruited 32 participants from the MIT undergraduate community. The

experiment took around 3 minutes and participants were not paid for their participation.

Design. We showed participants the graph (“network of gold mines”) in Fig 14A and told

them that in the past, states delivered an average reward of 15 (“grams of gold”), but today,

state 4 (green) delivered a reward of 30. We then asked participants to choose one between

state 3 and state 7 (“mines to explore”).

Procedure. Each participant was given a sheet of paper with instructions and the graph in

Fig 14A, without node identifiers. The instructions were as follows:

You work in a large gold mine that is composed of multiple individual mines and tunnels. The
layout of the mines is shown in the diagram below (each circle represents a mine, and each line
represents a tunnel). You are paid daily, and are paid $10 per gram of gold you found that day.
You dig in exactly one mine per day, and record the amount of gold (in grams) that mine yielded
that day. Over the last few months, you have discovered that, on average, each mine yields about
15 grams of gold per day. Yesterday, you dug in the blue mine in the diagram below, and got 30
grams of gold. Which of the two shaded mines will you dig in today? Please circle the mine you
choose.

Fig 14. Reward generalization within clusters. A. Graph used in experiment six. Numbers indicate state identifiers and were not

shown to participants. Participants were told that states deliver 15 points on average and that, on a given day, state 4 (green)

delivered 30 points. They were then asked which of the two gray nodes (states 3 and 7) they would choose. B. Results from

experiment six showing that participants preferred state 3, which is in the same topological cluster as state 4, suggesting they

generalized the reward within the cluster. Error bars are s.e.m (32 participants). C. Results showing that the model exhibited the

same pattern. Notation as in B.

https://doi.org/10.1371/journal.pcbi.1007594.g014
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Half of the participants were given a version in which the graph was flipped horizontally,

i.e. the topological cluster was on the right side.

Results and discussion. Participants preferred state 3, the state in the same topological

community as state 4 (Fig 14B; 24 out of 32 participants, p = 0.007, two-tailed binomial test),

as the model predicts (Fig 14C; 24 out of 32 simulated participants, p = 0.007). Topological

structure is the only driver of hierarchy discovery in this case, since there is only a single

reward and no tasks. The structure of the graph favors clustering state 4 together with state 3

since they belong to the same community. The higher-than-average reward of state 4 then

drives up the average reward θ for that cluster, which in turn drives up average reward μ for

the states that belong to it, and in particular for state 3. In contrast, state 7 often ends up in a

separate cluster which is not influenced by the reward of state 3 and thus has an expected

reward of 15, the average �y for the entire graph.

Experiment seven: Rewards and planning

While the results of experiment six validated the reward assumptions of our model, they could

also be accounted for by alternative models, such as the successor representation [32, 33] or a

Gaussian process with a diffusion kernel [26, 31]. We therefore sought to test the unique pre-

diction of our model that, in the absence of community or task structure, hierarchical planning

will occur over clusters delineated by boundaries in the reward landscape of the environment.

Participants. We recruited 174 participants (68 female) from MTurk. Participants were

paid $0.50 plus a bonus equal to the number of points earned on a randomly chosen trial in

cents (up to $3.00). This encouraged participants to do their best on every trial. The experi-

ment took 9 minutes on average.

Design. We asked participants to navigate a graph (“network of gold mines”) with the

same structure as in experiments one and four (Fig 15A). Unlike the previous experiments,

participants performed a mix of randomly shuffled free choice and forced choice trials. On

free choice trials, participants started in a random node and could navigate to any node they

chose. Once they reached their target node, they collected the reward (“grams of gold”) from

that node. On forced choice trials, participants had a specified random target node and they

could only collect reward from that node, similarly to the tasks in experiments one through

five. Free choice trials encouraged participants to learn the reward distribution, while forced

Fig 15. Rewards induce clusters that influence planning. A. (Left) Experiment seven employed the same graph as in experiments

one and four, with the difference that clusters were induced via the reward rather than the task distribution. (middle) screenshots

from free choice and forced choice trials. (Right) training and test protocol. “Rand” indicates that a random state was chosen on each

trial, while the asterisk indicates a free choice trial (i.e., the participant was free to choose any node). B. Results from experiment

seven showing that participants were more likely to prefer the path with fewer reward cluster boundaries. Error bars are s.e.m. (174

participants). C. Results from simulations showing that the model exhibited the same preference. Notation as in B.

https://doi.org/10.1371/journal.pcbi.1007594.g015
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choice trials encouraged planning and prepared participants for the test trial, which was also a

forced choice trial. Crucially, the rewards favored a clustering like the one in experiments one

and four: states 1,2,3 always delivered the same reward, as did states 4,5,6 and states 7,8,9,10.

Similarly to experiments one and four, participants were tested on a forced choice task from

node 6 to node 1.

Procedure. Participants were told they would navigate a virtual network of gold mines.

The graph layout was identical to experiment four (Fig 15A) and participants could see a

bird’s-eye view of the entire graph, with each node representing a mine and each edge repre-

senting a tunnel between mines. Each mine delivered a certain number of points, which were

displayed inside the node of the corresponding mine. Similarly to experiment four, partici-

pants could navigate between mines using the arrow keys and choose a mine using the space

bar, after which they were informed how many points they earned from the chosen mine and

immediately began the next trial. Mines always delivered deterministic points as indicated on

each mine. Only points earned from the chosen mine counted.

On free choice trials, any mine could be chosen. On forced choice trials, only a single target

mine was available and all other minds are grayed out (Fig 15A, right). Attempting to select a

different mine resulted in a “incorrect” message flashing and did not change the current mine.

There were 60 free and 40 forced choice training trials, starting at random states. The target

state on the forced choice trials during training was also random. In order to prevent partici-

pants from developing a model-free bias towards one side of the graph based on reward mag-

nitude (for example, because states there happened to be more rewarding), we randomly

resampled the points of all states with probability 0.2 on every free choice trial. All reward val-

ues were sampled uniformly between 0 and 300.

Results and discussion. As in experiments one and four, participants showed a preference

for the route with fewer cluster boundaries (Fig 15B; 102 out of 174 participants, p = 0.03, two-

tailed binomial test). The model made same prediction (Fig 15C; 108 out of 174 participants,

p = 0.001, two-tailed binomial test). However, this time the clusters were inferred solely based

on rewards, rather than topological structure or task distributions. This shows that the reward

distribution in the environment can affect hierarchy discovery and consequently planning

over that hierarchy, in accordance with our model predictions.

Discussion

In this study, we proposed a Bayesian model for discovering state hierarchies based on a gener-

ative model of the topological structure, rewards, and tasks in the environment. Building on

the Bayesian brain hypothesis [35–37] and on principles developed in structure learning [10]

and robotics [11], it postulates that the brain learns useful hierarchical representations by

inverting this generative model to infer the hidden hierarchical structure of the world. These

representations can be subsequently used to plan efficiently and flexibly in the face of changing

task demands. The model accounts for a number of phenomena previously reported in the lit-

erature and makes new predictions which we verified empirically.

The model goes beyond previous accounts of clustering states in the environment both in

the scope of findings it can explain and in the predictions it makes. Schapiro et al. [7] proposed

a recurrent neural network that learns community structure based on the temporal statistics of

the environment. Their model and other event segmentation models [38] can learn to predict

stimuli that tend to co-occur, such as states in the same community, and can detect boundaries

when those predictions are violated, for example after a transition to a new community. While

this could explain the effects of simulations one through five and possibly experiments

one, two and three, it will be challenged by experiments four, five and six, in which the
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environment is fully visible and all stimuli co-occur together. More importantly, these models

make no predictions regarding action selection, and it is not clear how the learned representa-

tions can be used for planning.

One way to implement action selection using the temporal statistics experienced by the

agent is to assume that bidirectional associative chains are built based on training sequences

and planning is done over low-level states using association-based distances (that is, less closely

associated states are considered to require a larger transition cost). This is similar in spirit to

the model proposed by Lynn et al. [12] and could replicate the results of experiments one

through five. However, the lack of a hierarchical planning component means that it would fail

to account for simulations three and four, and the lack of an explicit hierarchy means that sim-

ulation two would also pose a challenge. Simulation one controls for the number of transitions,

so an associative account would not detect the boundary transitions. It would also fail to cap-

ture the reward-based clustering observed in experiment seven.

Solway et al. [8] offer a formal definition of an optimal hierarchy; however, as the authors

themselves point out, their analysis is not a plausible account of how hierarchy is learned,

because it assumes the agent already knows the optimal solution to all possible tasks in the

environment, which defeats the purpose of learning a hierarchy in the first place. A detailed

comparison between our model and alternative candidate models that make similar claims is

shown in Table 2. Note that there is no need to simulate these models as they categorically can-

not capture some of the effects presented here.

The problem of planning has been studied extensively both for biological as well as artificial

agents. Correspondingly, our work resonates with several important strands of research,

which we discuss in turn below. Refer also to S1 Appendix for further discussion on related

ideas.

Model-based and model-free reinforcement learning

In psychology, planning and goal-directed behavior, which selects actions based on their out-

comes, is often contrasted with habitual behavior, which selects actions automatically [39].

The dichotomy between these two kinds of action selection strategies—fast, reflexive, habitual,

unconscious responding (also referred to as System 1) on one hand, and slow, reflective, goal-

directed, conscious deliberation (also referred to a System 2) on the other—has permeated the

field for over a century [40, 41], has been reincarnated in many forms [42–44], and is realized

in distinct neural circuits [45–48]. In RL, habitual and goal-directed behaviors have been asso-

ciated with model-free and model-based algorithms, respectively [49, 50].

In model-free algorithms, the agent learns a value function for each state and/or each action

by trial-and-error, and then chooses actions with respect to the learned values. In model-based

RL, the agent learns the reward and transition structure of the environment and combines that

information to find actions leading to reward. Model-free RL is associated with fast, reflexive

responding because it myopically considers the value of the current state/action only, while

model-based RL is associated with slow, reflective responding because it considers the transi-

tions and rewards of multiple states/actions ahead. Despite the superficial similarity of these

two systems and the two computational components we propose—a fast online planner, and a

slow offline representation learner—there is a profound difference. Both model-free and

model-based RL (as well as other versions of habitual and goal-directed strategies) perform

online action selection, with agents having to rely on one or the other to solve a particular task.

In contrast, our planner makes decisions about which actions to select in a particular task,

while the hierarchy discovery process works offline, outside the context of a particular task. In

a way, our planner is more like model-based RL in that it performs deliberate, goal-directed
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computations based on its internal model of the world (the “model” in model-based RL). The

purpose of the hierarchy discovery process is to learn such an internal representation that can

be used by a planner with limited computational resources. Indeed, the cognitive limitations

inherent in this type of reflective decision-making [43] are the foundational assumptions

behind our approach.

Notice that we only invoke a model-based planner in order to motivate hierarchy discovery

and to link the hierarchy to decision-making, without committing to the particular HBFS algo-

rithm. While hierarchy discovery can be justified in this way without invoking a model-free

system, we certainly do not exclude the possibility of such a system existing and operating in

parallel with the planner. A model-free component could easily be incorporated into our

framework, for example by having a parallel model-free system which learns the values of

states and actions. During decision making, the agent can use a meta-cognitive process to arbi-

trate between the planner and the model-free system [51]. Like the planner, the model-free sys-

tem could also operate at different levels of abstraction, learning values for the clusters in

addition to the low-level states. This could account for effects of reflexive responding that we

explicitly controlled for in our experiments.

Another distinguishing feature of our approach is that, by leveraging the deterministic nature

of the transition structure, our planner can rely on simple shortest path algorithms to find solu-

tions to tasks. In contrast, traditional approaches to model-based RL involve computationally

costly operations such as value iteration or sampling of candidate trajectories, both of which

scale poorly with the size of the state space. Even though the combinatorial explosion of sam-

pling could be managed by heuristics such as pruning of decision trees [29, 52], such approaches

are unnecessary in the deterministic domains often considered in planning problems.

It is worth highlighting that our results cannot be explained by standard model-free or

model-based RL algorithms. In experiments one, two, four, and five, model-free RL would

have learned high values for states 3, 6, and 7, and hence would prefer the transition 6! 7 on

the test trial. In experiments one and four, model-based RL would be indifferent between the

two possible trajectories on the test trial due to the symmetry of the graph. In experiments two

and five, model-based RL should actually favor the shorter path via 6! 7. All of these predic-

tions go against our participants’ tendency to pick the transition 6! 5.

The two systems in our proposal might also bear superficial resemblance to the Dyna archi-

tecture in RL [53] in which a slow, offline model-based simulator trains a fast, online model-

free system to respond adaptively to situations it has never experienced before. This process is

reminiscent of hippocampal replay [54] and is particularly useful when the environment

changes too often for trial-and-error learning to be effective. In contrast, we propose an offline

inference process for learning representations (the “model” in model-based RL) that a model-

based system can use to plan in previously unseen tasks. If our proposal is extended with a sep-

arate model-free component as suggested above, it could be integrated with Dyna, which

would in turn use the model-based system to train the model-free system.

Our results also cannot be explained by the successor representation [33, 55], an intermedi-

ate approach along the model-free/model-based continuum that predicts which states a given

policy will visit. This will fail to account for experiment three, in which none of the optimal

policies visit state 1, and the policies of the random tasks would not favor the transition 6! 7

over 6! 5.

Hierarchical reinforcement learning

A long-standing challenge for traditional RL has been the combinatorial explosion that occurs

when planning and learning take place over long time horizons. This challenge been addressed
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by hierarchical RL (HRL), which breaks down the problem into sub-problems at multiple lev-

els of abstraction. One influential approach to HRL extends the agent’s action repertoire to

include options [56] which consist of sequences of actions (the option policy) that accomplish

certain subgoals (for example, exiting a room). When an option is selected, the corresponding

action sequence is executed as a single behavioral unit. Options are also referred to as skills,

subroutines, partial policies, macro-actions, or policy chunks, while the original actions are

sometimes referred to as primitive actions.

As with regular or “flat” RL, HRL also comes in two distinct flavors [20]: model-free HRL

and model-based HRL. Like model-free RL, model-free HRL [57–59] learns a value function;

however, in this case the value function is additionally defined for options. Error-driven learn-

ing occurs both on the high level by learning which options lead to rewarding outcomes, as

well as on the lower level by learning the best option policy for each option. Importantly, there

is no notion of a transition function which could be used for planning, and hence model-free

HRL could not exhibit the behaviors predicted by our model. Although a model-free compo-

nent could be incorporated into our framework as discussed above, it would not account for

the results of experiments one through five. The only options that could conceivably have been

learned by model-free HRL are the ones corresponding to the training tasks (for example, 1!

3, 4! 6, and 10! 7 for experiment one). This set of options could not explain the results of

the test trial which requires going in the opposite direction.

In model-based HRL [60], as in model-based RL, the agent separately learns a transition

function and a reward function. Additionally, the agent is furnished with an option model that

specifies the initiation states (for example, locations within a room), termination states (sub-

goals; for example, doors), average duration, and average reward of each option. The agent can

thus plan over options rather than primitive actions, essentially performing mental “jumps” in

the state space, allowing it to first form a high-level plan between subgoals reachable via

options and then refining that plan on the lower level by simply following the corresponding

option policies. This form of saltatory model-based HRL is conceptually identical to our pro-

posal. While our work builds on concepts developed in parallel to HRL in the field of robot

navigation and planning [11], our model can be cast in HRL terms by considering each task as

equivalent to placing a positive reward in the goal state and a small negative reward in all other

states, thus encouraging the agent to find the shortest path to the goal state. Edges in the high-

level graph H can be seen as options, with subgoals specified by the endpoints of bridges and

option policies specifying how to reach the subgoals within a cluster.

Our work introduces two critical improvements to model-based HRL. First, as in model-

based RL, model-based HRL assumes planning occurs by sampling trajectories through the

state space, which in our proposal is performed by the deterministic and much more efficient

HBFS algorithm. Second, as Botvinick et al. [60] point out, a critical open question is how use-

ful options are discovered in the first place. The approach they propose is based on the succes-

sor representation [33] under a random walk policy, which partitions the state space along

topological bottlenecks. However, this would not predict the results of experiments one

through five and experiment seven, in which clustering occurs based on tasks and rewards

only.

When framed within HRL, our approach can be viewed as a solution to the option discov-

ery problem which has plagued the field of HRL since its inception, as the original formulation

never specified how useful options are learned in the first place. Discovering useful subgoals

and, correspondingly, useful options is critical, since an inadequate set of options can lead to

dramatically worse performance compared to regular RL [20]. This has led to the proliferation

of a rich literature on option discovery, to which we turn next.
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Option discovery

While earlier work on HRL assumed the options are supplied manually [56], a growing num-

ber of HRL studies have focused on the problem of discovering useful options. A detailed

review of the option discovery literature is beyond the scope of this discussion, but we high-

light some of the main approaches. Most option discovery methods fall in one of two broad

categories: state abstraction and temporal abstraction methods [61].

State abstraction methods first decompose the state space by identifying clusters or sub-

goals, and subsequently identify options based on that decomposition [62, 63]. The state space

could be partitioned into clusters based on the value function [64], the state features [65], or

the transition function [66, 67]. Other approaches designate certain states as subgoals and

learn options that lead to those subgoals, which could be defined by salient events [68], object-

object interactions [69], frequently visited states [70–72], or large changes in the reinforcement

gradient [72]. Other subgoal discovery methods rely on graph theoretic notions to identify bot-

tlenecks (such as “doors” between rooms) [73], the boundaries of strongly connected regions

of the state space (such as the “walls” of rooms) [74], or clusters of states (such as the rooms

themselves) [75, 76] as subgoals.

Temporal abstraction (or policy abstraction) methods directly learn the option policies,

without resorting to state abstraction as an intermediate step. Some of these approaches iden-

tify frequently used action sequences from successful trajectories [61, 77, 78]. Other

approaches posit a generative model for policies that favors temporal abstraction, and then

perform probabilistic inference to find the optimal policy [79, 80].

Viewed in HRL terms, our model falls into the state abstraction category, since it first parti-

tions the state space into clusters which in turn define subgoals and constrain behavior. How-

ever, our model goes beyond these previous attempts: it unifies multiple ideas from these

different approaches under a single Bayesian framework that allows it to account for all the

behavioral phenomena in our study. To the best of our knowledge, no single option discovery

method based on state abstraction would capture all of them. Option discovery methods based

on temporal abstraction would also fail to account for the results of experiments one through

five, since participants were never trained to navigate in the directions tested in the test trial.

Future directions

Thus far our model only addresses the question of state chunking (how the environment is

represented as discrete states at different levels of abstraction), while leaving open the question

of action chunking (how actions are stitched together into larger behavioral units at different

levels of temporal abstraction). Fitting the model into the HRL framework described above

might seem like one way to incorporate action chunking, by assuming that the options leading

to bridge endpoints are like action chunks that, when invoked, delegate behavior to a low-level

controller that executes the sequence of actions in the option policy as a single behavioral unit.

Yet the metaphor of options as action chunks is not necessarily appropriate; option policies

execute in a closed-loop fashion, taking into consideration each state they encounter before

choosing the next action. In contrast, action chunks are often operationally defined as open-

loop action sequences that disregard intermediate states [57].

An alternative way to accommodate action chunking that more closely adheres to this defi-

nition is to allow caching of solutions to repeated calls to the planner with the same arguments

[29]. That way, when a certain subpath within a cluster is traversed frequently as part of many

tasks (for example, getting from your bed your bedroom door), the corresponding action

sequences could be cached and, when the subtask needs to be solved as part of a larger task

(for example, getting from your bed to work), the action sequence can be retrieved from the
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cache and executed as a single unit, thus removing the need to unnecessarily recompute it

every time. Indeed, such a simple scheme could account for phenomena such as action slips

[57], or even be used to model task-bracketing activity in striatum (see S1 Appendix). Imple-

menting action chunking in this way could also account for the speeding up of responses dur-

ing training in our experiments.

Another limitation of our approach is the hard restriction that each low-level node is a

member of a single cluster. This restriction could be relaxed by explicitly building in “soft”

cluster membership into the generative model, or by allowing agents to entertain multiple pos-

sible hierarchies when planning. While we do not exclude the former approach as a possibility,

the latter approach arises naturally from our generative model as the posterior can represent

graded beliefs in multiple hypotheses. This is consistent with previous work showing how mix-

tures of deterministic representations can account for graded effects [81].

Our treatment of hierarchy discovery is restricted to the computational level of analysis (in

the Marrian sense) [27] and assumes the agent can accurately sample from the posterior over

hierarchies P(H|D). Scaling up the model beyond the toy experiments considered here would

require relaxing this assumption and instead resorting to approximate Bayesian inference.

This points to a fruitful avenue for future research, namely probing the algorithmic details of

hierarchy discovery. One possibility is to take our Monte Carlo sampler as a process model of

hierarchy inference in the brain. This is consistent with previous work casting human probabi-

listic inference as a form of Monte Carlo sampling [82–87]. Of particular relevance are

accounts of theory acquisition during development as a form of stochastic search in theory

space [88]. In this light, hierarchy discovery can be understood as stochastic search in the

space of hierarchies that occurs throughout development and aims to distill the complex struc-

ture of the world into a compact representation that can be used for nimble decision-making.

This algorithmic account predicts a bias towards the prior and autocorrelation in the sampled

hierarchies that could be assessed empirically. A noisy approximate inference process could

also potentially explain the quantitative discrepancy between our model and the participants

in experiment three.

Even with a sampling approximation, inference in large-scale environments would pose a

challenge to computing the (unnormalized) posterior, which requires iterating over all nodes

in the low-level graph. This means that the complexity of a single update of a single cluster

assignment is O(N), which is very inefficient even for an offline process. This computational

burden can be alleviated by noticing that updating the cluster assignment of a given node

mainly affects the posterior through the immediately adjacent nodes. Thus instead of comput-

ing the posterior from scratch for each node update, the agent can simply adjust the posterior

based on local changes (in fact, a Metropolis-Hastings rule like the one we use here can allow

the agent to completely ignore the rest of the posterior and only consider local changes). Such

a factorization of the posterior would bring the computational complexity of a single node

update to O(1). Furthermore, the Gibbs sampler we use here allows updates to be performed

in any order, without sacrificing convergence guarantees. Overall, this suggests an ecologically

appealing account of hierarchy discovery, according to which agents organize their immediate

surroundings into clusters using only local update rules, without considering the rest of the

world, yet in doing so they form global representations that can facilitate efficient planning

between states that they never perceive in a single instant. The only aspect of the posterior

which cannot be factorized is the connectivity constraint (see Methods), which could be

addressed, for example, by assigning nodes to adjacent clusters only. Such a cheap and efficient

online approximation might also explain how people were able to perform hierarchy inference

during our relatively short experiments.
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There are several ways in which our model could be extended to support planning in richer,

large-scale environments. One way would be to allow deeper hierarchies (L> 2), which would

be necessary in order to maintain the computational efficiency of the planner as the size of the

graph increases. This could be achieved by recursively clustering the high-level states in H into

higher-level states in another graph H0, then clustering those in yet another graph H@, and so

on up to hierarchy depth L that could be prespecified or also inferred from the data. The hier-

archical planner can similarly extend recursively by reusing the same logic at the higher levels.

Yet even with deep hierarchies, the learned representations would pose a challenge to the

planner as a number of low-level states in G grows to the scale encountered in real life (indeed,

it would also pose a challenge to the long-term storage system). This highlights another limita-

tion of our model, namely the use of tabular representations in which each state is represented

by a separate token. This could be overcome by recognizing that there is redundancy in the

environment [89]—that is, the local structure of the graph G can be highly repetitive, with the

same theme occurring over and over in different parts of the graph. For example, most cities

have streets and buildings, most buildings have rooms and hallways, and most rooms have

similar layouts. Representing each and every part of the environment would thus be wasteful,

and this redundancy can be exploited by introducing templates or modules—blueprints for

clusters that can compress the hierarchical representation by extracting the shared structure

across clusters of the same type and only representing differences from some prototypical clus-

ter. Clustering these modules will naturally give rise to the kind of compositionality character-

istic of natural environments. Combined with partial observability and deeper hierarchies, this

would allow the model to learn representations that support efficient planning in environ-

ments that approach the real world in their scale and complexity. Finally, the requirements

that G is unweighted and undirected can be lifted if the planner is a hierarchical extension of a

more sophisticated shortest path algorithm, such as Dijkstra’s algorithm [17].

Conclusion

In summary, we propose a normatively motivated Bayesian model of hierarchy discovery for

planning. The model builds on first principles from the fields of structure learning and robot-

ics, and recapitulates a number of behavioral effects such as detection of boundary transitions,

identification of bottleneck states, and surprise to transitions across clusters. The novel predic-

tions of the model were validated in a series of behavioral experiments demonstrating the

importance of the task and reward distributions in the environment, which could bias the dis-

covered hierarchy in a way that is either beneficial or detrimental on new tasks. We also

showed that the model accounts for reward generalization and uncertainty-based learning

effects in a way that is consistent with human behavior. Together, these results provide strong

support for a computational architecture in which an incremental offline process infers the

hidden hierarchical structure of the environment, which is then used by an efficient online

planner to flexibly solve novel tasks. We believe our approach is an important step towards

understanding how the brain constructs an internal representation of the world for adaptive

decision making.

Methods

Ethics statement

All experiments involved human participants and were approved by the Harvard Institutional

Review Board, number IRB15-2048. Participants that performed experiments on Amazon

MTurk gave written consent (experiments one through five and experiment seven). Consent

was not obtained for experiments six and eight since the data were analyzed anonymously.
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Inference

We frame hierarchy discovery as computation of the posterior probability distribution P(H|

D). Since computing the posterior exactly is intractable, we approximate Bayesian inference

over H using Metropolis-within-Gibbs sampling [90], a form of Markov chain Monte Carlo

(MCMC). We initialized H by sampling from the prior P(H) and on each MCMC iteration, we

updated each component of H in turn by sampling from its (unnormalized) posterior condi-

tioned on all other components in a single Metropolis-Hastings step, in the following order:

1. update the cluster assignments c using the conditional CRP prior (algorithm 5 in [91]),

2. update p, q, p0, p@ using a truncated Gaussian random walk with standard deviation 0.1 (i.e.

the proposal distribution is a Gaussian centered on the old value, excluding values above 1

or below 0),

3. update the hierarchical edges E0 with a proposal distribution that randomly flips the pres-

ence or absence of each edge with probability 0.1,

4. update the average cluster rewards θ using a Gaussian random walk with standard deviation

1, and

5. update the average state rewards μ using a Gaussian random walk with standard deviation

1.

The samples generated in this way approximate draws from the posterior, with asymptotic

convergence to the true posterior in the limit of infinite samples. This approach can also be

interpreted as stochastic hill climbing with respect to a utility function defined by the poste-

rior, which has been previously used to find useful hierarchies for robot navigation [11]. Note

that while we chose to sample the components of H in an order that roughly follows the gener-

ative model, the exact order is actually irrelevant because we sample to convergence and only

take the final sample, and hence any arbitrary order would yield similar results.

In all five simulations and experiments one through seven, for each simulated participant,

we generated a Markov chain of a given length (see Table 1) and used the final sample H to

generate predictions. This can be viewed as a form of probability matching over hierarchies,

and is consistent with psychologically plausible algorithms for hypothesis generation and

updating, although elucidating the algorithmic details of hierarchy discovery is beyond the

scope of our present work. For experiment three, we ran the MCMC sampler before each

probe trial, while for the other experiments we ran it before the test trial. We did this for pur-

poses of efficiency, since we only evaluated predictions on the probe/test trials, and since our

computational-level analysis is agnostic to the algorithmic details of hierarchy discovery.

In order to estimate entropy in experiment eight, we used a separate MCMC sampler for

each graph for each participant to generate a set of M = 50 samples, using a lag of 100 iterations

and burn-in period of 5000 iterations (for a total of 10000 generated samples, as in all other

simulations).

Additionally, HBFS requires that the subgraph induced in G by each cluster must form a

single connected component; that is, for every pair of states (u, v) in a cluster w = cu = cv, there

must exist a path (u, x1, . . ., xk, v) such that cxk ¼ w 8k. To enforce this constraint, we imposed

a penalty by subtracting 100 from the (unnormalized) log posterior for each pair of states in

the same cluster that are not connected by a path passing through the cluster. This is equivalent

to augmenting the generative model with the following rejection sampling procedure: draw H
according to P(H|D) and for each such pair of disconnected states, perform a Bernoulli coin

flip with probability of success equal to e−100. If all coin flips are successful, keep H, otherwise
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repeat the process with a new H. By imposing a “soft” constraint in this way, we ensured that

the sampling algorithm can recover from a bad initialization by incrementally adjusting pairs

of nodes that violate the constraint. Note that this still results in a valid posterior since normal-

ization is not necessary for approximate inference.

Decision making

We assume choices based on H are either optimal (according to the model) with probably �, or

random with probability 1 − �. This is similar in spirit to the �-greedy algorithm in RL, with

the difference that we assume the meta-choice to choose randomly occurs before computing

the optimal answer. This is equivalent to assuming that on 1 − � of trials, participants simply

do not perform the necessary computation. Such lapses could be due to a number of reasons,

such as inattention or fatigue. While other factors such as motor variability may also contrib-

ute to choice stochasticity, we allow those to be absorbed by the � parameter and leave them as

the potential subject of future work.

Another source of variance in choices is the sampled hierarchy H, which could be different

for each simulated participant. While our current experiments prohibit direct comparisons

between hierarchies inferred by participants and hierarchies inferred by the model, any sys-

tematic variation in the sample hierarchies (for example, due to uncertainty of the posterior, as

in experiments three and eight) would manifest when choices are aggregated across partici-

pants, as in our analyses.

Hierarchical planning. The optimal algorithm to find the shortest path between a pair of

low-level vertices (s, g) in G is breadth-first search (BFS) [17] whose time and memory com-

plexity is O(N) (assuming O(1) vertex degrees, i.e. |E| = O(N)). We use a natural extension of

BFS to hierarchical graphs (hierarchical BFS or HBFS) [11] that leverages H to find paths more

efficiently than BFS (approximately Oð
ffiffiffiffi
N
p
Þ time and memory). Intuitively, HBFS works by

first finding a high-level path between the clusters of s and g, cs and cg, and then finding a low-

level path within the cluster of s between s and the first bridge on the high-level path.

In particular, HBFS first finds a high-level path (w1, . . ., wm0) between cs and cg in the high-

level graph H (note that w1 = cs and wm0 = cg). Then it finds a low-level path (y1, . . ., ym)

between s and u in G[S] (note that s = y1 and u = ym), where ðu; vÞ ¼ bw1 ;w2
is the first bridge

on the high-level path, S = {x: cx = cs} is the set of all low-level vertices in the same cluster as s,
and G[S] is the subgraph induced in G by S. HBFS then returns y2, the next vertex to move to

from s, or, alternatively, full the path to the next cluster, (y2, . . ., ym).

In an efficient hierarchy, the number of clusters will be jV 0j ¼ Oð
ffiffiffiffi
N
p
Þ and the size of each

cluster w will also be nw ¼ Oð
ffiffiffiffi
N
p
Þ, resulting in Oð

ffiffiffiffi
N
p
Þ time and memory complexity for

HBFS. Note that actually traversing the full low-level path from s to g in G still takes O(N)

time; HBFS simply computes the next step, ensuring the agent can progress towards the goal

without computing the full low-level path in advance (in our simulations, we actually com-

puted the full path in order to simulate execution in addition to planning). HBFS can straight-

forwardly extend to deeper hierarchies with L> 2, with the corresponding complexity

becoming Oð
ffiffiffiffi
NL
p
þL).

Algorithm 1 HBFS(s, g, H, G)
1: path0 BFS(cs, cg, (V0, E0))
2: path  []
3: for all (w, z) in path0 do
4: (u, v) bw,z
5: S  {x: cx = cs}
6: append(path, BFS(s, u, G[S]))
7: append(path, (u, v))
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8: s  v
9: end for
10: S  {x: cx = cs}
11: append(path, BFS(s, g, G[S]))
12: return path

The pseudocode for HBFS used in our simulations is shown in Algorithm 1. Our particular

implementation of HBFS takes as arguments the starting state s 2 V, the goal state g 2 V, the

hierarchy H and the low-level graph G. The variables c and b refer to the cluster assignments

and bridges in H, respectively. Note that s changes after each iteration. We assume the exis-

tence of a function BFS which takes as arguments a starting state, a goal state and a graph and

returns the shortest path between those states as a list of edges.

Note that we are not making any specific commitments to the cognitive plausibility of

HBFS, and that any other hierarchical planner based on shortest paths would make similar

predictions. Also note that HBFS could be straightforwardly extended to deeper hierarchies by

introducing a depth level parameter l and recursively calling HBFS instead of BFS on line 1 if

l> 2. Finally, note that HBFS as implemented here still requires O(N) time and memory as it

finds the full path in G. For returning only the first few actions, the for-loop could be inter-

rupted after the first iteration, which would yield the Oð
ffiffiffiffi
NL
p
þLÞ complexity.

Rewards. To model reward generalization in experiment six, we set �y ¼ 15 and r4,1 = 30,

in accordance with the experimental instructions. The node selected by the simulation was the

one with the greater (approximate) expected reward E½rsjD� � ycs , where θ are the cluster

rewards and c are the cluster assignments in the sampled hierarchy H.

To model cluster inferences based on rewards in experiment seven, we only simulated a sin-

gle training trial and set r1,1 = r2,1 = r3,1, r4,1 = r5,1 = r6,1, and r7,1 = r8,1 = r9,1 = r10,1, with the spe-

cific values chosen at random between 0 and 30 (we scaled down the rewards experienced by

participants by a factor of 10). Since the hierarchy discovery algorithm has no notion of maxi-

mizing reward (it merely treats rewards as features), the magnitude of the rewards is irrelevant.

We did not model the random changes of reward values throughout training, which were

introduced purely for control purposes and are irrelevant for hierarchy discovery as framed

here. Note that the model could easily accommodate dynamic rewards by assuming drifting

μ’s, however this would unnecessarily complicate the model without making substantial con-

tributions to the core theoretical predictions. As in experiment six, we set �y ¼ 15, the expected

reward based on the instructions.
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