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SUMMARY

Animals make predictions based on currently avail-
able information. In natural settings, sensory cues
may not reveal complete information, requiring the
animal to infer the ‘‘hidden state’’ of the environ-
ment. The brain structures important in hidden
state inference remain unknown. A previous study
showed that midbrain dopamine neurons exhibit
distinct response patterns depending on whether
reward is delivered in 100% (task 1) or 90% of trials
(task 2) in a classical conditioning task. Here we
found that inactivation of the medial prefrontal cor-
tex (mPFC) affected dopaminergic signaling in task
2, in which the hidden state must be inferred (‘‘will
reward come or not?’’), but not in task 1, where the
state was known with certainty. Computational
modeling suggests that the effects of inactivation
are best explained by a circuit in which the mPFC
conveys inference over hidden states to the dopa-
mine system.

INTRODUCTION

The ability to predict future outcomes is at the core of adaptive
behaviors. In reinforcement learning theories, future outcomes
are predicted based on the ‘‘state’’ of the world defined by a
set of information, including the location of the animal, what ob-
jects are present, and elapsed time from certain events. A chal-
lenge in making predictions in natural environments is that the
cues required to define the current state are often ambiguous,
and it is difficult to know in which state the animal is in the first
place. That is, the current state is ‘‘hidden’’ and needs to be in-
ferred from partial information (Courville et al., 2006; Gershman
et al., 2010, 2015). It has been proposed that, in the presence
of such uncertainty, the brain computes future expectations
based on a probability distribution defined over possible hidden
states (a ‘‘belief state’’; Daw et al., 2006; Rao, 2010). Although
empirical evidence has begun to support this idea as it applies
to the midbrain dopamine system (Rao, 2010; Lak et al., 2017;
Starkweather et al., 2017), the neural mechanisms underlying
hidden state inference remain largely unknown.

The activity of dopamine neurons is sensitive to reward expec-
tation. Dopamine neurons report a reward prediction error (RPE)
signal thought to reflect the discrepancy between actual and
predicted value (Schultz et al., 1997; Bayer and Glimcher,
2005; Cohen et al., 2012; Eshel et al., 2015). Dopamine neurons’
responses to reward-predictive cues scale with the expected
future reward (Fiorillo et al., 2003; Cohen et al., 2012; Tian and
Uchida, 2015). More importantly, dopamine reward responses
are suppressed according to the magnitude of reward expecta-
tion (Fiorillo, Tobler, and Schultz, 2003; Cohen et al., 2012; Tian
and Uchida, 2015). The magnitude of dopamine reward re-
sponses is modulated by the moment-by-moment strength of
reward expectation when the timing of the reward is varied (Fio-
rillo et al., 2008; Nomoto et al., 2010; Pasquereau and Turner,
2015). For instance, dopamine reward responses decrease as
time elapses, as if reward expectation increases as a function
of elapsed time. This result is consistent with the idea that reward
expectation grows with the hazard rate (i.e., the likelihood of an
event happening at a moment, given that the event has not
happened yet). Notably, these prior studies with variable reward
delivery times have utilized experimental paradigms in which
reward is always delivered. In contrast, a previous study showed
that the hazard account does not hold under conditions in which
the reward is delivered in a probabilistic manner, and, instead, a
model incorporating hidden state inference explains the data
better (Starkweather et al., 2017).
This previous study (Starkweather et al., 2017) recorded dopa-

mine RPEs during a classical conditioning task in which reward
timing was varied across trials (Figure 1). The activity of dopa-
mine neurons exhibited distinct patterns of responses depend-
ing on whether the reward was delivered in 100% of trials
(task 1) or 90% of trials (task 2). In task 1, dopamine reward re-
sponses were modulated negatively over time, as if expectation
increased over time, consistent with the hazard rate account
(Figure 1D). In a stark contrast, in task 2, dopamine reward re-
sponses increased as time elapsed (Figure 1H). Computational
modeling in which reward expectation is computed over belief
states explained these divergent patterns. This model assumes
transitions between two states: the inter-stimulus interval (ISI)
state, during which reward is expected, and the inter-trial interval
(ITI) state, during which no reward is expected (Figures 1B and
1F). The animal infers which state it is in based on the presenta-
tion of odor cues, reward, and the elapsed time from these
events. Importantly, probabilistic reward delivery renders the
task states hidden; the animal cannot know for certain whether
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it is in the ISI state or ITI state (Figure 1F). Thus, in task 2, after
detecting the cue, the animal’s belief that it is in the ISI gradually
yields to the belief that it is in the ITI (Figure 1G), resulting in RPEs
that increased over elapsed time. In task 1, the belief of being in
the ISI is 100% after cue presentation (Figure 1C); thus, reward
expectation grows with elapsed time and follows the hazard
rate. Reward expectation computed over belief states was
able to explain the divergent response patterns in both tasks.
These results demonstrated that, to account for reward expecta-
tion in these tasks, even a simple classical conditioning para-
digm must be modeled with transitions between the ISI and ITI
states (i.e., by explicitly modeling the ITI state) and that reward
expectation is computed over the animal’s belief (inferred prob-
ability) over these two possible states.
In this study, we sought to explore neural mechanisms under-

lying hidden state inference using these two tasks. Specifically,
we sought to dissect the contribution of the medial prefrontal
cortex (mPFC) to the reinforcement learning circuitry. Classi-
cally, reinforcement learning models have postulated a cortical
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Figure 1. Classical Conditioning Tasks that
Vary Reward Timing Produce Divergent Pat-
terns of Dopamine Responses, Depending
on Whether the Reward Is Delivered Deter-
ministically
(A) In task 1, rewarded odors forecasted a 100%

chance of reward delivery. The time between cue

and reward (inter-stimulus interval [ISI]) was varied

across trials.

(B) The task state (ISI or ITI) is fully observable in task

1 because it is reliably signaled by sensory cues such

as cue and reward.

(C) The task 1 belief state is fixed with 100% prob-

ability in the ISI state after cue onset.

(D) RPEs decrease as a function of timewhen reward

timing is varied under a 100% rewarded contingency

(Starkweather et al., 2017).

(E) In task 2, rewarded odors forecasted a 90%

chance of reward delivery. Similar to task 1, the time

between cue and reward (ISI) was varied across

trials.

(F) The task state is hidden in task 2 because it is not

reliably signaled by cue onset (cue could lead back

to the ITI, during which no reward will be delivered).

(G) The task 2 belief state is initially fixed with 90%

probability in the ISI state after cue onset, but this

probability gradually decreases as time elapses.

Eventually, the belief state yields to the possibility

that the trial will be unrewarded, allotting more

probability to the unrewarded ITI state.

(H) RPEs increase as a function of time when reward

timing is varied under a 90% rewarded contingency

(Starkweather et al., 2017).

substrate for tracking the agent’s internal
sense of time (Schultz et al., 1997). In line
with this theoretical prediction, previous
studies in rodents suggested that the
mPFC is important in interval timing (Kim
et al., 2009, 2013; Xu et al., 2014). However,
cortical inactivation studies have produced

relatively mild effects on dopamine RPEs (Jo et al., 2013; Jo and
Mizumori, 2016). Moreover, these studies did not separate the
contribution of interval timing fromhidden state inference. There-
fore, the involvement of the mPFC in reinforcement learning, as
well as its role in hidden state inference or interval timing, re-
mains elusive. Our behavioral paradigms differentially implicate
both of these processes; hidden state inference comes into
play only in task 2, whereas interval timing is needed to compute
both the time-dependent ‘‘hazard’’-like expectancy in task 1 and
the belief state in task 2. We sought to test whether the neural
substrate for hidden state inference and interval timing can be
separated and whether mPFC regulates dopamine RPEs
through either (or both) of these two processes.

RESULTS

We trained animals on two classical conditioning tasks. Odor
cues predicted a delivery of reward with variable timing after
the odor cue. The two tasks differed only with respect to whether
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reward was delivered in 100% of trials (task 1) or 90% of trials
(task 2). Using these paradigms, we examined whether dopa-
mine responses were affected by temporal inactivation of
mPFC using pharmacogenetic inactivation.

KORD Inactivates mPFC Neurons
We first examined the efficacy and the time course of mPFC
inactivation. We injected an adeno-associated virus (AAV) car-
rying kappa opioid receptor-based designer receptors exclu-
sively activated by designer drugs (KORD) (Vardy et al., 2015)
into the mPFC. We then conducted single-unit recordings in
the mPFC (Figures 2A and 2B) in behaving mice (Figures 2C
and S1A). After subcutaneously injecting the mice with the
KORD agonist salvinorin B (SalB), we observed neurons that
decreased the amplitude of both baseline and task-related activ-
ity (Figures 2D, 2E, and S1B). More than 60% of recorded neu-
rons suppressed their averaged firing rates to below half of their
pre-injection rates (Figures 2F–2H). On average, these sup-
pressed neurons decreased their firing rates to less than 20%
of their pre-injection rates within 15 min post-SalB injection (Fig-
ure 2F). We analyzed any remaining task-related activity these
neurons displayed and confirmed that the task-related activity
of these neurons displayed a level of suppression similar to
that of the averaged recorded activity (Figure S1C). Finally, we
found that the entire population of recorded neurons contained
neurons that were maximally activated at distinct time points be-
tween odor onset and reward, tiling the entire ISI (Figure S1D).
Following SalB injection, neural activity no longer spanned the
entire interval, instead only showing activation immediately
following odor onset (Figures S1D and S1E). Taken together,
KORD reliably suppressed both baseline and task-related activ-
ity and abolished sustained activity in the mPFC during a clas-
sical conditioning task.

Behavior and Electrophysiology
We next inactivated the mPFC while recording from dopamine
neurons in the ventral tegmental area (VTA) (Figures 3A and
S2A).We injectedKORDunilaterally into themPFCof 8mice (Fig-
ures S2B–S2F). To unambiguously identify dopamine neurons,
we expressed channelrhodopsin-2 (ChR2) in dopamine neurons.
We classified neurons as dopaminergic when they responded
reliably with short latency to pulses of blue light delivered through
an optical fiber positioned near our electrodes (STAR Methods;
Figures 3B–3E). On each recording day, we alternated between
subcutaneously injecting animals with saline (control) or SalB
(mPFC inactivation) at the beginning of the session. We trained
4 mice each on tasks 1 and 2 (Figure 3F). Both classical condi-
tioning tasks varied the timing between odor cue and reward
(ISI). On odor A trials, the ISI was drawn from a discretized
Gaussian distribution ranging from 1.2 to 2.8 s, with an average
ISI of 2.0 s. Odor B and C trials had constant ISIs of 1.2 and
2.8 s, respectively. Odor D trials were unrewarded. 100% of
odor A–C trials were rewarded in task 1, whereas 90% of odor
A–C trials were rewarded in task 2. In both tasks, animals learned
to lick in anticipation of reward in odor A–C trials (Figure 3G; num-
ber of licks for odors A–C in tasks 1 and 2s baseline; F1,36 > 32,
p < 1.9 3 10!6 for all comparisons, one-way ANOVA), but not in
odor D trials (F1,41 < 1.4, p > 0.23 for all comparisons, one-way

ANOVA). We performed several analyses to find out whether
behavior differed between tasks 1 and 2 and whether behavior
differed between saline and SalB conditions (Figure S3). Animals
licked more (number of anticipatory licks for odor A in task 1 s
task 2; F1,77 = 6.7, p = 1.2 3 10!2, ANOVA; Figure S3A) and
ramped up their lick rates sooner (time point halfway tomaximum
lick rate in task 1 s task 2; F1,77 = 7.7, p = 7.0 3 10!3, one-way
ANOVA) in task 1 compared with task 2 (Figures 3G, S3G, and
S3H). In general, animals ramp up their lick rates sooner for
higher reward probabilities, even in the absence of variability in
the timing of reward (Fiorillo et al., 2003; Tian and Uchida,
2015). SalB did not affect any measures used to quantify the
pattern of licking across time (Figures S3B–S3I).
We asked whether the types of neurons recruited to the task

differed between saline and SalB conditions. We applied
k-means clustering to all of our recorded VTA neurons (those
within 500 mm of an optogenetically identified dopamine neuron;
n = 761 neurons) and sorted neurons into three clusters that
showed phasic activity to cue and reward, sustained positive ac-
tivity, and sustained negative activity (Figure S4A; Cohen et al.,
2012; Eshel et al., 2015; Tian and Uchida, 2015). Based on this
analysis, we did not find appreciable differences in the types of
recorded neurons between saline and SalB conditions in each
task (Figure S4B).

mPFC Inactivation Impaired Dopamine Responses in
Task 2, but Not in Task 1
We next analyzed averaged dopamine activity on control (saline
injection) and inactivation (SalB injection) days. In control ses-
sions, we found that reward responses following odor A showed
opposite trends of temporal modulation between tasks 1 and 2,
replicating our earlier results (Starkweather et al., 2017). In
task 1, post-reward responses decreased as a function of time
(Figure 4A, colored lines; F8,328 = 12.6, p = 9.1 3 10!16, two-
way ANOVA; factors: ISI, neuron). In contrast, in task 2, post-
reward responses increased as a function of time (Figure 4B,
colored lines; F8,320 = 3.7, p = 3.83 10!4, two-way ANOVA; fac-
tors: ISI, neuron). Scalar timing uncertainty could not account for
the positive temporal modulation of post-reward responses for
odor A. The post-reward response to odor C (with an ISI of
2.8 s; Figure 3F) was significantly smaller than the post-reward
response to the latest possible odor A reward, which also had
an ISI of 2.8 s (Figure 4B; Odor AISI= 2:8ssOdor C response,
F1,41 = 22.4, p = 2.7 3 10!5, two-way ANOVA; factors: ISI,
neuron). In addition, pre-reward firing rates decreased over
time (Figures 4A and 4B, black lines; F8,328 > 9.0, p < 3.5 3
10!11 for both groups, two-way ANOVA; factors: ISI, neuron) in
both tasks 1 and 2.
In inactivation sessions, post-reward dopamine responses

decreased as a function of time, similar to the control data (Fig-
ure 4C, colored lines; F8,328 = 11, p = 3.3 3 10!14, two-way
ANOVA; factors: ISI, neuron). Strikingly, in task 2,mPFC inactiva-
tion abolished the pattern of increasing post-reward RPEs
across time (Figure 4D, colored lines; F8,368 = 0.69, p = 0.70,
two-way ANOVA; factors: ISI, neuron) although the responses
were still smaller ("55%) compared with their responses to un-
expected reward (Figure S5B). Interestingly, pre-reward RPEs
in both tasks 1 and 2 decreased over time, similar to the control
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condition (Figures 4C and 4D, black lines; F8,368 > 14, p < 2.7 3
10!17 for both groups, two-way ANOVA; factors: ISI, neuron). To
confirm that the selective effect on temporal modulation in task 2
was not due to KORD inefficacy in task 1, we simultaneously re-
corded mPFC neurons in one task 1 animal (Figures S6A and
S6B). We confirmed that KORD inhibited the majority of mPFC
neurons in this task 1 animal (Figures S6C–S6E). We also
confirmed that animals injected with SalB, which did not express
KORD, displayed intact temporal modulation of post-reward re-

sponses in task 2, confirming that mPFC inactivation, rather than
SalB itself, accounted for the observed effects (Figures S6F–
S6H). In summary, mPFC inactivation selectively abolished tem-
poral modulation of post-reward responses in task 2, in which
reward was delivered probabilistically (Figure 4E).
To findoutwhether SalB and task identitymodulated the effect of

reward timing on dopamine responses, we performed an ANOVA
that included the following factors: time of reward delivery (tr) 3
task 1, tr 3 task 2, tr 3 drug 3 task 1, tr 3 drug 3 task 2, and

Figure 2. KORD Inactivates mPFC Neurons
(A) Tetrodes were implanted into the mPFC in two mice injected with KORD in the mPFC.

(B) Coronal section from one mouse recorded in mPFC, showing KORD expression in green. The hole in the tissue is the electrolytic lesion created at the end of

the tetrodes following completion of the experiment.

(C–E) Task (C) and firing patterns for a representative neuron before (D) and after (E) SalB injection.

(F) Normalized firing rates before and after injection, plotted for all inhibited neurons (neurons were categorized as ‘‘inhibited’’ if they suppressed the firing rate to

less than half of the baseline firing rate). Each blue line is an average of all inhibited neurons recorded in one day (mean ± SD about the mean, shown in black for

each time point). Each neuron’s firing rate was normalized to its average pre-injection firing rate. Inset pie charts denote the number of neurons categorized as

inhibited in the SalB and saline + DMSO conditions.

(G) Baseline firing rate versus post-injection (>15 min following SalB or saline injection) firing rate on a log-log scale. Neurons below the unity line had lower firing

rates after injection.

(H) Post-injection firing rate as a proportion of the baseline firing rate for each neuron. Neurons are rank-ordered frommost suppressed to most excited. Neurons

below the horizontal line had lower firing rates after injection.
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Figure 3. Dopamine Electrophysiology and Behavior
(A) Tetrodes were implanted into the VTA with KORD expression in the mPFC. Neurons were included in the dataset when they responded with short latency to

laser pulses.

(B and C) Raw traces (B) and detected spikes (C) for a dopamine neuron, demonstrating laser pulses and laser-evoked spikes.

(D) Near-identical match between waveform of average laser-evoked spike (blue) and average spontaneous spike (black) for the same example neuron.

(E) Histogram of latencies to spike for the same example neuron.

(F) Following odor A, the reward was delivered after a variable delay time ranging from 1.2 to 2.8 s. Following odors B and C, the reward was delivered after a

constant delay time of 1.2 and 2.8 s, respectively. Odor D was not rewarded.

(G) Averaged licking histograms for all KORD-expressing animals trained on tasks 1 and 2 during saline (thin opaque lines) and SalB (thick transparent lines)

sessions. Only task 1 odor A trials with an ISI of 2 s are shown here. All task 2 trials included in this plot are reward omission trials.
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free water response. Free water response was included because
dopamine neurons show great variability in the magnitude of
reward responses (Eshel et al., 2015). Task and drug, only in the
case of task 2, interactedwith the timing variable to explain a signif-
icant proportion of variance in post-reward responses (tr 3 task 1,
F8,1347 = 2.2, p = 2.7 3 10!2; tr 3 task 2, F8, 1347 = 3.2, p = 1.1 3
10!3; tr 3 drug 3 task 2, F9, 1347 = 2.6, p = 6.2 3 10!3; tr 3
drug3 task 1, F9, 1347 = 0.79, p = 0.62). This supports our observa-
tion that dopamine RPEs show distinct patterns of modulation over
timebetween tasks 1 and 2 and that SalBonly affects this pattern of
temporal modulation in task 2.

Individual Neurons Recorded in Task 2 Tended to Show
Negative Temporal Modulation following mPFC
Inactivation
Next we asked how the responses of individual neurons were
affected by mPFC inactivation in task 2. For individual neurons’
responses, we plotted a best-fit line relating the ISI to the number
of post-reward spikes on every odor A trial (Figures 5A–5D). Un-
der the control condition, 29 of 41 neurons (70%) displayed pos-
itive slopes (slope [m] > 0), whereas 12 of 41 (29%) displayed
negative slopes (Figure 5F). In contrast, 24 of 47 (51%) displayed
negative slopes under the inactivation condition (Figure 5F). In
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Figure 4. mPFC Inactivation Impaired Tem-
poral Modulation of Dopamine Reward
Responses in a Non-deterministically Re-
warded Task (Task 2), but Not in a Determin-
istically Rewarded Task (Task 1)
(A) Peri-stimulus time histogram (PSTH) for 42

dopamine neurons recorded during odor A trials in

task 1, saline condition. Colored lines indicate post-

reward responses at various timings, and the black

line indicates firing prior to reward. Both post-

reward (50–200 ms following reward) and pre-

reward firing (0–200 ms prior to reward) are signif-

icantly modulated by time. Post-reward firing

(mean ± SEM shown in plots): F8,328 = 13, p = 9.13

10!16, two-way ANOVA; factors: ISI, neuron. Pre-

reward firing (mean ± SEM shown in plots): F8,328 =

15, p = 3.5 3 10!11. Green and orange dots in the

insets denote post-reward firing to rewards deliv-

ered in odor B (green) and odor C (orange) trials,

which have constant ISIs of 1.2 and 2.8 s, respec-

tively.

(B) PSTH for 41 dopamine neurons recorded during

odor A trials in task 2, saline condition. Post-reward

firing, F8,320 = 3.7, p = 3.83 10!4; pre-reward firing,

F8,320 = 14, p = 5.3 3 10!18. Positive temporal

modulation cannot be explained by ISI length

alone because there was a significant difference

between the post-reward response for the

latest possible odor A reward delivery and odor

C reward delivery, which both had ISIs of 2.8 s

(Odor AISI=2:8ssOdor C response, F1,41 = 22.4, p =

2.7 3 10!5, two-way ANOVA; factors: ISI, neuron).

(C) PSTH for 42 dopamine neurons recorded during

odor A trials in task 1, SalB condition. Post-reward

firing: F8,328 = 11, p = 3.33 10!14, two-way ANOVA;

factors: ISI, neuron. Pre-reward firing: F8,328 = 16,

p = 2.4 3 10!19.

(D) PSTH for 47 dopamine neurons recorded during

odor A trials in task 2, SalB condition. Post-reward

firing, F8,368 = 0.69, p = 0.70; pre-reward firing,

F8,368 = 14, p = 2.7 3 10!17.

(E) Bar graph showing the average slope

relating the ISI to RPE magnitude (mean ± SEM)

for all recorded neurons under each condition.

The distribution was significantly different in task

2 (medianSalinesmedianSalB, z = 2.1, p = 3.83 10!2,

Wilcoxon rank-sum test), but not in task 1

(medianSalinesmedianSalB, z = 0.14, p = 0.89, Wil-

coxon rank-sum test).
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task 1, the proportion of significant slopes showing negative
versus positive modulation was not significantly different be-
tween drug and control conditions (Figure 5E; saline, 16 nega-
tive, 0 positive; SalB, 16 negative, 2 positive; p = 0.49, Fisher’s
exact test), whereas in task 2, the proportions of significant
slopes showing negative versus positive modulation were signif-
icantly altered (Figure 5F; saline, 1 negative, 9 positive; SalB,
9 negative, 7 positive; p = 4.13 10!2, Fisher’s exact test). There-
fore, neurons were more likely to show significant negative tem-
poral modulation in task 2, under the SalB condition.

Accordingly, the distribution of slopes under the inactivation
condition shifted significantly toward smaller values in task 2
(Figures 4E and 5F; medianSalinesmedianSalB, z = 2.1, p =
3.8 3 10!2, Wilcoxon rank-sum test). The distribution of slopes
was not different under the SalB condition in task 1 (Figure 5E;
medianSalinesmedianSalB, z = 0.14, p = 0.89, Wilcoxon rank-
sum test). To assess the effect of task and drug on all neurons’
slopes, we performed an ANOVA that included the following fac-
tors: task, task 1 3 drug, and task 2 3 drug. To eliminate devia-
tion from the normal distribution in groups, we normalized post-
reward responses to free water responses prior to computing
slopes. Task and task 23 drug both explained a significant level
of variance in the slopes (task, F1,163 = 2.2, p = 1.7 3 10!5; task
23 drug, F1,163 = 4.7, p = 3.23 10!2), whereas task 13 drug did

not explain a significant level of variance in the slopes (task 1 3
drug, F1,163 = 6.53 10!2, p = 0.94). Therefore, the distribution of
slopes differed over tasks, and SalB only affected the distribution
in the case of task 2.
Finally, because task 2 slopes tended toward smaller values

under the SalB condition and because more (but not all) task 2
slopes had negative values, we asked whether the variance of
slopes changed significantly under the SalB condition. The vari-
ance of the slopes was significantly greater under the inactiva-
tion condition in task 2 (Figure 5F; s2Saliness2SalB, F40,46 = 0.51,
p = 0.03, F-test for equality of two variances), with increased vari-
ance in the inactivation versus the control condition being re-
flected in individual animals (Figure 5F, black dots). The variance
of the slopes was not significantly greater under the inactivation
condition in task 1 (Figure 5E; s2Saliness2SalB, F41,41 = 0.59, p =
0.10, F-test for equality of two variances). Therefore, the abol-
ished temporal modulation shown in Figure 4D for task 2 is the
result of averaging the responses of individual neurons that
show highly variable trends of temporal modulation, ranging
from very negative to very positive modulation across time.
mPFC inactivation did not simply flatten the response profiles

of individual neurons, which could be compatible with the neu-
rons losing the ability to track time. Instead, mPFC inactivation
shifted the predominant pattern of positive temporal modulation
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Figure 5. Individual Neurons Recorded in
Task 2 Were More Likely to Show Negative
Temporal Modulation following mPFC Inac-
tivation
(A–D) PSTHs and raster plots for single neurons. A

best-fit line was drawn through a plot relating the

ISI to the post-reward firing rate for each odor A trial

(mean ± SEM shown for firing rate at each ISI).

Example task 1 neurons in the saline (A) and SalB

(C) conditions showed negative temporal modula-

tion, while the example neuron in the task 2 saline

condition showed positive temporal modulation

(B). The example neuron shown for the task 2 SalB

condition (D) showed negative temporal modula-

tion, similar to neurons recorded in task 1 (A).

(E and F) Slopes of best-fit lines under the saline

condition (black) and SalB condition (red) for all

dopamine neurons recorded in task 1 (E) and task 2

(F). Shading indicates p < 0.05 or a 95%confidence

interval for the slope coefficient that does not

include 0. The distributions were significantly

different in task 2 (medianSalinesmedianSalB, z= 2.1,

p = 0.04, Wilcoxon rank-sum test), but not in task 1

(medianSalinesmedianSalB, z = 0.14, p = 0.89, Wil-

coxon rank-sum test). Inset: for individual KORD-

expressing animals recorded in task 1 (n = 4) and

task 2 (n = 4), variance of slopes under the saline

versus SalB condition. The variance significantly

increased in task 2 under the SalB condition

(s2Saliness2SalB, F40,46 = 0.51, p = 0.03, F-test for

equality of two variances), but not in task 1

ðs2Saliness2SalB, F41,41 = 0.59, p = 0.10, F-test for

equality of two variances).
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in task 2 toward more negative values. In other words, many task
2 dopamine neurons showed negative temporal modulation
similar to task 1, suggesting that these task 2 neurons operated
as if in a deterministic task regime rather than altogether losing
the ability to track time.

mPFC Inactivation Spared Timing-Related Aspects of
Dopaminergic Signaling
To confirm that mPFC inactivation spared time estimation, we
analyzed post-reward and reward omission responses for
odors B and C, which had constant ISIs of 1.2 and 2.8 s, respec-
tively. Post-reward RPEs are greater for longer ISIs because of
scalar timing noise (Fiorillo et al., 2008; Jo and Mizumori, 2016;
Kobayashi and Schultz, 2008). Consistent with this, we found
that post-reward RPEs following odor C were larger than those
following odor B (Figures 6A and 6B). However, this difference
was slight (<1 Hz) and was not significantly larger in the inacti-
vation condition (z = 0.30, p = 0.76, Wilcoxon rank-sum test),
suggesting that temporal uncertainty was not larger during
mPFC inactivation. On reward omission trials, dopamine neu-
rons briefly paused their tonic firing rates at the time of expected
reward (Figures 6C, 6D, and S5D). The decrease in spikes dur-
ing the omission ‘‘dip’’ was significantly smaller than baseline
under both the control and inactivation conditions (F1,47 >
12.4, p < 1.3 3 10!3 for all groups, two-way ANOVA; factors:
time window, neuron), suggesting that a representation of
when reward usually occurs remains intact during mPFC inacti-
vation, consistent with a previous study (Jo and Mizumori,
2016). In summary, mPFC inactivation impaired positive tempo-
ral modulation of post-reward responses in task 2 but spared
other aspects of dopamine responses that required time esti-
mation, including negative temporal modulation of post-reward
responses in task 1, decreasing pre-reward responses in both
tasks, negligible increases in post-reward responses on odor

C versus odor B trials, and precise timing of reward omission
dips on constant ISI trials.

Computational Modeling Implicates the mPFC in
Computing the Belief State
Dopaminergic RPEs are thought to signal the error term in the
temporal difference (TD) learning algorithm (Schultz et al.,
1997). The goal of TD learning is to accurately estimate value,
defined as the expected discounted cumulative future reward,
which is typically approximated as a weighted combination of
stimulus features. TD learning uses (putatively dopaminergic)
RPEs to update the weights (Sutton, 1988). Classically, TD
learning utilizes features that track time relative to sensory
cues. More recent applications of TD learning to the dopamine
system have incorporated hidden state inference by deriving
the features from a belief state, or probability distribution over
states (Daw et al., 2006; Rao, 2010; Starkweather et al., 2017;
Lak et al., 2017), which, in our tasks, reflects the probabilities
of the ISI (‘‘reward will come’’) and ITI (‘‘reward will not come’’)
states. We modeled tasks 1 and 2 as Markov processes, with
the ISI and ITI states comprising sub-states (Figure 7A). We
chose to explicitly model the ISI and the ITI because these two
states dictate whether reward is expected. Each sub-state cor-
responds to a discrete amount of time during the task. Because
theGaussian interval duringwhich reward could be receivedwas
discretized into 200-ms bins, wemodeled each sub-state as cor-
responding to 200 ms. The ISI state comprised 14 sub-states
because the longest possible ISI was 2.8 s. The ITI state
comprised just 1 sub-state because the ITI was drawn from an
exponential distribution. Therefore, the dwell time in the ITI could
bemodeledwith one 200-ms sub-state with a high self-transition
probability. In task 1, odor A onset would correspond to a 100%
likelihood of a state transition from the black ITI state (Figure 7A;
parameters in Figures S7A and S7B) to the first pink ISI substate.
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Figure 6. mPFC Inactivation Spared Timing-
Related Aspects of Dopamine Signaling
(A and B) PSTH of RPEs on rewarded odor B (green)

and C (orange) trials for all neurons recorded in task

2, saline condition (A) and SalB condition (B). The

inset displays average post-reward RPEs for odors

B and C (mean ± SEM). Odor C post-reward RPEs

were significantly larger than odor B post-reward

RPEs under the saline condition (absolute differ-

ence = 0.95 Hz, F1,40 = 5.8, p = 0.02, two-way

ANOVA, factors: neuron, odor), but not under the

SalB condition (absolute difference = 1.0 Hz, F1,40 =

2.6, p = 0.11).

(C and D) PSTH of RPEs on omission odor B and C

trials for all neurons recorded in task 2, saline con-

dition (C) and SalB condition (D). Omission dipswere

significantly smaller than baseline in both saline

(F1,40 = 37, p = 3.8 3 10!7 [odor B]); F1,40 = 14, p =

7.0 3 10!4 [odor C], two-way ANOVA, factors:

neuron, 0–1 s following time of usual reward delivery

versus 1–0 s before odor onset) and SalB (F1,40 = 13,

p = 9.0 3 10!4 [odor B]; F1,40 = 12, p = 1.3 3 10!3

[odor C]).
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As time elapses during the trial, each ISI substate would transi-
tion to the subsequent ISI substate until reward is received and
the model transitions back to the black ITI state. Because in
task 1 the cue reliably indicates that the animal is in the ISI state,
the model’s belief state is fixed at 100% in the ISI state after the
animal observes a cue. The model allots 100% of its belief,
sequentially, into each of the ISI sub-states as time elapses dur-
ing the trial (Figures 7B, S8A, and S8B). In contrast, task 2 is a
hidden Markov process because the cue may lead to an omis-
sion trial in 10% of cases (Figure 7A; parameters in Figures
S7A and S7C). This is modeled as a 10% likelihood of a
hidden state transition from the ITI state back to the ITI state,
without a reward, when a cue is observed. Therefore, which state
(ISI versus ITI) the animal is in is not directly signaled. The ani-
mal’s actual state is hidden because it cannot be reliably deci-
phered from sensory cues alone. Upon experiencing odor A
onset, the model allots 90% of its belief into the first pink ISI
sub-state and 10% of its belief into the black ITI state (Figures
7B, S8C, and S8D). As time elapses and no reward is received,
the model yields to the belief that the current trial is unrewarded,
allotting smaller probabilities to each subsequent ISI sub-
state and larger probabilities to the ITI state (Figures 7B, S8C,
and S8D).

The belief state TD model, trained on our tasks, reproduced
key aspects of our data. Post-reward firing in task 1 decreased
over time (Figure 7C, left) because the model learned higher
weights for later features, reflecting the higher momentary prob-
ability of receiving a reward at later time points (Figures S8A and
S8B). Post-reward firing in task 2 increased over time (Figure 7C,
right), reflecting the model’s mounting belief that it is in an omis-
sion trial at later time points (Figures S8C andS8D). For individual
task 2 simulations, we computed a best-fit line relating ISI and
post-reward RPEs, identical to the slope distribution analysis
shown in Figure 5. This revealed that the majority of simulations
produced positive temporal modulation over time (Figure 7D).
Pre-reward firing decreased over time in both tasks 1 and 2
(Figure 7C, black lines). Finally, our model produced omission re-
sponses around the time of expected reward for odors B and C
(Figure 7E).

To simulate a deficit in hidden state inference, we altered the
model parameters so that the model failed to acknowledge the
10% likelihood of an omission trial in task 2 (Figure S7E) while
keeping other task 2 model parameters intact; namely, the
weights that it had learned and the transition matrix that reflects
the temporal structure of the task. In other words, the task 2
belief state (Figure 7B) was fixed with 100% probability in the
ISI and remained uniformly ‘‘stuck’’ at this probability, similar
to the task 1 belief state (Figure S8E). Importantly, the probability
mass allotted to ISI sub-states still tracked time during each trial
by sequentially passing from one sub-state to the next. Rather,
the probability assigned to each sub-state was changed by our
impairment. In amodel with an intact belief state, the ITI state ac-
crues greater probability as time elapses, and, accordingly, the
sum of the probability allotted to the ISI sub-states decreases
over time (Figure S8D). These probabilities do not change over
time in the impaired model (Figure S8E). We could recapitulate
our mPFC inactivation data by running 60% of the simulations
with this impoverished belief state. Indeed, our inactivation

was likely partial because not all neurons showed inhibition
upon mPFC inactivation (Figure 2F), and the contralateral (intact)
mPFC may communicate with the recorded hemisphere
through crossing corticothalamic projections (Vertes, 2002,
2004; Gabbott et al., 2005). Although averaged responses from
task 1 simulations continued to show post-reward responses
that decreased as a function of time, averaged RPEs from task
2 simulations were flattened across time (Figures 7F and 8).
Similar to our mPFC inactivation data, task 2 pre-reward RPEs
continued to decrease as a function of time. Furthermore, a
greater proportion of task 2 simulations showed negative tempo-
ral modulation of post-reward RPEs than in the intact model (Fig-
ure 7G; compare with the intact model in Figure 7D), similar to
our inactivation data (Figure 5F). These negatively modulated
post-reward RPEs occurred in simulations with the corrupted
belief state (Figures 8 and S8E). Finally, simulations run with a
deficit in hidden state inference still exhibited a reward omission
response around the time of the expected reward (Figure 7H)
because later sub-states accrued very low weights (see weights
in Figures S8C and S8D), forcing the estimated value to drop as
soon as the model experienced later time points. Therefore, im-
pairing hidden state inference recapitulated our data: although
flattening post-reward responses in task 2, all other aspects of
dopamine signaling were spared.
We examined the effect of impairing the model’s timing mech-

anism by blurring the transition probabilities between sub-states
(Takahashi et al., 2016; Figure S7D). This timing impairment
could somewhat flatten the temporal modulation of task 2
post-reward responses (Figure 7I, right). However, blurring the
model’s timing estimation affected many other aspects of the
simulations, which were inconsistent with our data. For example,
task 1 post-reward responses were also flattened (Figure 7I, left),
pre-reward responses in both tasks 1 and 2 were flattened (Fig-
ure 7I, black lines), most simulations still showed positive modu-
lation of post-reward responses over time (Figure 7J), and
reward omission responses were abolished (Figure 7K).
We attempted to blur the model’s timing estimation less

dramatically than in Figure S7D, but this increased the positive
temporal modulation of post-reward responses in task 2. This
occurred because a smaller increase in scalar timing noise
makes only later rewards harder to predict, increasing positive
temporal modulation. In contrast, the parameter we used to
blur the transition matrix was so large that both early and late re-
wards were harder to predict, blunting overall temporal modula-
tion. Finally, we also attempted to uniformly blur the transition
matrix. However, this eliminated reward omission responses,
inconsistent with our data. Our data are most consistent with
mPFC shaping hidden state inference, rather than timing estima-
tion, in the dopaminergic circuitry.

DISCUSSION

Our results demonstrate that the sensitivity of dopamine RPEs
to state uncertainty can be explained by a computational
framework that incorporates a belief state. We further demon-
strate that hidden state inference contributing to the dopamine
RPE computation critically depends on the integrity of mPFC
functioning.
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Figure 7. Computational Modeling Implicates the mPFC in Computing the Belief State
(A) We modeled tasks 1 and 2 as Markov processes, where each ISI sub-state accounts for 200 ms of elapsed time within a trial. The sub-states are partitioned

into ISI sub-states and ITI sub-states.

(B) Evolution of the belief state over time. A belief state represents a probability distribution over sub-states (indexed by various colors as shown in A), updated on

sensory information using Bayes’ rule. In the temporal difference (TD) learning model, the sub-state probabilities are linearly combined to produce an estimated

value bV ðtÞ. dðtÞ is the reward prediction error used to update the weights wiðtÞ, where i indexes sub-states. In task 1, the belief state is fixed with 100% serially

occupying the ISI sub-states; in task 2, the belief state allots more probability to the unrewarded ITI state over time.

(C, F, and I) Averaged PSTHs for 50 simulations of the belief state TDmodel for tasks 1 and 2. Both the intactmodel (C) and themodel with state inference impaired

(F) still display negative temporal modulation of post-reward responses in task 1 whereas the timing-impaired model (I) does not. The positive temporal mod-

ulation of post-reward responses seen in the intact model of task 2 (C) becomes blunted upon impairing hidden state inference (F).

(legend continued on next page)
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Although past studies have implicated the mPFC in interval
timing (Kim et al., 2009, 2013; Xu et al., 2014), these studies
did not disentangle the involvement of the mPFC in time estima-
tion versus in an inferential process that evolves across time. Kim
et al. (2009) inactivated the mPFC in a task that required rats
to categorize an ISI as ‘‘short’’ versus ‘‘long’’ (Kim et al., 2009).
Rats’ psychometric curves (categorizing short versus long)
were flattened bymPFC inactivation. This task can be conceptu-
alized as requiring hidden state inference. Based on the time in-
terval, the animal infers the correct (hidden) categorization. As
time elapses during the ISI, the animals’ belief state increasingly
favors the long category. Blunting this dynamicmodulation of the
belief state, rather than impaired time estimation per se, could
explain that phenotype observed upon mPFC inactivation.
Another study showed that hidden state inference plays an
important role in a simple sensory discrimination task using
ambiguous visual stimuli (Lak et al., 2017). As illustrated by these
examples, hidden state inference may underlie diverse neural
processes, such as timing and sensory discrimination, making
it difficult to understand the contribution of brain regions to one
process in particular. In the present study, we experimentally
separated hidden state inference and timing by assaying the
contribution of the mPFC through two different behavioral tasks.

Our results demonstrated the necessity of the mPFC in hidden
state inference, but not in interval timing, suggesting that these
two processes have separable neural substrates. How is interval
timing information conveyed to dopamine neurons? Two
different lesion studies have shown that lesioning the ventral
striatum (Takahashi et al., 2016) or lateral habenula (Tian and
Uchida, 2015) resulted in dopamine neurons losing their ability
to ‘‘pause’’ at the time of an unexpected reward omission.
Furthermore, another study showed that neurons in the striatum
show bursts of activity that span the ISI of a lever pressing task

(D, G, and J) The same analysis as shown in Figure 5, indicating temporal modulation of post-reward RPEs in task 2 but for simulation outputs. Note that only the

manipulation of hidden state inference (G) produces a distribution of post-reward RPEs that tendsmore toward negative values compared to the intact model (D),

similar to our data (Figure 5F). Timing impairment (J) fails to produce a greater number of negative slopes.

(E, H, and K) Averaged PSTHs for 50 simulations of the belief state TDmodel for reward omission responses following odors B andC. Both the intact model (E) and

the model with state inference impaired (H) still display reward omission responses at the time of expected reward whereas the timing-impaired model (K)

does not.
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Figure 8. Cartoon Hypothesis of mPFC Inacti-
vation Results Based on Computational
Modeling
(A) Intact and impaired task 2 belief states lead to the

patterns of RPEs shown in (B).

(B) Differing patterns of RPEs in dopaminergic neu-

rons unaffected and affected by the mPFC inactiva-

tion, according to our hypothesis that mPFC inacti-

vation impaired the belief state in a subset of

recorded neurons.

(C) Averaging these two patterns together results in

flattened averaged RPE, similar to the blunted pattern

of temporal modulation seen in Figure 4D.

and re-scale the absolute time of their
bursting to tile longer ISIs (Mello et al.,
2015). Therefore, the striatum contains neu-
rons that flexibly represent behaviorally rele-

vant time intervals and could convey timing information to the
dopamine system through a pathway involving the lateral
habenula.
How could the belief state be conveyed from the mPFC to

dopamine neurons? Several routes exist. First, the mPFC sends
ipsilateral projections to VTA dopamine neurons (Carr and Ses-
ack, 2000; Vertes, 2004; Gabbott et al., 2005; Watabe-Uchida
et al., 2012), providing a direct route by which mPFC activity
could influence dopamine signaling. Other routes involve multi-
ple synapses. For example, the mPFC sends dense ipsilateral
projections to the striatum, including the nucleus accumbens
(Sesack et al., 1989; Vertes, 2004; Gabbott et al., 2005), which
then supplies major inputs to dopamine neurons in the VTA (Wa-
tabe-Uchida et al., 2012). Another route is through themediodor-
sal thalamus, which receives both ipsilateral and contralateral
input from the mPFC (Vertes, 2002, 2004; Gabbott et al.,
2005). This thalamic nucleus is richly interconnected with the
mPFC and other prefrontal cortical regions (Mitchell, 2015) and
is a potentially important node in sustaining persistent activity
in the mPFC by analogy to other recurrent corticothalamic cir-
cuits (Guo et al., 2017). Furthermore, this corticothalamic
pathway could provide a route by which some belief state infor-
mation reaches dopamine neurons on the recorded hemisphere,
accounting for why we observed a partial effect of inactivation
(we ran 60% of simulations with an impaired belief state to fit
our data).
Previous studies have implicated the orbitofrontal cortex

(OFC) in representing state space (Takahashi et al., 2011; Brad-
field et al., 2015). OurmPFC inactivation produced a different but
related impairment. Rather than ablating the state representa-
tion, mPFC inactivation impaired the brain’s ability to dynami-
cally infer states only when they were hidden, freezing the
inferred probability distribution over states that should have
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evolved over time. A basic representation of observable state
space remains intact upon mPFC inactivation. If the state repre-
sentation were abolished, then the brain could no longer distin-
guish the ISI from the ITI, even following observable cues such
as reward. Prediction errors in the absence of a hidden state rep-
resentation would resemble RPEs produced by the complete
serial compound representation used in the classic TD model
(Schultz et al., 1997). The RPEs produced by this TD model
would simply reflect the temporal distribution of rewards, repro-
ducing aGaussian distribution in both task 1 and 2 (Starkweather
et al., 2017). For this reason, our results are incompatible with an
ablated state representation. We conjecture that OFC conveys a
state representation to the mPFC (Wilson et al., 2014). This OFC
state representation would contain a vector of possible states,
the size of which depends on the complexity of the task. The
mPFC then computes a probability distribution over these
possible hidden states furnished by the OFC.
Another remaining question is how a state representation is

formed in the first place. Computational hypotheses addressing
this question exist (Gershman et al., 2015), although fewer exper-
iments have attempted to link these hypotheses to the dopamine
system. In our tasks, we purposefully made the time between tri-
als highly unpredictable; the ITI was drawn from an exponential
distribution, making it impossible for the animal to predict
when a cue would come on. However, when a cue does come
on, it has high ‘‘temporal informativeness’’ (Balsam and Gallistel,
2009) because it reliably predicts an upcoming appetitive
reward. One idea is that the brain identifies temporally informa-
tive stimuli in the environment and forms a state representation
based on this. A region attuned to detecting these coincidences
could be the hippocampus, theorized to generate a predictive
map that respects the transition structure within a (usually
spatial) task (Stachenfeld et al., 2017). Such a predictive map,
when applied instead to transitions in time rather than space,
could build a useful state representation in a classical condition-
ing task with temporally informative cues. Recently, several
studies have suggested that the hippocampus stores such tem-
poral relationships between stimuli (Deuker et al., 2016; Eichen-
baum, 2014; Howard and Eichenbaum, 2015; Oprisan et al.,
2018). Thus, the hippocampus could serve as a predictive map
that codes expected future occupancies, including temporal re-
lationships, between stimuli. Based on this map, task states for
reinforcement learning could be formed in the OFC (Wilson
et al., 2014) by emphasizing stimuli closely linked to rewarding
stimuli. This state representation from the OFC could then be
relayed to the mPFC to compute the belief state.
Our inactivation result provides further experimental evidence

for the belief state TDmodel. The belief state TDmodel is not the
only explanation of our dopamine recording data under control
conditions (intact mPFC). That is, a TD model that includes a
state representation that separates the ISI and the ITI but does
not explicitly encode probabilities could also explain the diver-
gent patterns of response between tasks 1 and 2 (Starkweather
et al., 2017). The microstimulus model, which includes scalar
temporal uncertainty as well as this ‘‘state reset,’’ is an example
of this type of TD model (Ludvig et al., 2008). State reset TD
models are able to reproduce our data because they learn a
different set of weights associated with each of the model’s tem-

poral kernels, depending on the task on which they are trained.
In task 1, these weights increase over time, similar to the value
function in task 1 (Figure S8B); in task 2, these weights decrease
for later time points, similar to the value function in task 2 (Fig-
ure S8D). By shutting down themPFC, we transiently ‘‘switched’’
neurons from operating as if they were in a probabilistic regime
(task 2) to operating as if they were in a deterministic regime
(task 1). This phenotype is not easily explained by state reset
TD models, which would have to re-learn a new set of weights
to switch their response patterns. Rather, our inactivation is
parsimoniously explained by hidden state inference being
selectively and transiently abolished by our experimental
manipulation.
Could our data be explained by mPFC encoding the risk of a

trial going unrewarded? Our data are not compatible with a gen-
eral loss of risk-related information. In our tasks, risk comes into
play not only on odor A trials but also on odor B and C trials
because these trials were also 90% rewarded. If all risk-related
information were impaired, we would expect for the magnitude
of reward responses on odor B and odor C trials to change.
For instance, if odor B and C trials were no longer risky, then
expectation should be higher under the mPFC inactivation con-
dition, resulting in more suppressed reward responses. We
found that the responses in the 90%-rewarded task were sup-
pressed to "55% of free water responses and were not signifi-
cantly different between saline and SalB conditions (Figure S5C).
Furthermore, these task 2 responses (90% rewarded) were
significantly bigger than in task 1 (100% rewarded) under both
the saline and SalB conditions (suppressed to"45% of free wa-
ter responses; Figure S5C). In other words, RPEs were bigger
under riskier conditions than under non-risky conditions, regard-
less of whether the mPFC was inactivated. Therefore, broadly
eliminating risk-related information cannot explain our data.
Howmight themPFC represent the neural correlates of a belief

state? Our mPFC inactivation spanned subregions of the mPFC,
including both the prelimbic (PL) and infralimbic (IL) cortices (Fig-
ure S2). The PL and IL cortices have been dichotomized in their
roles in reward-seeking and extinction, respectively (Gourley and
Taylor, 2016). To promote reward-seeking, the belief state must
favor a rewarded state. Conversely, to extinguish a former
reward-predicting cue, the belief state must favor an unre-
warded state. It is possible that the belief state is represented
in both the PL and IL cortices, with PL neurons signaling belief
in the rewarded (ISI) state and IL neurons signaling belief in the
unrewarded (ITI) state. A prediction of this hypothesis is that,
following cue onset in the 90%-rewarded task, PL neurons
show sustained activation that decreases as time within the trial
elapses (similar to the colored bars for task 2 in Figure 7B),
whereas IL neurons show ramping that increases as time
elapses (similar to the black bars for task 2 in Figure 7B). Further-
more, our model predicts that different effects should be
observed on dopamine responses in our task following PL and
IL cortex inactivation. If the PL cortex were lesioned, impairing
belief in the rewarded state, then RPEs in the 90%-rewarded
task should become larger and tend toward more positive
temporal modulation because of the model favoring reward
omission. If the IL cortex were lesioned, then RPEs should
become smaller and favor negative temporal modulation. These
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hypothetical differences between the PL and IL cortices could
also produce corresponding behavioral phenotypes. Behavioral
paradigms aiming to capture modulation by a belief state should
incentivize the animal to behave differently when the belief state
shifts. Li and Dudman (2013) trained mice on an operant task in
which rewards were delivered in a Gaussian distribution of ISIs.
In probe trials, rewards were not given. Upon lesioning the PL
cortex, potentially involved in signaling the rewarded state,
mice might wait in the reward port for a shorter duration prior
to giving up and re-initiating a trial, whereas the opposite effect
would be expected upon lesioning the IL cortex. In future work,
it would be important to characterize the activities of these
various subregions of the mPFC.

Inference based on ambiguous information is a fundamental
computation the brain must perform in natural environments (Fi-
ser et al., 2010; Pouget et al., 2013). Our findings represent an
important conceptual advance in understanding the contribu-
tions of the mPFC to reinforcement learning under conditions
of state uncertainty.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Clara Starkweather
(skaralc@gmail.com) and Naoshige Uchida (uchida@mcb.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used 12 adult male mice ranging in age from 6 to 24 months of age, heterozygous for the transgene that expresses Cre recom-
binase under the control of the DAT promoter (B6.SJL-Slc6a3tm1.1(cre)Bkmm/J, The Jackson Laboratory; B€ackman et al., 2006),
backcrossed for at least five generations with C57/BL6 mice. Animals ranged in weight from 20-25 g. 4 animals were used in
Task 1, 6 animals were used in Task 2 (2 of these control animals did not express KORD), and 2 animals were used to test KORD.
Animals were singly housed on a 12-h dark/12-h light cycle (dark from 7AM to 7PM). We trained animals on the behavioral task at
approximately the same time each day, between 10AM and 7PM. All experiments were performed in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Harvard Institutional Animal Care and Use
Committee.

METHOD DETAILS

Surgery and viral injections
We performed all surgeries under aseptic conditions with animals under isoflurane (1%–2% at 0.5-1.0L/min) anesthesia. Analgesia
(buprenorphine, 0.1mg/kg, intraperitoneal) was administered pre-operatively and at 12-h checkpoints post-operatively. We

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Anti-Tyrosine Hydroxylase Millipore RRID: AB_390204

Bacterial and Virus Strains

AAV5-EF1a-DIO-hChR2(H134R)-EYFP UNC Vector Core N/A

AAV8/CamkII-KORD-IRED UNC Vector Core N/A

Experimental Models: Organisms/Strains

Mouse: Slc6a3tm1(cre)Xz/J The Jackson Laboratory Jax #020080

Software and Algorithms

MATLAB (version 2016a) MathWorks http://www.mathworks.com

LabView (version 2013) National Instruments http://www.ni.com

MClust software (version 4.3) A. David Redish http://redishlab.neuroscience.umn.edu/

MClust/MClust.html

Other

Salvinorin B Apple Pharms N/A

Isosol (Isoflurane, USP) Vedco N/A

Ketoprofen (for analgesia) Patterson Veterinary Cat #07-803-7389

Buprenorphine Patterson Veterinary Cat #07-850-2280

Dexamethasone Patterson Veterinary Cat #07-808-8194

LRS-0473 DPSS Laser System LaserGlow Technologies Cat #R471003FX

NI-DAQ card, PCI-e6251 National Instruments Cat #781048

FT200EMTCustomPatch Cord Length: 2m End A: FC/

PC End B: 1.25 m (LC) Stainless Steel Ferrule Furcati

Thorlabs N/A (Custom)

Digital Lynx 4SX Neuralynx N/A

Sandvik Kanthal HP Reid Precision Fine Tetrode Wire Sandvik Cat #PF000591
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performed some permutation of 4 different surgeries on each mouse, summarized in the table below. To record dopaminergic neu-
rons in the VTA, we performed two surgeries that stereotactically targeted the left VTA (from bregma: 3.1mmposterior, 0.6mm lateral,
4.2mm ventral). To express ChR2 in the left VTA, we injected 500nL of adeno-associated virus (AAV, serotype 5) carrying an inverted
ChR2 (H134R) fused to the fluorescent reporter eYFP and flanked by double loxP sites (Cohen et al., 2012; Atasoy et al., 2008) into the
left VTA. We previously showed that the expression of this virus is highly selective and efficient in dopamine neurons (Cohen et al.,
2012). After 2 weeks, we performed a second surgery to implant a head plate and custom-built microdrive containing 8 tetrodes and
an optical fiber. To express KORD in the mPFC, we injected 1uL of adeno-associated virus (AAV, serotype 8) carrying KORD fused to
the fluorescent reporter mCitrine and downstream of a CaMKIIa promoter (Vardy et al., 2015). We injected "100nL in 9 different in-
jection sites, with the injection needle angled 22.5 degrees to the normal line, from a coronal view (from bregma: (1) 1.42mm anterior,
0.8mm l, 1.46mm ventral relative to injection angle; (2) 1.42mm a, 1.2mm l, 2.24mm v; (3) 1.70mm a, 0.8mm l, 1.5mm v; (4) 1.70mm a,
1.2mm l, 2.26mmv; (5) 1.98mma, 0.75mm l, 1.32mmv; (6) 1.98mma, 1mm l, 2.07mmv; (7) 2.34mma, 0.8mm l, 1.33mmv; (8) 2.68mm
a, 0.67mm l, 0.93mmv; (9) 2.96mma, 0.6mm l, 0.676mmv). This KORD injection was performed during the same surgery as the ChR2
injection surgery, if the animal was to have both surgeries. If the animal was to be implanted with tetrodes in the mPFC, we implanted
tetrodes 3 weeks later. We implanted tetrodes in the mPFC at a 30 degree angle to the normal line, from a sagittal view, in order to
sample the anterior-posterior and dorsal-ventral axes as we moved our drive (from bregma: 2.7mm anterior, 0.25mm lateral, 0.6mm
ventral relative to injection angle).

Behavioral paradigm
After 1 week of post-surgical recovery, we water-restricted mice in their cages. Weight was maintained above 85% of pre-restriction
body weight. We habituated and briefly head-restrained mice for 2-3 days before training. Odors were delivered to animals with a
custom-made olfactometer (Uchida and Mainen, 2003). Each odor was dissolved in mineral oil at 1/10 dilution. 30mL of diluted
odor was placed into glass fiber filter-paper, and then diluted with filtered air 1:20 to produce a total 1L/min flow rate. Odors included
isoamyl acetate, (+)-carvone, 1-hexanol, p-cymene, ethyl butyrate, 1-butanol, limonene, dimethoxybenzene, caproic acid, 4-hepta-
none, and eugenol. The combination of these odors differed for different animals. We automatically detected licks by measuring
breaks of an infrared beam placed in front of the water spout.
For both tasks, rewarded odor A trials consisted of 1 s odor presentation followed by a delay chosen from a Gaussian distribution

defined over 9 points ([1.2 s 1.4 s 1.6 s 1.8 s 2.0 s 2.2 s 2.4 s 2.6 s 2.8 s]; mean = 2 s; SD= 0.5 s), prior to reward delivery. For both Tasks
1 and 2, rewarded odor B and odor C trials consisted of 1 s odor presentation followed by either 1.2 s or 2.8 s delay from odor onset,
respectively, prior to reward delivery. In both tasks, odor D trials were unrewarded. In Task 1, reward was given in 100% of trials. In
Task 2, reward was given in 90% of trials. For all tasks, reward size was kept constant at 3mL. Trial type was drawn pseudorandomly
from a scrambled array of trial types, in order to keep the proportion of trial types constant between sessions. The ITI between trials
was drawn from an exponential distribution (mean = 12 s) in order to ensure a flat hazard function. Animals performed between
150-300 trials per session.

SalB injection
To inject the KORDagonist Salvinorin B (SalB), we placed 1mgSalB and 10mL dimethyl sulfoxide (DMSO - Sigma) in a 2mLEppendorf
tube. After vigorously tapping the tube and ensuring that the SalB powder settled into the DMSO, we sonicated the tube for 1 minute
(Bransonic). We removed the tube from the sonicator and vigorously tapped the tube for 5 s, and then sonicated the tube for 1 addi-
tional minute. We then added 90mL PBS into the tube, and immediately subcutaneously injected the final 100mL mixture into the
mouse. For our dopamine recording experiments, we began the recording session 15 minutes following SalB injection. We analyzed
data recorded in the 40 minutes following recording onset, as this corresponded to the length of time we confirmed neural activity to
be suppressed by KORD (Figure 2F).

Electrophysiology
We based recording techniques on previous studies (Cohen et al., 2012; Tian and Uchida, 2015; Eshel et al., 2015). We recorded
extracellularly from the VTA using a custom-built, screw-drivenMicrodrive (Sandvik, PalmCoast, Florida) containing 8 tetrodes glued
to a 200 mmoptic fiber (ThorLabs). Tetrodeswere glued to the fiber and clipped so that their tips extended 200-500 mm from the end of
the fiber. We recorded neural signals with a DigiLynx recording system (Neuralynx) and data acquisition device (PCIe-6351, National
Instruments). Broadband signals from each wire were filtered between 0.1 and 9000 Hz and recorded continuously at 32kHz. To
extract spike timing, signals were band-pass-filtered between 300 and 6000Hz and sorted offline using MClust-4.3 (A.D. Redish).
At the end of each session, the fiber and tetrodes were lowered by 75mm to record new units the next day. To be included in the data-
set, a neuron had to be well-isolated (L-ratio < 0.05) and recorded within 500mm of a light-identified dopamine neuron (see below) to
ensure that it was recorded in the VTA. We also histologically verified recording sites by creating electrolytic lesions using 10-15 s of
30 mA direct current.
To unambiguously identify dopamine neurons, we used ChR2 to observe laser-triggered spikes (Cohen et al., 2012; Lima et al.,

2009; Kvitsiani et al., 2013). The optical fiber was coupled with a diode-pumped solid-state laser with analog amplitude modulation
(Laserglow Technologies). At the beginning and end of each recording session, we delivered trains of 10 473nm light pulses, each
5ms long, at 1, 5, 10, 20, and 50Hz, with an intensity of 5-20mW/mm2 at the tip of the fiber. Spike shape was measured using a
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broadband signal (0.1-9,000Hz) sampled at 32kHz. To be included in our dataset, neurons had to fulfill 3 criteria (Cohen et al., 2012;
Tian and Uchida, 2015; Eshel et al., 2015):

1) Neurons’ spike timing must be significantly modulated by light pulses. We tested this by using the Stimulus-Associated spike
Latency Test (SALT; Kvitsiani et al., 2013). We used a significance value of p < 0.05, and a time window of 10ms after
laser onset.

2) Laser-evoked spikesmust be near-identical to spontaneous spikes. This ensured that light-evoked spikes reflect actual spikes
instead of photochemical artifacts. All light-identified dopamine neurons had correlation coefficients > 0.9.

3) Neurons must have a short latency to spike following laser pulses, and little (< 3ms) jitter in spike latency. While others have
used a latency criteria of 5ms or less (‘short latency’) (Cohen et al., 2012; Tian and Uchida, 2015; Eshel et al., 2015), we found
that the high laser intensity required to elicit this short latency spike sometimes created amismatched waveform, due to 2 neu-
rons near the same tetrode being simultaneously activated. For this reason, we often decreased the laser intensity and elicited
a spike 5-10ms (‘longer latency’) after laser onset. We separately analyzed neurons in both the ‘short latency’ and ‘longer
latency’ categories, and found qualitatively similar results in each group. Therefore, we pooled all dopamine neurons with
latencies below 10ms in our analyses.

Immunohistochemistry
After 4-8 weeks of recording, we injected mice with an overdose of ketamine/medetomidine. Mice were exsanguinated with saline
and perfused with 4% paraformaldehyde. We cut brains in 100um coronal sections on a vibrotome and immunostained with anti-
bodies to tyrosine hydroxylase (AB152, 1:1000, Millipore) in order to visualize dopamine neurons. We additionally stained brain slices
with 49,6-diamidino-2-phenylindole (DAPI, Vectashield) to visualize nuclei. We confirmed AAV expression with eYFP (ChR2) or
mCitrine (KORD) fluorescence. We examined slides to verify that the optic fiber track and electrolytic lesions were located in a region
with VTA dopamine neurons and in a region expressing AAV (Figure S2A), and to verify that the KORD expression was in the mPFC
(Figures S2B–S2F).

Computational modeling
Belief state TD Model
We simulated TD error signaling in our tasks by using a belief state TD model, similar to that proposed by Daw and colleagues (Daw
et al., 2006), as well as Rao (2010), and applied to a previous dataset utilizing Tasks 1 and 2 (Starkweather et al., 2017).

To capture the discrete dwell times in our tasks (1 s odor presentation, followed by nine discrete possible reward delivery timings at
1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, and 2.8 s after odor onset), we coded a Markov equivalent of a Semi-Markov model (Daw et al.,
2006). TheMarkov process contained 30 total hidden sub-states (Figures S7 and S8), with each sub-state corresponding to 200ms in
the Tasks. Sub-states 1-5 corresponded to the passage of time during the 1 s odor presentation; sub-states 6-14 corresponded to
the passage of time preceding the 9 possible reward delivery times (Figure 7A). Sub-state 30 corresponded to the ITI. If reward was
received at the earliest possible time (1.2 s), this would correspond to the model proceeding through sub-states 1-6, and then tran-
sitioning to sub-state 30. If reward was received at the latest possible time (2.8 s), this would correspond to the model proceeding
through sub-states 1-14, and then transitioning to sub-state 30. We included extra ISI substates 15-29 to accommodate temporal
blurring. For instance, if 2.8 s had elapsed, this would correspond to a probability distribution centered at sub-state 14, and blurred
over neighboring sub-states to an extent that depends on the degree of temporal uncertainty.

In our experiments, the hidden sub-state is known to the experimenter, but not to the animal. How should the animal’s belief over
sub-states be updated over time? The normative solution is given by Bayes’ rule:

biðt + 1ÞfpðoðtÞjiÞ
X

j

pðijjÞbjðt ! 1Þ; (Equation 1)

where biðtÞ is the posterior probability that the animal is in sub-state i at time t, pðoðtÞjiÞ is the likelihood of the observation
oðtÞ˛fcue; reward;nullg under hypothetical sub-state i, and pðijjÞ is the probability of transitioning from sub-state j to sub-state i.

In TD learning, value is defined as the expected discounted cumulative future reward (Sutton, 1988):

VðtÞ=E

"
XN

t = t

gt!trðtÞ
#
; (Equation 2)

where E½,& denotes an average over randomness in reward delivery, rðtÞ is the reward at time t, and g is a discount factor that down-
weights future rewards.

The value function estimate is modeled as a linear combination of stimulus features, which in the belief state TDmodel is the belief
state bðtÞ:

bV ðtÞ=
X

i

wibiðtÞ; (Equation 3)

e3 Neuron 98, 616–629.e1–e6, May 2, 2018



where wi is a predictive weight associated with feature i. The weights are updated according to the following gradient descent
learning rule:

Dwi =abiðtÞ dðtÞ; (Equation 4)

where a is a learning rate and dðtÞ is the RPE, computed according to:

dðtÞ= rðtÞ+g bV ðt + 1Þ ! bV ðtÞ: (Equation 5)

In the belief state TD model, it is assumed that the animal has learned a state transition distribution, encoded by matrix T (Fig-
ure S7A). We captured the dwell-time distribution in the ISI state by setting elements of T to match either the hazard function or
the inverse hazard function of receiving reward at any of the 9 time points when reward could occur. For example, the hazard
rate of receiving reward at 1.2 s would correspond to T(6,30), or the probability of transitioning from sub-state 6/30. 1 minus the
hazard rate of receiving reward at 1.2 s would correspond to T (6,7), or the probability of transitioning from sub-state 6/7. We
captured the exponential distribution of dwell-times in the ITI state by setting T (30, 30) to 64/65, and T (30,1) = 1/65. An exponential
distribution with a hazard rate (ITI_hazard) of 1/65 has an average dwell time of 65. This average ITI dwell time was proportionally
matched to the average ISI dwell time to be comparable to our task parameters. The only difference in T between Task 1 and
Task 2 was as follows (Figures S7B and S7C):
Task 1:

T (30, 30) = 1 - ITI_hazard
T (30,1) = ITI_hazard

Task 2:

T (30, 30) = 1 - ITI_hazard * 0.9
T (30,1) = ITI_hazard * 0.9

This difference in T between Task 1 and 2 captured the probability of undergoing a hidden state transition from ITI back to the ITI, in
the case of 10% omission trials.
In the belief state TD model, it is also assumed that the animal has learned a probability distribution over observations given the

current state, encoded by observation matrix O (Figure S7A). There were 3 possible observations: null, cue, and reward. The likeli-
hood of a particular observation given that the hidden state underwent a transition from i/j, was captured as follows:

O (i,j,1) = likelihood of observation of ‘null’, given i/j transition
O (i,j,2) = likelihood of observation of ‘cue’, given i/j transition
O (i,j,3) = likelihood of observation of ‘reward’, given i/j transition

In order to switch from sub-state 30 (ITI) to sub-state 1 (first state of ISI), the animal must have an observation of the cue:
O (30,1,2) = 1. In order to switch from sub-state 10 (middle of ISI) to sub-state 30 (ITI), the animal must have an observation of reward:
O (10, 30,3) = 1 The only difference in O between Task 1 and Task 2 was as follows (Figures S7B and S7C):
Task 1:

O (30, 30,1) = 1 (null observation)

Task 2:

O (30, 30,1) = 1-ITI_hazard*0.1 (null observation)
O (30, 30,2) = ITI_hazard*0.1 (cue in a small percentage of cases)

This difference inO between Task 1 and 2 captures the fact that in 10%omission trials the animal will observe a cue, but in fact be in
the hidden ITI state rather than a hidden ISI state.
Simulating temporal uncertainty in the belief state TD model
To simulate a small amount of scalar timing uncertainty, we blurred the transition matrix by a normal distribution, whose width is pro-
portional to the amount of elapsed time:

~pðtÞ= 1

ft
ffiffiffiffiffiffi
2p

p
ZN

!N

fðtÞe
!ðt!tÞ2

2f2t2 dt: (Equation 6)

We used a Weber fraction f= 0:05 (compounded over five 200ms sub-states, this scales to 0.25 per 1 s), which is similar to values
use in other animal timing work (Janssen and Shadlen, 2005; Tsunoda and Kakei, 2008). We used this value rather than compute
a Weber fraction based on our behavioral data, because our behavioral data could not predict the increase in post-reward
dopamine responses between Odor B and C and thus did not provide a clear correlate of temporal uncertainty (Figures S3J–S3L).
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We also incorporated uncertainty regarding when cue onset was detected, as the animal’s cue detection is affected by variability in the
sniff cycle. We did this by jittering the timing of observations themselves by a normal distribution with a width of 2 sub-states (400ms in
real intra-trial time).We justified this choice of width based onmeasurements onmice sniff cycles (358 ± 131 according to Shusterman
et al., 2011). For instance, a true ISI of 10 sub-states would ideally be detected as 10 null observations after cue onset, but could oc-
casionally be detected as 9 or 11 null observations. Both of these manipulations—adding scalar timing uncertainty and jittering the
observation of cue timing—allowed us to better match our model to the data for two reasons. First, these manipulations increased
the magnitude of RPEs, even when rewards were predicted. Second, reward omission responses became more smeared in time.
Both of these changes occurred because the timing of reward could no longer be perfectly predicted.
Training the belief state TD model and conducting simulations
We first trained the belief state TD model on either Task 1 or Task 2, for 500 sessions, consisting of 50 trials each. We used a
learning rate of a= 0:1 on all sessions. We used a discount factor of g = 0:93. We decreased this value from 0.98, which was
used in our previous publication (Starkweather et al., 2017), because it allowed us to better fit the Task 1 data. With g = 0.98,
the temporal modulation in the 100%-rewarded task appears much smaller than it actually was in our data (Figure 4A), because
the model would learn a value signal that did not deviate substantially from the earliest possible reward to the latest possible
reward (with very shallow discounting). However, with g = 0.93, the temporal modulation in the 100%-rewarded task better
matched our data. We added Gaussian white noise to the RPE’s generated by the simulations, by using the MATLAB function
awgn and a signal-to-noise ratio of 12.
Impairing the belief state
Our intact belief state model captured state uncertainty because the observation of ‘cue’, in Task 2, was an ambiguous indicator of
the ISI versus the ITI:

O (30, 30,2) = ITI_hazard*0.1 (cue in a small percentage of cases)
O (30, 30,1) = 1-ITI_hazard*0.1 (null observation)

We impaired the belief state by fixing O(30,30,1) to 1 and O(30,30,2) to nearly 0 (we could not make it exactly 0 because the model
would then be unable to proceed through a new trial following an omission trial). This impairment had the effect of flattening the belief
state (Figures 8 and S8E)
Impairing timing
We impaired timing by increasing theWeber fraction used to blur the transitionmatrix. The simulations shown in Figures 7I–7K used a
range of Weber fractions f½0:5 1:5& (compounded over five 200ms sub-states, this scales to [2.5 7.5] per 1 s).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
The values reported in the text and error bars are the mean ± s.e.m. unless otherwise noted. All data was analyzed and modeled with
MATLAB 2015a (MathWorks). Statistical tests were performed in MATLAB. Nonparametric tests were used where appropriate (if a
chi-square goodness of fit test indicated deviance from a normal distribution) and tests were 2-tailed. Alpha was pre-set to 0.05. The
first author was not blinded to the experimental conditions. Sample size was not predetermined, but the number of mice per group
matches similar studies using optogenetic identification of dopamine neurons in mice (Cohen et al., 2012; Tian and Uchida, 2015;
Eshel et al., 2015).

We focused our analysis on light-identified dopamine neurons. We analyzed data recorded in the 40 minutes following recording
onset, as this corresponded to the length of time we confirmed neural activity to be suppressed by KORD (Figure 2F). To measure
firing rates, PSTHs were constructed using 1ms bins. Averaged PSTHs shown in figures were smoothedwith a box filter ranging from
80ms (phasic RPEs) to 300ms (reward omission RPEs). Average pre-reward firing rates were calculated by counting the number of
spikes 0-400ms prior to reward onset. We also attempted using window sizes ranging from 180-600ms, and these produced similar
results. Average post-reward firing rates were calculated by counting the number of spikes 50-200ms after reward onset in both
Tasks 1 and 2. We calculated where the baseline-subtracted reward response on an Odor A trial rewarded at 2 s (the most abundant
trial type) is significantly elevated above zero (p < 0.05, not corrected for multiple comparisons). This window of significantly elevated
firing rates is from 50 to 200ms after reward onset. Both pre- and post-reward responses were baseline-subtracted, with baseline
taken 0-1 s prior to odor onset. Reward omission responses were calculated by counting the number of spikes 0-1000ms after
the usual reward delivery time. The number of spikes fired following free reward delivery was calculated by counting the number
of spikes 0-300ms after reward onset (this window was wider than that used for post-reward responses for predicted rewards,
because free water responses persisted for a longer length of time). Furthermore, we observed that well-trained animals would oc-
casionally ignore reward deliveries outside of odor-cued trials, sowemeasured free water responses only if we recorded four ormore
licks in the 1 s following free water delivery. Note that this was not a very high threshold to exceed (the average lick rate during reward
receipt was around 7-8 licks/s), and that lowering this threshold to two or three licks per second yielded similar results in ANOVAs and
normalized data.
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Statistics
No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous pub-
lications (Cohen et al., 2012; Tian and Uchida, 2015; Eshel et al., 2015). Data collection and analyses were not performed blind to the
conditions of the experiments. Animals were chosen at random for Tasks 1 or 2. All trial types were randomly interleaved within a
single recording session. We verified that all groups of data (including both electrophysiology and behavior) compared using
ANOVAs did not deviate significantly from a normal distribution, using a chi-square goodness of fit test. To test whether dopamine
RPEs were modulated by ISI length, we used a 2-factor ANOVA, with neuron and ISI as factor. To test whether individual neurons’
RPEs weremodulated by ISI length, we fit a line to the data (dopamine RPEs versus ISI) and reported the slope. For ANOVAs in which
Task and Drug were factors, ‘Task 1’, ‘Task 2’, and ‘drug’ had values of 1 or 0 depending on the task, and whether or not drug was
present.

DATA AND SOFTWARE AVAILABILITY

Code Availability
Code used to implement the computational modeling in this manuscript can be found at this GitHub link: https://github.com/
cstarkweather.

Data Availability
The data that support the findings of this study are available online at http://dx.doi.org/10.6080/K01J97X6 or https://crcns.org/data-
sets/brainstem/vta-1.
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