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a b s t r a c t

Learning complex symbolic concepts requires a rich hypothesis space, but exploring such spaces is
intractable. We describe how sampling algorithms can be brought to bear on this problem, leading to the
prediction that humanswill exhibit the same failuremodes as sampling algorithms. In particular,we show
that humans get stuck in ‘‘garden paths’’—initially promising hypotheses that turn out to be sub-optimal
in light of subsequent data. Susceptibility to garden paths is sensitive to the availability of cognitive
resources. These phenomena are well-explained by a Bayesian model in which humans stochastically
update a sample-based representation of the posterior over a compositional hypothesis space. Our model
provides a framework for understanding ‘‘bounded rationality’’ in symbolic concept learning.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

One of the most remarkable characteristics of human cognition
is the ability to learn symbolic concepts from very sparse data. For
example, after being shown the numbers {60, 80, 10, 30} drawn
from a set of numbers between 1 and 100, humanswill confidently
infer the set to be ‘‘multiples of ten’’ (Tenenbaum, 1999; Tenen-
baum&Griffiths, 2001). This kind of strong generalization requires
a hypothesis space rich enough to express a wide variety of con-
cepts, as well as a mechanism for efficiently exploring the hypoth-
esis space and evaluating candidate concepts. A conundrum at the
heart of concept learning is that these two requirements are at odds
with one another: The richer the hypothesis space, the harder it is
to efficiently explore. This is especially true for compositional hy-
pothesis spaces (e.g., Goodman, Tenenbaum, Feldman, & Griffiths,
2008; Kemp, 2012; Piantadosi, Tenenbaum, & Goodman, 2010),
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where the number of possible concepts is exponential in the num-
ber of primitives.Moreover, Bayesian approaches to concept learn-
ing assert that humans represent a probability distribution over the
entire hypothesis space (Shepard, 1987; Tenenbaum, 1999; Tenen-
baum & Griffiths, 2001). These considerations bring the issue of
computational tractability to the foreground.

Previous treatments of symbolic concept learning have primar-
ily focused either on abstract rational analysis without detailed
mechanistic commitments (Feldman, 2000; Kemp, 2012; Pianta-
dosi et al., 2010; Tenenbaum, 1999; Tenenbaum & Griffiths, 2001)
or on mechanistic models without a clear connection to rational
inductive principles (Goodwin & Johnson-Laird, 2011; Kruschke
et al., 1992; Nosofsky, Palmeri, & McKinley, 1994). Goodman et al.
(2008) used a compositional grammar to model boolean concept
learning, and presented provisional evidence that participants ad-
here to rational inductive principles only approximately: Behavior
was best explained by assuming that humansmake their responses
using one or a few samples from the posterior distribution over
concepts. Hypothesis sampling has become an important bridge
between rational analyses and process models (see Griffiths, Vul,
& Sanborn, 2012, for a review), with applications to vision (Ger-
shman, Vul, & Tenenbaum, 2012; Moreno-Bote, Knill, & Pouget,

http://dx.doi.org/10.1016/j.jmp.2017.01.002
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2017.01.002&domain=pdf
mailto:gershman@fas.harvard.edu
http://dx.doi.org/10.1016/j.jmp.2017.01.002


P. Thaker et al. / Journal of Mathematical Psychology 77 (2017) 10–20 11
2011; Vul, Frank, Alvarez, & Tenenbaum, 2009;Wozny, Beierholm,
& Shams, 2010), theory learning (Denison, Bonawitz, Gopnik, &
Griffiths, 2013; Ullman, Goodman, & Tenenbaum, 2012) and cat-
egorization (Sanborn, Griffiths, & Navarro, 2010), among others.
Empirical evidence for hypothesis samplingwill be reviewed in the
General Discussion.

Hypothesis sampling provides a simple model of cognitive lim-
itations (in terms of howmany samples are used) while instantiat-
ing a theoretically sound mechanism for approximating Bayesian
inference (Vul, Goodman, Griffiths, & Tenenbaum, 2014). In partic-
ular, many hypothesis sampling models can be viewed as Monte
Carlo methods, which are widely used in statistics and machine
learning due to their flexibility and theoretical properties (Robert
& Casella, 2004). Previous work on concept learning in composi-
tional hypothesis spaces used Markov chain Monte Carlo (MCMC)
algorithms to generate samples (Goodman et al., 2008; Piantadosi
et al., 2010); since these algorithms evaluate hypotheses over the
entire data set at each iteration, they are cognitively implausible
for tasks in which data are presented sequentially and presum-
ably processed online (as in many domains, like word learning or
multiple-object tracking).

This paper investigates a cognitively plausible sampling al-
gorithm for performing online inference over a compositional
hypothesis space of number concepts. Our starting point is the
‘‘number game’’ described in Tenenbaum (1999). In this experi-
ment, participants were presented with a set of integers generated
from a number concept (a subset of numbers between 1 and 100),
such as ‘‘all powers of 2’’ or ‘‘all numbers between 40 and 60’’. Par-
ticipants were then asked to judge, for several other numbers, the
probability that each was generated from the same subset as the
examples presented. Tenenbaum (1999) showed that generaliza-
tion patterns in this experiment were consistent with a Bayesian
model of concept learning (described in more detail below). While
the space of number concepts is very large, Tenenbaum’s model
constrained the hypothesis space to a small number of intuitively
plausible concepts.

We will consider a richer space of compositional concepts, and
postulate a formof hypothesis sampling as a theory of howhumans
explore this hypothesis space. In particular, we argue that humans
use an online hypothesis sampling algorithm called particle
filtering that entertains multiple hypotheses (‘‘particles’’) and
continually reweights the particles as new data are observed. This
algorithm has previously been used to explain aspects of multiple
object tracking (Vul et al., 2009), category learning (Sanborn
et al., 2010), change detection (Brown & Steyvers, 2009), word
segmentation (Frank, Goldwater, Griffiths, & Tenenbaum, 2010),
and reinforcement learning (Daw & Courville, 2007; Yi, Steyvers,
& Lee, 2009). While most of this previous work has focused
on hypothesis spaces with relatively simple representational
structure (e.g., mixture models), our goal is to provide empirical
constraints on hypothesis sampling in more complex symbolic
spaces.

One implication of hypothesis sampling is that when faced
with complex or ambiguous example sets in the number game,
participants might fail to infer some concepts that have high
posterior probability. We speculated that this might happen if
examples are presented to participants sequentially, such that
the early examples favor one concept, but the later examples
tilt the posterior in favor of a different concept. If conditionally
unlikely samples are eliminated during hypothesis sampling (an
operation known as ‘‘resampling’’), the early, sub-optimal concept
will prevail. This is analogous to ‘‘garden path’’ sentences in
psycholinguistics (e.g., ‘‘we painted the walls with cracks’’) which
are difficult for humans to parse (MacDonald, 1994). Levy, Reali,
and Griffiths (2009) modeled garden path effects with hypothesis
sampling by assuming that the correct parse was eliminated from
the sample set early on during sentence processing. We adapted
this model to number concept learning, and constructed example
sequences which would lead the model to show garden path
effects. We then conducted experiments with humans to test
whether participants show the same effects.

The plan of the paper is as follows. Section 2 summarizes the
Bayesian framework for concept learning developed by Tenen-
baum (1999), and introduces a hypothesis sampling algorithm for
approximate inference. Section 3 reports an experiment with hu-
man participants playing a sequential concept learning game. We
show how the hypothesis sampling algorithm provides a rational
process account of order effects and cognitive load manipulations
in the game. Section 4 concludes the paper with a discussion of re-
lated work and future directions.

2. A Bayesian framework for concept learning

In this section, we describe and extend the Bayesian framework
for concept learning introduced by Tenenbaum (1999). We begin
by describing the generative model—a joint distribution over con-
cepts and data. The generative model specifies the learner’s as-
sumptions about what types of concepts are plausible (the prior)
and how concepts give rise to observations (the likelihood). Of
central importance is our claim about concept representation:
Number concepts are sets generated by a compositional, proba-
bilistic grammar. We then describe how hypothesis sampling can
be used to perform approximate inference over number concepts.
This sampling-based rational process model provides the basis for
our experimental investigations.

Before proceeding, we provide here a non-technical summary
of how the model works. A concept is drawn from some space of
plausible concepts (the hypothesis space), and examples are drawn
from the selected concept. The learner’s job is to infer the hidden
concept that generated the examples. Because many different
concepts can generate any particular set of examples, the problem
is fundamentally ill-posed: No single concept is unambiguously
‘‘correct’’. Rather, the optimal inductive inference is a distribution
over concepts (the posterior), which is computed by multiplying
the prior and the likelihood for each potential concept, and then
normalizing over the hypothesis space. However, a combinatorial
hypothesis space may contain too many hypotheses for complete
enumeration to be tractable. A solution to this problem is to
randomly sample hypotheses from the posterior and approximate
the distribution with a histogram—this is the basis of Monte
Carlo methods (Robert & Casella, 2004). By limiting the number of
samples, a learner can trade off cognitive resources with accuracy:
A larger number of samples consumes more cognitive resources
(in terms of memory and processing time) while producing
a more accurate approximation of the posterior. As we show
experimentally, reducing the availability of cognitive resources has
deleterious effects on the accuracy of the posterior.

One challenge for practical applications ofMonte Carlomethods
is that we cannot easily sample from the posterior. To surmount
this challenge, we can instead sample from a proposal distribution
(e.g., the prior) and then weight the samples to correct for the
fact that they were generated from the wrong distribution. When
the number of samples is small and the proposal distribution is
far from the posterior, this method can lead to degeneracy: a
small number of samples have very large weights and the rest of
the samples are effectively ignored. This means that the effective
sample size is smaller than the number of samples. To remedy this
problem, we can delete conditionally unlikely samples (i.e., those
with smallweights) by resampling: generating a new sample set by
drawing samples with probability proportional to their weights.

A final challenge is that the examples may arrive sequentially,
and it is wasteful to recompute the posterior from scratch after
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each new example. Monte Carlo methods can be adapted to this
sequential setting by updating the weights online. While making
inference more efficient, the combination of sequential updating
and resampling can have unwanted side-effects; in particular, if
later examples support a hypothesis that was deleted based on
earlier examples, the approximation may place zero probability
mass on this hypothesis. Thus, sequential hypothesis sampling
schemes can give rise to order effects. By looking for such order
effects in human behavior, we can place algorithmic constraints
on theories of concept learning.

2.1. Generative model

Following Tenenbaum (1999), we assume that participants are
shown a set ofN positive examples1 X = {x1, . . . , xN} of concept h,
and their goal is to compute P(x′

∈ h|X), the probability that a new
observation x′ belongs to h given the examples. The target concept
h is drawn from a hypothesis space H with prior probability P(h),
described further in the next section.

Under the assumption that examples are sampled uniformly
from the set of observations consistent with the concept, Tenen-
baum (1999) assigned a likelihood of zero to hypotheses incon-
sistent with the observed data, but we instead maintain a small
probability e−b that the inconsistencies are actually outliers (Good-
man et al., 2008; Nelson, Movellan, & Tenenbaum, 2001; Nosofsky
et al., 1994). This is equivalent to assuming that an inconsistent
hypothesis which has a higher probability under the data than a
consistent hypothesis corresponds to a human judgment in which
the inconsistency is included as an outlier, e.g. ‘‘all multiples of 5,
and 17’’. This leads to the following likelihood:

P(X |h) ∝

N
n=1

e−bI{xn∉h}, (1)

where I{·} = 1 if its argument is true, and 0 otherwise.
The probability that a new observation belongs to h given the

examples (the generalization function) is given by:

P(x′
∈ h|X) =


h′:x′∈h′

P(h = h′
|X), (2)

where h′ belongs to the subset of hypotheses whose extension
includes x′. Tenenbaum and Griffiths (2001) referred to this as
hypothesis averaging, because it corresponds to averaging the pre-
dictions that each hypothesis makes about concept membership,
weighted by the posterior probability of the hypothesis, P(h|X).
The posterior is calculated using Bayes’ rule:

P(h|X) =
P(X |h)P(h)

h′∈H

P(X |h′)P(h′)
. (3)

In the next section, we describe the hypothesis space H and the
prior P(h).

2.2. Concept representation

The framework originally proposed by Tenenbaum (1999) re-
quires enumerating all hypotheses and scoring them using Bayes’
rule. Even so, the model captures only a subset of plausible hy-
potheses: intervals of consecutive numbers and basic mathemat-
ical rules. The model of Coen and Gao (2009) used a probabilistic
context-free grammar (PCFG) to describe more complex generat-
ing functions for ordered sequences. Here we describe a similar

1 This framework can be extended to negative examples (Goodman et al., 2008),
but for simplicity we only deal here with positive examples.
Table 1
Production rules in the grammar. This list contains productions that rewrite the
Set operator. The productions that rewrite the AndSet and OrSet operators are the
same as for the Set operator, but are assigned different production probabilities in
the prior.

Set → AndSet and AndSet
Set → OrSet or OrSet
Set → Multiples of n
Set → Numbers between n andm
Set → Numbers containing the digit n
Set → Prime numbers
Set → Powers of n
Set → n

Fig. 1. Example parse trees. (A) Representation of ‘‘All prime numbers or powers
of 2’’. (B) Representation of ‘‘Numbers between 12 and 80 that are either multiples
of 3 or equal to 62’’.

approach to representing a combinatorial hypothesis space over
unordered sets.

Our grammar consists of the following elements:

• A set of terminal symbols consisting of functions that take zero
or more integer arguments.

• A set of nonterminal symbols. These correspond to three
different types of set operations: generation (Set), conjunction
(AndSet), and union (OrSet).

• A set of production rules,whichmapnonterminals to sequences
of terminals and nonterminals. The complete set of production
rules is shown in Table 1.

• Each production rule is associatedwith a probability of applying
the rule.

A concept is drawn from the hypothesis space by probabilis-
tically composing a sequence of production rules, always starting
with the Set symbol. Each time a production rule is applied to one
of the symbols in the sequence, that symbol is replaced by a se-
quence of terminals and nonterminals. This process continues until
all the nonterminal symbols have been replaced by terminal sym-
bols, resulting in a valid number concept. We can visualize the his-
tory of this production process as a parse tree, where the nodes
correspond to symbols and edges correspond to applications of
production rules. Several examples are shown in Fig. 1.

The prior is parametrized by the production probabilities. The
prior over productions can be thought of as three separate priors,
for rewriting the Set operator, the AndSet operator, and the OrSet
operator. We distribute probability mass within each of these
priors by dividing the prior into three subsets:

1. The productions that rewrite to AndSet and OrSet;
2. The productions that rewrite to Interval and Multiples;
3. All remaining productions.
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The prior over Set rewrite rules places 1/4 of the probability mass
uniformly over the items in subset 1, and 1/4 of the probability
mass uniformly over the items in subset 3. The remaining 1/2 of the
probability mass is placed on subset 2, weighting Multiples higher
than Intervals: specifically, 0.45 probability on Multiples and 0.05
on Intervals.

For both AndSet and OrSet rewrite rules, zero mass is placed on
subset 1 and 2/3 of the mass is distributed uniformly over subset
3. This constrains the depth of the generated parse trees, though
not enough to make exhaustive enumeration of all hypotheses
tractable. The remaining 1/3 of the probability mass is distributed
over subset 2 as follows: for AndSet, all of the mass is placed on
Multiples andnone on Interval; for OrSet, 1/30 of themass is placed
on Multiples and 3/10 of the mass on Interval.

The terminal symbols in the grammar are functions of integer
arguments. Each terminal symbol has a corresponding distribution
over integers from which its arguments are sampled.

Our prior is hand-tuned, mainly because we have found it
difficult to get good fits of the prior parameters to empirical data.
However, we have tested this prior on two existing number game
data sets, one from (Tenenbaum, 1999), and one from Bigelow
and Piantadosi (under review). The correlation between model
predictions and human judgments is significantly above zero for
both data sets (p < 0.00001): r = 0.78 for the Tenenbaum
data set, and r = 0.37 for the Bigelow and Piantadosi data set.
Thus, we have independent verification that this prior can predict
performance in the number game, although it is also clear that
there is still a substantial amount of variance not explained by
the prior. We also found that using uniform probabilities in the
compositional grammar only changed correlations betweenmodel
and behavior slightly, indicating that our framework is robust to
different assumptions about the prior.

2.3. Hypothesis sampling

Compositional hypothesis spaces will generally have an expo-
nentially large number of summands in the denominator of Eq. (3).
As a consequence, exact inference is intractable.Monte Carlometh-
ods can be used to approximate the posterior with a set ofM sam-
ples (particles), {h1, . . . , hM

}:

P(h|X) ≈
1
M

M
m=1

I{h = hm
}, (4)

where hm
∼ P(h|X). The challenge is that in most cases the

posterior cannot be sampled from directly. Instead, we can sample
from a proposal distribution Q (h) and then weight the samples
according to:

wm
∝

P(X |hm)P(hm)

Q (hm)
. (5)

By resampling {h1, . . . , hM
} with replacement from Multinomial

(w1, . . . , wM ), we obtain samples approximately distributed
according to the posterior. In the limitM → ∞, the approximation
converges to the true posterior. This technique is known as
importance sampling, and the weights are referred to as importance
weights (Robert & Casella, 2004).

When the examples are observed one at a time, the importance
weights can be updated online:

wm
n ∝ wm

n−1
P(xn|hm)P(hm)

Q (hm)
. (6)

Thus, after observing n examples, the weighted samples approx-
imate the posterior P(h|X). This online updating of weights is
known as particle filtering (Doucet, De Freitas, & Gordon, 2001).We
take Q (h) to be the prior P(h), which is easy to sample from. In this
case, the weights simplify to wm

n ∝ P(xn|hm). In other words, the
weights are normalized likelihoods.

It is possible that none of the samples drawn from the prior
provides a suitable hypothesis for the data, particularly when the
number of samples is small. To deal with this, we introduce a
rejuvenation step (Chopin, 2002), which introduces diversity into
the sample set by repeatedly applying a Markov transition kernel
to each sample. The kernel is chosen so that it leaves the posterior
distribution invariant, thereby ensuring that the samples remain
correctly distributed. In particular, we perform two iterations of
the Metropolis–Hastings algorithm (Robert & Casella, 2004) for
each particle, performing a local move by drawing new values for
the arguments of the terminal symbols in the parse tree directly
from the prior and replacing the existing particle according to the
Metropolis–Hastings acceptance rule. Previous research suggests
that rejuvenation may play a role in explaining recency effects in
causal learning (Abbott & Griffiths, 2011).

3. Garden paths in concept learning

Wenow turn to themain task of the paper: presenting evidence
for hypothesis sampling in human concept learning.2 As discussed
in the Introduction, a key signature of hypothesis sampling is sensi-
tivity to the order of data. If a subset of hypotheses are supported by
early evidence, and the rest discarded, then the posterior approx-
imation will show a garden path effect, whereby later evidence
favoring the discarded hypotheses is discounted because those hy-
potheses are no longer in the support of the approximation. To test
this prediction, we designed a sequential version of the number
game that would allow us to examine order effects. In this version
of the number game, numbers are incrementally added to the set,
and after each addition participants are asked to judgewhich num-
bers are in the concept’s extension. Note that there is no sequential
structure to the number concepts (i.e., the samples are unordered
sets), and participants are instructed to treat each number as an
independent draw from the number concept.

We induced garden path effects by manipulating the order
of number sequences. We then evaluated order effects by
measuring differences in inductive generalization at the end
of the sequence. While Tenenbaum’s original analysis of the
number game (Tenenbaum, 1999) does not predict a difference
between conditions, a resource-limited particle filter will tend to
be sensitive to order, since there is the possibility of discarding
hypotheses during resampling (Abbott &Griffiths, 2011; Levy et al.,
2009; Sanborn et al., 2010).3 To facilitate the detection of order
effects, we selected orders that would favor different hypotheses
in the early and late phases of the sequence.

If resource limitations arise in part from dividing attention
across multiple cognitive processes, then reducing the availability
of resources by increasing cognitive load should amplify order
effects. We tested this hypothesis by having some participants
engage in a secondary distractor task. To simulate the effect of
cognitive load, we varied the number of samples available to the
particle filter, showing that reducing the number of samples best
captures the performance of participants engaged in the distractor
task.

2 Model code and experimental data are available at https://github.com/
pratiksha/numbergame.
3 A rational process model is not the only way to explain order effects. If the

generative model captures sequential dependencies, then a purely computational-
level analysis will be sensitive to order (Jones, Curran, Mozer, & Wilder, 2013;
Navarro, Newell, & Schulze, 2016; Qian & Aslin, 2014; Yu & Cohen, 2009).
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https://github.com/pratiksha/numbergame
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https://github.com/pratiksha/numbergame
https://github.com/pratiksha/numbergame
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Fig. 2. The experimental setup. On each trial, participants were asked to click on all of the numbers belonging to the concept from which the example numbers were being
sampled. Numbers in dark gray on each grid illustrate possible guesses. One example number was revealed on each trial.
3.1. Methods

3.1.1. Participants
One hundred and fifty participants completed the experiments

online via theAmazonMechanical Turkweb service. Twenty-seven
participantswho respondedon the final trialwith theminimal sub-
set (only numbers in the example set) or maximal subset (all num-
bers between 1 and 100)were assumed to havemisunderstood the
experiment instructions, and their datawere excluded, leaving 123
participants in subsequent analyses (96 in the first experiment, 27
in the second experiment). Each participant received a payment of
$0.50.

3.1.2. Procedure
Participants were shown a sequence of seven numbers derived

from a particular subset of numbers between 1 and 100. Numbers
in the sequence were revealed one after another. After each num-
ber was revealed, participants were asked to identify which num-
bers between 1 and 100 belonged to the same subset of numbers
from which the example set was being generated, by clicking on
each number from the hypothesized subset on a grid of numbers.
On each trial, participants were required to identify a subset which
contained all numbers shown until that trial, and prompted with a
warning message if they did not (see Fig. 2).

Participants in the first set of experiments (N = 96) were
shown one of two orderings of the same set of numbers:

Early: {30, 31, 33, 24, 21, 36, 39}
Late: {30, 33, 24, 21, 36, 31, 39}

The placement of the number 31 earlier in the sequence was
intended to bias participants towards the hypothesis ‘‘numbers
between 20 and 40’’, while the placement of 31 later in the
sequence was intended to elicit a response similar to ‘‘multiples of
3, and 31’’—that is, we hypothesize that introducing 31 later in the
sequence would induce participants to suggest an inconsistency
having initially received a large number of positive examples of
multiples of 3.

To explore the effects of cognitive load, a subset of participants
were asked to simultaneously perform a distractor task. These
participantswere shown three distractor numbers at the beginning
of the task (before the number sequence) and asked to memorize
them without writing them down. At the end of the number
sequence, they were asked to supply the three numbers they
memorized.

To assess the generality of our experimental manipulation and
model predictions, we ran another set of participants (N = 27) on
another sequence with a larger range of numbers:

Early: {30, 31, 45, 24, 6, 12, 60}
Late: {30, 12, 45, 24, 6, 31, 60}

Similarly to the other number sequences, the placement of
the number 31 earlier in the sequence was intended to bias
participants towards the hypothesis ‘‘numbers between 0 and 60’’,
while the placement of 31 later in the sequence was intended to
elicit a response similar to ‘‘multiples of 3, and 31’’.

3.2. Results and discussion

To summarize the dynamics of participants’ posterior over
number concepts, we computed, for each trial, the absolute
deviation (absolute difference, summedover all numbers) between
the average judgment and two number concepts: ‘‘multiples of
3, and 31’’ and ‘‘numbers between 20 and 40’’. An ideal Bayesian
learner will place most of the posterior probability mass on this
concept. As shown in Fig. 3, participants in the Early condition
exhibited a steady decline in the absolute deviation from the
interval concept, indicating that they gradually converged to the
ideal inference. In contrast, participants in the Late condition
exhibited a steady increase in the absolute deviation from the
interval concept, indicating that their posterior was ambling down
a garden path. The deviation from themultiples concept shows the
opposite pattern: Participants in the Late condition were drawn
towards themultiples concept. Only after the number 31 appeared
in the sequence did the deviation from the interval concept drop
and the deviation from the multiples concept increase. However,
the deviation never changed to the same level as in the Early
condition. Thus, participants in the Late condition were not able to
fully recover from the early information in the sequence, consistent
with the idea that they tended to discard the interval hypothesis.
This pattern is captured by our model (Fig. 4; see below for details
on how model predictions were obtained).

Fig. 3 also shows that the order effect (difference between
Early and Late) was amplified when participants performed the
distractor task. This is consistent with the idea that performing
the distractor task depleted cognitive resources and effectively
reduced the number of samples. To compare the strength of
the order effect in the Distractor and No distractor conditions,
we calculated the summed absolute difference between the final
judgments for the Early and Late conditions, where the sum was
taken over all possible numbers, averaged across participants
within each condition (Fig. 5). Using bootstrapped confidence
interval estimation,we found that the order effectwas significantly
stronger in the Distractor condition (p < 0.05). This result was
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Fig. 3. Deviation between average human judgments and two number concepts.
Smaller values on the Y -axis indicate that the inferred concept is closer to either
‘‘multiples of 3, and 31’’ (top) or ‘‘numbers between 20 and 40’’ (bottom). The
vertical lines indicate the trial on which the number 31 appears for the Early
conditions (solid line) and Late conditions (dashed line). The Early sequence consists
of [30, 31, 33, 24, 21, 36, 39] and the Late sequence consists of [30, 33, 24, 21, 36,
31, 39].

Fig. 4. Deviation between model predictions and two number concepts. Smaller
values on the Y -axis indicate that the inferred concept is closer to either ‘‘multiples
of 3, and 31’’ (top) or ‘‘numbers between 20 and 40’’ (bottom). The vertical lines
indicate the trial on which the number 31 appears for the Early conditions (solid
line) and Late conditions (dashed line). The Early sequence consists of [30, 31, 33,
24, 21, 36, 39] and the Late sequence consists of [30, 33, 24, 21, 36, 31, 39].

captured by the particle filter model, where we assumed that the
model used 130 particles in the No distractor conditions and 70
particles in the Distractor conditions (see below for justification of
this modeling choice).
Fig. 5. Quantification of order effects. The Y -axis shows the summed absolute
difference between the final judgments for the Early and Late conditions, where the
sumwas taken over all possible numbers, averaged across participants within each
condition. Larger values indicate a stronger order effect. Error bars represent 95%
bootstrapped confidence intervals. For both the data and themodel, the order effect
is significantly stronger in the Distractor condition compared to the No distractor
condition (p < 0.05). The Early sequence consists of [30, 31, 33, 24, 21, 36, 39] and
the Late sequence consists of [30, 33, 24, 21, 36, 31, 39].

To present a finer-grained picture of the experimental results,
we plotted the human judgments for the final trial in each of
the four conditions. As shown in Fig. 6, participants in the Early
condition tend towards the interval hypothesis, but participants in
the Late condition show a tendency towards the ‘‘multiples of 3,
and 31’’ hypothesis. This effect was accentuatedwhen participants
performed the task under cognitive load. The particle filter model
reproduces this pattern, althoughoverall it underestimates the size
of the order effect (Fig. 7). We suspect that this underestimation
occurs because humans are using a more data-driven proposal
mechanism that induces stronger order effects. In other words, if
participants use the data to heuristically generate guesses, they
will be more strongly anchored to the initial data compared to if
they sample from their prior, as in our model.

For instance, one function that the rejuvenation step serves
is to allow the model to generalize to larger intervals as more
data points are observed, by resampling interval hypotheses;
however, this step leads to intervals being overrepresented in the
posterior relative to human judgments. This generalization might
be better explained by, for instance, a more complex mechanism
that dynamically adapts the parameters of existing particles.

Similarly, two choicesmade in designing the prior (as described
in Section 2.2) might be accounted for by a more sophisticated
grammar or sampling procedure: first, limiting the depth of the
hypotheses, without which the probability of overfitting to the
data with a complicated hypothesis is too high; and second,
placing more probability mass on mathematical hypotheses than
on intervals, without which the model overrepresents intervals.

To obtain model predictions, we computed the maximum
a posteriori (MAP) hypothesis for each run of the particle
filter, and averaged this MAP hypothesis over many runs. This
corresponds to the assumption that participants are reporting
the MAP hypothesis, and we are trying to capture the aggregate
behavior across participants. We also assumed that participants
in the Distractor conditions had fewer particles available than
participants in the No distractor conditions. We arrived at this
assumption quantitatively by computing the correlation between
model predictions and human judgments on the final trial
for different numbers of particles. Overall, the correlations are
relatively high (Fig. 8), peaking at 70 particles for the Distractor
condition and peaking at 130 particles for the No distractor
condition. The same number of particles was favored in each
conditionwhenwe computed the correlation over all trials instead
of just the last one. Thus, our experimental data are well explained
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Fig. 6. Human data. Generalization probabilities for the final trial. Red circles indicate the set of numbers shown to participants (note that these are the same in all panels).
The Early sequence consists of [30, 31, 33, 24, 21, 36, 39] and the Late sequence consists of [30, 33, 24, 21, 36, 31, 39]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 7. Model predictions. Generalization probabilities for the final trial. Red circles indicate the set of numbers shown to participants (note that these are the same in all
panels). The Early sequence consists of [30, 31, 33, 24, 21, 36, 39] and the Late sequence consists of [30, 33, 24, 21, 36, 31, 39]. The left panels show the results of running
a particle filter with 130 particles, and the right panels show the results with 70 particles to simulate the effects of cognitive load induced by the distractor task. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
by a resource-constrained hypothesis sampling algorithm that is
sensitive to cognitive load (see also Vul et al., 2009).

To explore the effects of prior hyperparameters (namely,
the production probabilities), Fig. 8 also shows the correlations
computed using uniform probabilities for all productions. While
the correlations are still fairly high, the peak correlations for
both conditions are both lower using uniform predictions (0.86
for Distractor and 0.92 for No Distractor) compared to tuned
probabilities (0.90 for Distractor and 0.93 for No Distractor). Thus,
the tuned probabilities have a slight advantage in fitting our data.

There is one clear discrepancy between the model and data:
the model does not capture the sharp change in generalization
probabilities outside the minimal subset. Instead, the model
shows a graded falloff, because it is averaging over many interval
hypotheses. This suggests that our parametrization of the prior
does not yet fully capture human inductive biases about number
concepts.

Finally, we tested the generality of our model predictions,
without any additional parameter tuning, by collectinghumandata
on a sequence with a wider range of numbers (see Methods). The
results, shown in Fig. 9, reveal a clear order effect, replicating our
earlier finding with a narrower range of numbers. Although the
model again does not capture the sharp change in generalization
probabilities outside the minimal subset, it still reproduces a
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Fig. 8. Correlation between model predictions and human judgments. Pearson correlations for Distractor and No distractor conditions are averaged across Early and Late
conditions. (Left) Model predictions with tuned prior probabilities. (Right) Model predictions with uniform prior probabilities.
Fig. 9. Human and model generalization probabilities on the final trial with a larger range of numbers. Red circles indicate the set of numbers shown to participants (note
that these are the same in all panels). The Early sequence consists of [30, 31, 45, 24, 6, 12, 60] and the Late sequence consists of [30, 12, 45, 24, 6, 31, 60]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
strong order effect, consistent with the human data. The model
using 130 particles provides a good quantitative match, with a
correlation of r = 0.81 averaged across conditions.

4. Discussion

Our experiment provides support for hypothesis sampling as
a theory of inference in compositional hypothesis spaces. We
used a probabilistic grammar as the prior in our rational analysis
of number concept learning, extending earlier work that used a
simpler, non-compositional hypothesis space (Tenenbaum, 1999;
Tenenbaum & Griffiths, 2001). We then leveraged this grammar
to make quantitative predictions about concept learning in a
novel sequential version of the number game. Participants showed
clear garden path effects that were sensitive to stimulus order.
In particular, we found that participants failed to infer a high
probability hypothesis when that hypothesis was disfavored by
early evidence, consistent with the idea that such hypotheses are
discarded by the particle filtering algorithm. We further showed
that this order effect could be strengthened by placing participants
under cognitive load, as though the reduction in resources forced
them to use fewer particles.
While it is unlikely that our model is correct in its details (both
the hypothesis space and the sampling algorithm are simple com-
pared to human capabilities), our data nonetheless provide con-
straints on the kind of cognitive architecture that could reproduce
both the successes and failures of human symbolic concept learn-
ing. At present, hypothesis sampling provides the only plausible
process-level account of how humans could successfully explore
complex hypothesis spaces (Ullman et al., 2012), and this view
is supported by our finding that human inferences about number
concepts are strongly correlated with the predictions of our hy-
pothesis sampling model. The distinctive failures of human learn-
ing, such as garden path effects, arise from the resource-limited
nature of the sampling process (Abbott &Griffiths, 2011; Levy et al.,
2009). The intersection of complex hypothesis spaces and approx-
imate inference provides a parsimonious account of our findings.
Themain contribution of our paper is a detailed empirical and the-
oretical study of this intersection.

Our finding that cognitive load has a deleterious effect on hy-
pothesis sampling resonates with earlier work on the role of work-
ingmemory in probability judgment. Dougherty and Hunter found
that the number of hypotheses participants generated was corre-
lated with a measure of working memory capacity (Dougherty &
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Hunter, 2003a,b). Furthermore, participants generated fewer hy-
potheses when they were put under time pressure (Dougherty &
Hunter, 2003b) or cognitive load (Sprenger et al., 2011). These find-
ings provide converging evidence for our assertion that garden
path effects and other frailties of probabilistic reasoning arise from
cognitive resource limitations.

A sequential variant of the number game similar to the one
presented in this paper has beenpreviously explored byAusterweil
and Griffiths (2011) and Coen and Gao (2009). Both studies
contain similarities to our work, particularly in the representation
of the hypothesis space as a grammar composed of rules and
the derivation of the prior from human data. An important
difference is that these studies addressed the learning of sequence
(i.e., ordered set) concepts, whereas our work addresses the
learning of unordered set concepts. Our order effects thus likely
reflect inferential processes rather than perceptions of sequential
structure. We pursued this idea by introducing a cognitive load
manipulation that ostensibly affected these inferential processes.

We now turn to a broader discussion of empirical evidence in
support of hypothesis sampling theories, and then discuss several
future directions for this research.

4.1. Evidence for hypothesis sampling in human cognition

The evidence for hypothesis sampling can largely be divided
into two classes: response variability and temporal dynamics. We
will discuss each of these in turn.

Essentially all mechanistic theories of cognition make some
provision for response variability. Some theories view variability
as the result of irreducible ‘‘noise’’ (e.g., due to the stochasticity
of neural firing; Faisal, Selen, & Wolpert, 2008) or an illusion
based on scientific ignorance (Skinner, 1974), whereas other
theories ascribe a functional role to variability. Variability can
contribute to exploration strategies in reinforcement learning
(Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006), increase
fitness across a population of foragers (Kamil & Roitblat, 1985),
and enable an agent to behave unpredictably in a competitive
game (Glimcher, 2005; Smith, 1982). An important constraint on
theoretical interpretations of variability is the ‘‘matching law’’
(Herrnstein, 1970): The probability of selecting a response is
proportional to the probability that the response is correct. While
numerous reinforcement learning theories have been formulated
to account formatching behavior, these theories leave unexplained
why matching occurs in high-level cognitive tasks. For example,
Denison et al. (2013) showed that children, when asked to provide
multiple guesses in a causal inference task, distribute hypotheses
according to their posterior probability, in accordance with
Bayesian hypothesis sampling. Studies with adults have shown
similar results across a variety of tasks (Goodman et al., 2008;
Moreno-Bote et al., 2011; Vul et al., 2014; Wozny et al., 2010).

Most Bayesian hypothesis sampling theories will (at least
roughly) predict probability matching behavior. However, the
theories may differ in their predictions about temporal dynamics.
Goodman et al. (2008) suggested that participants sample one
concept at a time according to a Markov chain, thus implementing
a form of MCMC. A similar mechanism has been invoked in
other domains (e.g., Gershman et al., 2012; Lieder, Griffiths,
& Goodman, 2012; Ullman et al., 2012), and relates to an
older literature on serial hypothesis testing (Brown, 1974). In
contrast, the particle filter implies that participants represent an
ensemble of hypotheses at each moment. A key prediction of
the MCMC account is that the sampling process will give rise to
autocorrelation of hypotheses (but see Bonawitz, Denison, Gopnik,
& Griffiths, 2014, for an alternative viewpoint on hypothesis
autocorrelation). Consistent with this prediction, hypotheses tend
to be ‘‘anchored’’ to initial guesses (Lieder et al., 2012), and
increasing the time between eliciting hypotheses decreases their
autocorrelation (Denison et al., 2013; Vul & Pashler, 2008). Another
distinctive characteristic of MCMC is its rich internal dynamics;
Gershman et al. (2012) showed how MCMC could produce
perceptual fluctuations like multistability and traveling waves in
binocular rivalry experiments.

Another important difference is that MCMC operates over the
entire data set, whereas particle filtering operates online (one data
point at a time). Online inference appears to be important for
explaining order effects (e.g., Levy et al., 2009; Sanborn et al., 2010),
since algorithms that operate over the entire data set should be
invariant to order once all data points have been observed.

4.2. Future directions

An important question for future research is what sort of
sampling algorithm best describes concept learning behavior. For
the concept learning experiments described in this paper, an
online learning algorithm like particle filtering seems a priorimore
cognitively plausible than MCMC, and naturally leads to order
effects such as garden paths. Our implementation actually employs
a combination of particle filtering andMCMC (via the rejuvenation
step; see also Abbott & Griffiths, 2011). More work is needed to
tease apart the precise contributions of these different sampling
mechanisms.

Another challenge for our computational framework is under-
standing the hypothesis generation process. We proposed that
hypotheses are sampled from the prior (see also Shi, Griffiths,
Feldman, & Sanborn, 2010); while there is some evidence that
hypotheses with high prior probability are preferentially sam-
pled (Dougherty & Hunter, 2003a; Weber, Böckenholt, Hilton, &
Wallace, 1993), there is also reason to think that the hypothe-
sis sampling process is more data-driven (Cherubini, Castelvec-
chio, & Cherubini, 2005; Lewis, Perez, & Tenenbaum, 2014; Schulz,
2012). For example, the phenomenon of base-rate neglect (Bar-
Hillel, 1980) suggests that in some cases participants discount their
priors, relying instead on the likelihood (i.e., the match between
hypothesis and data). In a related vein, Schulz (2012) has argued
that hypothesis sampling is sensitive to discrepancies between
prediction and observation: Learners postulate hypotheses that
fix specific errors in their current crop of hypotheses. There is a
rich literature on hypothesis generation (e.g., Dougherty & Hunter,
2003a; Gettys & Fisher, 1979; Mehle, 1982; Thomas, Dougherty,
Sprenger, & Harbison, 2008), but Bayesian hypothesis sampling
theories have made little contact with this literature (for excep-
tions, see Bonawitz & Griffiths, 2010; Navarro & Perfors, 2011).

Finally, some of the most exciting work in concept learning
has studied tasks in which participants can actively make choices
to gather data (e.g., Navarro & Perfors, 2011; Nelson et al., 2001;
Tsividis, Gershman, Tenenbaum, & Schulz, 2013). These active
learning tasks raise a host of questions concerning information
gain, confirmation bias, and exploration–exploitation trade-offs.
Rational process models of inference can potentially make unique
predictions about cognitive load and order manipulations in such
tasks.

4.3. Conclusions

We began this paper with the puzzle of how humans
can efficiently make inferences about complex concepts. The
answer pursued here is that humans use an approximate
inference algorithm (particle filtering) that explores compositional
hypothesis spaces through sampling (Griffiths et al., 2012). Particle
filtering accounts for both the strengths andweaknesses of human
concept learning. On the one hand, it explains how humans are
able to acquire richly structured concepts like numbers. On the
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other hand, particle filtering also explains the failure modes of
concept acquisition—the deleterious effects of garden paths and
cognitive load. These failure modes arise from a form of ‘‘bounded
rationality’’ (Simon, 1982), whereby computational costs and
statistical accuracy are traded off against one another to optimize
the performance of the system (Gershman, Horvitz, & Tenenbaum,
2015; Griffiths, Lieder, & Goodman, 2015; Vul et al., 2014). By
exploring both of these aspects, our work offers insight into how
rational analysis connects with cognitive mechanisms.
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