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Abstract Dopamine neurons respond to errors in predicting value-neutral sensory information.

These data, combined with causal evidence that dopamine transients support sensory-based

associative learning, suggest that the dopamine system signals a multidimensional prediction error.

Yet such complexity is not evident in the activity of individual neurons or population averages. How

then do downstream areas know what to learn in response to these signals? One possibility is that

information about content is contained in the pattern of firing across many dopamine neurons.

Consistent with this, here we show that the pattern of firing across a small group of dopamine

neurons recorded in rats signals the identity of a mis-predicted sensory event. Further, this same

information is reflected in the BOLD response elicited by sensory prediction errors in human

midbrain. These data provide evidence that ensembles of dopamine neurons provide highly specific

teaching signals, opening new possibilities for how this system might contribute to learning.

DOI: https://doi.org/10.7554/eLife.49315.001

Introduction
Midbrain dopamine neurons are widely proposed to signal value prediction errors (Mirenowicz and

Schultz, 1994). However, the same neurons also respond to errors in predicting the features of

rewarding events, even when their value remains unchanged (Howard and Kahnt, 2018;

Takahashi et al., 2017). Such sensory prediction errors would be useful for learning detailed infor-

mation about the relationships between real-world events (Gardner et al., 2018; Howard and

Kahnt, 2018; Langdon et al., 2018; Takahashi et al., 2017). Indeed, dopamine transients facilitate

learning such relationships, independent of value, when they are appropriately positioned to mimic

endogenous errors (Chang et al., 2017; Keiflin et al., 2019; Sharpe et al., 2017). Yet dopaminergic

responses to sensory prediction errors do not seem to encode the content of the mis-predicted

event, either at the level of individual neurons or summed across populations (Howard and Kahnt,

2018; Takahashi et al., 2017).

How then do downstream areas that receive this teaching signal know what to learn? The conven-

tional response is that such signals are permissive, with downstream areas controlling the content of

the resultant learning (Glimcher, 2011). However, another possibility is that information about the
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content of the learning might be contained, at least partly, in the pattern of firing across ensembles

of dopamine neurons. It is now widely accepted that information is represented in areas like cortex

and hippocampus not by individual neurons, but rather in a distributed fashion in the firing of groups

of cells (Gochin et al., 1994; Jennings et al.,

2019; Jones et al., 2007; Rich and Wallis,

2016; Rigotti et al., 2013; Schoenbaum and

Eichenbaum, 1995; Wikenheiser and Redish,

2015; Wilson and McNaughton, 1993). If this is

true for the cortex and hippocampus, then why

not for the midbrain dopamine system? Consis-

tent with this, here we show that the pattern of

firing across a small group of dopamine neurons

recorded in rats contains specific information

about the identity of a mis-predicted event. We

further show that this same content-rich signal is

evident in the BOLD response elicited by sen-

sory prediction errors in human midbrain. These

data provide the first evidence of which we are

aware that dopamine neuron ensembles gener-

ate firing patterns capable of conveying not only

the occurrence of a prediction error to down-

stream areas but also information regarding

what exactly was mis-predicted. These findings

open new possibilities for how dopaminergic

error signals might contribute to the learning of

complex associative information.

Results
To address whether dopamine neurons function

as an ensemble to represent sensory prediction

errors, we analyzed data from rats trained on a

variant of the odor-guided choice task used to

demonstrate the joint signaling of value and sen-

sory prediction errors in our prior report

(Takahashi et al., 2017) (while a limited analysis

of a subset of these data were presented in a

supplemental section of our prior report, this is

the first presentation of the full dataset and its

analysis as an ensemble). In the task variant

(Figure 1a), two fluid wells delivered either one

or three drops of discriminable but equally-pre-

ferred solutions of grape or tropical punch Kool

Aid. Rats initiated each trial with a nose-poke

into an odor port. After a brief delay, one of two

odors was presented, indicating that reward

would be available in the left or right well on

that trial. If the rat responded at the proper fluid

well, the reward was delivered. To induce pre-

diction errors to correlate with neural activity,

reward number or flavor were manipulated

across a series of four transitions between five

trial blocks in each recording session. At the first

and second transitions, rewards were omitted

and delivered unexpectedly, respectively, to

allow identification of classic reward prediction
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Figure 1. Task design and behavior during recording.

Schematic (a) illustrates the order of events in trials at

each well and the number and type of reward delivered

at each well in the five trial-blocks performed in all

recording sessions. Dashed lines indicate the omission

of drops previously delivered. Rats were highly

accurate in choosing the rewarded well during

recording (b), and accuracy was unaffected by the

flavor or number of drops at a particular well, either for

the group or for individual subjects (flavor: F1,193=1.3,

p=0.26; number: F1,193=1.0, p=0.32; interactions with

subject: F’s <= 1.0, p’s > 0.47). Rats were faster to

respond for the 3-drop rewards (c), and this effect was

again unaffected by the flavor of reward, either for the

group or for individual subjects (main effect of number:

F1,193=190, p<10
�6; main effect of flavor: F1,193=1.75,

p=0.19; flavor X subject interaction: F9,193=0.86,

p=0.56). A two-bottle preference test run at the end of

the sessions (d) also revealed no effect of flavor

(F1,9=0.17, p=0.69). Data for individual subjects is

illustrated by lines; error bars represent standard errors

across sessions for percent correct and latency and

across rats for the consumption test. Recordings were

made in ventral tegmental area (e), and dopaminergic

neurons (n = 30) were identified by waveform cluster

analysis (f). **p<0.01. g = grape, tp = tropical punch.

DOI: https://doi.org/10.7554/eLife.49315.002
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errors. At the third and fourth transitions, reward number remained constant, but flavor was

changed. At one transition, the flavor of all three drops were changed to replicate what was done

previously, while at the other, only one drop of the three changed, leaving the others unchanged to

provide a control condition to distinguish signaling of flavor errors from signaling of flavor itself.

Neural activity in VTA was recorded using drivable bundles of microelectrodes. During recording,

the rats were highly accurate, responding correctly on ~95% of the forced-choice trials, indicating

that they had learned the meaning of the odor cues, independent of reward number or flavor

(Figure 1b). The rats also exhibited an appreciation of the reward number, responding significantly

faster when the 3-drop reward was at stake, an effect that was also independent of the reward flavor

(Figure 1c). Indeed, choice latency was similar across the two flavors, even in the behavior of individ-

ual rats, suggesting that they valued the two flavors similarly in the task (Figure 1c, lines). This is con-

sistent with preference testing conducted separately after recording, which indicated that

individually and as a group the rats had no significant preference between the two flavors of Kool-

Aid (Figure 1d).

Using waveform characteristics and firing in response to reward, as in previous papers (see

Materials and methods), we identified 30 putative dopaminergic neurons recorded during these ses-

sions (Figure 1e and f and Table 1). As previously reported (Takahashi et al., 2017 in Supplemental

Figure 2), the firing of these neurons exhibited classic reward prediction error correlates, decreasing

in response to reward omission at the first transition and increasing in response to unexpected

reward at the second transition, changes that were inversely correlated across neurons (Figure 2a–

c). This is as expected based on numerous prior reports that individual dopamine neurons signal

bidirectional errors in the prediction of reward, in different species, tasks, and labs (Schultz, 2016).

In addition, however, the same neurons also responded with elevated firing across transitions in

which there was a change in reward flavor, combining both the third transition, presented previously

(Takahashi et al., 2017 in Supplemental Figure 2), and the more selective fourth transition, included

here. These changes in firing occurred even though the rats’ behavior – both in the task and in sepa-

rate preference testing (Figure 1b–d) – indicated no difference in the subjective value of the two fla-

vors, even for individual subjects. The dopamine neurons increased firing to changes in flavor, and

the size of these increases were positively correlated between the two flavor errors (Figure 2d and

e). Further, individual neurons showed very little difference between initial firing rates in response to

the two different flavor errors (Figure 2f). Thus, the activity of these neurons, individually or on aver-

age, signaled that something unexpected had happened, but it did not distinguish details of that

event (e.g. if grape was switched for tropical punch or vice versa).

To test whether such information might be available in the pattern of firing across a group or

ensemble of dopamine neurons, we aligned activity from all neurons on like trials from each block,

and then used a ‘training set’ of trials from each flavor-switch block to identify the ensemble pattern

characteristic of the neural response to each flavor change. Individual trials left out of this training

set were then matched to the two patterns in an attempt to decode the flavor that had been deliv-

ered. To assess the evolution of information coding within and across trials, we used a sliding time

window aligned to events in a trial and a sliding window of trials that progressed across each block.

The results indicated that the pattern of activity across the ensemble did contain information about

Table 1. Numbers of putative dopamine neurons recorded in each subject (subjects without

dopamine neurons are not listed).

Rat ID # Dopamine Neurons

AA01 6

AA05 9

AA06 1

AA07 4

AA09 3

AA10 1

AA12 6

DOI: https://doi.org/10.7554/eLife.49315.004
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flavor in both of the flavor-change trial blocks (Figure 3a and b). Critically, however, accurate decod-

ing of flavor was observed only for the drops where flavor had changed and then only on trials early

in the blocks; accuracy was only seen in epochs immediately after the new drop was delivered and

fell to chance later in the block, consistent with representation of the error in predicting the flavor –

either the omission of the expected flavor or the delivery of the new flavor - and not representation

of flavor itself.

This impression was confirmed when we formally compared decoding accuracy in time windows

surrounding drops where the flavor had changed versus windows surrounding drops where the fla-

vor had not changed. Accurate decoding was only observed when the drop had changed flavor, and

then only in the first 10 trials of these blocks; decoding was best in the earliest trials immediately

after the transition, fell to chance in the last 10 trials, and flavors from the early trials did not misclas-

sify with the same flavors in the later trials (Figure 3c and d). Separate analyses indicated that flavor

could be decoded from neural activity in these early trials as early as 175 ms after fluid delivery (see

Materials and methods for details of analysis). The decline in decoding accuracy across the block

occurred without any gross changes in baseline firing rates (Figure 3d). Thus, the dopamine neuron

ensemble was representing not the flavor itself, but flavor when it had been mis-predicted.

Finally, as an additional test of this idea, we applied a similar approach to examine encoding of

the information content of sensory prediction error signals previously reported in fMRI data in the

human midbrain (Howard and Kahnt, 2018) (while these data were analyzed for sensory errors in

our prior report, this is the first presentation of an MVPA analysis of these data to attempt to distin-

guish the content of the error signal). These data were collected from subjects performing a task in

which they learned that abstract visual cues predicted the odors of different sweet (SW) and savory
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Figure 2. Dopamine neurons do not distinguish the identity of sensory prediction errors. Plots show firing rates of

dopamine neurons in response to transitions in number of reward drops (omission or delivery; a–c) and flavor

(grape or tropical punch; d–f). Changes in firing rate in response to omission (negative errors) and delivery

(positive errors) were readily distinguishable (a; t29 = 4.0, p<10�3), inversely correlated across neurons (b), and

firing rates were markedly different after the transition (c; t29 = 5.2, p<10�4). The same neurons exhibited

increased firing rates in response to transitions in the expected flavor of reward (d); t29 = 2.1, p<0.05), but the

increases to the two flavors were indistinguishable (t29 = �1.95, ns), positively correlated across neurons (e), and

firing rates after the transition also did not distinguish the two flavor errors (f; t29 = 0.13, ns).

DOI: https://doi.org/10.7554/eLife.49315.003
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(SV) food odor rewards (Figure 4a). The rewarding odors were matched in value, as reflected in

both pleasantness ratings acquired before the learning task (Figure 4b) and choices made during

the task (Figure 4c). During the fMRI scanning session, the odors associated with the visual cues

were switched across blocks of trials (i.e., SWfiSV and SVfiSW), thereby inducing value-neutral sen-

sory prediction errors similar to those induced by the flavor switches in the rat task described above.

Previously it was reported that these switches evoked prediction error-like responses in the BOLD

signal in the midbrain (Howard and Kahnt, 2018; Suarez et al., 2019). Here we utilized a multivoxel

pattern analysis (MVPA) to test whether distributed fMRI activity patterns in this region contained

information about the content of the error immediately after a switch and then later after learning.

This analysis, which is conceptually similar to that applied to the single unit activity described

above, found that it was possible to decode the identity (SW or SV) of the unexpected odor from

the midbrain activity at the time the error was experienced (Figure 4d). Importantly, decoding was

significantly above chance only on the trials in which the food odors were mis-predicted but at
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Figure 3. Dopamine ensembles distinguish the identity of sensory prediction errors. Heat plots show decoding of

flavor by dopamine neuron ensembles, using data from a sliding window during trials after all three drops

changed flavor (a) or when only the second drop changed flavor (b). Red arrows indicate the time of the new flavor

drop delivery. In each case, decoding was significantly above chance at the changed drops, but only early in the

block (dotted lines on scale bars show one-tailed 95% confidence interval upper bounds for chance, by

permutation tests). This effect was also evident when we collapsed data from the two blocks and compared

decoding in epochs capturing firing to the drops where flavor changed versus control epochs capturing firing

where flavors had not changed (c); flavor could be decoded accurately by dopamine ensembles only immediately

after changes in flavor (patterns in confusion matrices were significantly different at p<10�4 by permutation test). A

more detailed analysis using sliding sets of 10-trials (d) showed the decay of flavor decoding as the block

progressed (upper plot, solid line), while control decoding of flavor (dotted line) and baseline firing rates in both

conditions (lower plot) were unchanged across the block. Thick line in the upper plot shows significance compared

to chance (p<0.05 for at least five significant trial sets by permutation test). Thin dotted line in upper plot shows

chance decoding level.
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chance on subsequent trials when food odors were delivered as expected (Figure 4d). Follow-up

examination of the decoder performance confirmed that decoding was only above chance on the

error trial, and that the decoder was not biased towards prediction of a particular odor (Figure 4e),

consistent with representation of the mis-predicted food odors and not the food odors themselves.

Discussion
The results presented here show that, in both rats and humans, putative dopaminergic sensory pre-

diction error responses in the midbrain contain specific information about the features of the mis-

predicted event itself, appropriate for instructing or updating representations in downstream brain

regions. These results are consistent with the proposal that the midbrain dopamine system signals a

multidimensional prediction error, able to reflect a failure to predict information about an unex-

pected event beyond and even orthogonal to value (Gardner et al., 2018; Howard and Kahnt,

2018; Langdon et al., 2018; Takahashi et al., 2017). Importantly this proposal is not necessarily

Figure 4. Human midbrain distinguishes the identity of sensory prediction errors. (a) The reversal learning task

involved binary choices between two visual cues to receive either a high or low concentration of one of two food

odor rewards (one sweet [SW] and one savory [SV]). The associations were covertly changed throughout the task to

induce either sensory prediction errors (e.g. transition from block 1 to block 2) or value prediction errors (e.g.

transition from block 2 to block 3). (b) Sweet and savory food odors were matched for pleasantness within each

odor concentration (SW high vs. SV high: t22 = 0.18, p=0.86; SW low vs. SV low: t22 = 1.16, p=0.26). Error bars

depict within-subject s.e.m. (c) On free choice trials, the cue associated with the high-concentration odor was

chosen significantly above chance (50%) for both odor identities (SW: t22 = 4.03, p=2.83�10–4; SV: t22 = 4.20,

p=1.83�10�4) and these choice proportions did not differ significantly from each other (t22 = 0.71, p=0.48). Error

bars depict within-subject s.e.m. (d) Decoding accuracy of SW vs. SV was significantly above chance on the error

trial of flavor transitions (black line) (t22 = 3.22, p=0.004), but not for subsequent trials or the trial preceding error

trials (p’s > 0.12). Decoding accuracy of SW vs. SV was at chance for the error trial on value transitions (gray line),

as well as subsequent trials, and the trial preceding the value transitions (p’s > 0.15). Error bars depict within-

subject s.e.m. (e) Confusion matrices show the decoding accuracy for individual conditions within the decoding

analyses (there was a trend that patterns in confusion matrices were different at p=0.08 by permutation test).

Within the top left quadrant of the flavor transition matrix (i.e. training and testing the classifier on the error trial of

flavor transitions), across all subjects and iterations, accuracy was at 63.3% for SW predictions and 63.8% for SV

predictions. All other comparisons for flavor transitions and all comparisons for value transitions were at chance.

DOI: https://doi.org/10.7554/eLife.49315.006
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contrary to current canon; it can account for value errors as a special example of a more general

function (Gardner et al., 2018), one readily apparent in the firing of individual neurons perhaps due

to the priority given to such information when it is the goal of the experimental subject. However,

this proposal also explains in a relatively straightforward way why dopamine neurons are often phasi-

cally active in settings where value errors were not anticipated a priori, at least by the experimenters,

such as when novel cues or even information is first presented (Bromberg-Martin and Hikosaka,

2009; Horvitz, 2000; Horvitz et al., 1997; Kakade and Dayan, 2002), or even in response to viola-

tions in beliefs or auditory expectations (Gläscher et al., 2010; Gold et al., 2019; Iglesias et al.,

2013; Schwartenbeck et al., 2016). That the pattern of firing across a relatively small population of

dopamine neurons can provide details regarding the mis-predicted event endows the dopamine sys-

tem with the ability to serve as an instructive ‘teaching’ signal outside the dimension of value.

One interesting question raised by the prior and current results is whether and how such a system

would distinguish the omission of an expected sensory event from its unexpected appearance. The

designs of the two experiments analyzed here do not allow us to distinguish representation of these

two types of errors. We would speculate that both should be encoded in the neural activity of the

system, including in the current data. Thus, the decoding demonstrated here would reflect the com-

bination of these two changes. Of course, the actual presence of something is likely to support a

much stronger signal than its absence, so in practice, it may be difficult or require substantially

higher statistical power to see a representation of an omitted event, particularly one that involves

subtle features orthogonal to value.

Another interesting question raised by these results is whether downstream areas use the infor-

mation in the signal to support learning. While the current data is only correlative, it is notable that

the information is only there when it is relevant to learning at the start of the blocks, so it is appropri-

ately positioned to be of use to drive learning in downstream structures. And of course, a causal role

for the signal shown here is in line with recent demonstrations that dopamine transients are neces-

sary and sufficient for learning that cannot be easily accounted for by classic reinforcement learning

mechanisms (Chang et al., 2017; Keiflin et al., 2019; Sharpe et al., 2017). Keiflin et al. (2019) is

particularly relevant in this regard, since in this study, conditioned responding to a cue unblocked by

artificial activation of VTA dopamine neurons at the time of an expected reward was shown to be

sensitive to subsequent devaluation of that reward. Sensitivity to devaluation indicates that the artifi-

cial dopamine transients induced the formation of an association between the conditioned stimulus

and the sensory properties (i.e. the flavor) of the reward, precisely the type of learning the signal

here would be proposed to support (Gardner et al., 2018).

How the artificial activation of neurons engaged in representing information through a pattern of

activity can cause normal learning in studies such as those cited above is another outstanding ques-

tion raised by the current data. One possible explanation for this may be found in the appearance of

external events at the time of stimulation in these studies. Even though these events are largely

expected in the blocking designs used in Sharpe et al. (2017); Keiflin et al. (2019), input reflecting

their appearance still impinges on the dopamine neuron population at the proper time to support

learning. By randomly injecting current across a subset of this population, the artificial stimulation

may recover a ghost of the error pattern that would be caused by these events if they were unex-

pected – a pattern close enough to cause learning that seems normal, given the very simple behav-

ioral readouts used in these studies.

If dopamine neurons do provide information about errors beyond the single dimension of value,

this brings up questions about the limits on this and how this system deals with the vastness of the

possible error space relative to the number of dopamine neurons. There are approximately 40,000

dopamine neurons in the VTA of rats, and another 25,000 in SN (Nair-Roberts et al., 2008). In

humans, the total number is about 300,000 (Hirsch et al., 1988). If each neuron provides only a sin-

gle bit of information, the capacity of just the VTA in rats is still 2̂40,000. Of course, there is surely

substantial redundancy across neurons, yet even if we reduce the cell number to 1000 real bits of

information, we still end up with 1.0715e+301 potential patterns. This is a huge number. And of

course, information represented in spiking may be augmented (or attenuated) by factors such as co-

release of other neurotransmitters downstream and the location (region, cell type, dendritic com-

partments) and type (receptors, second messenger cascades, interactions capable of modulating) of

interactions with downstream regions, etc. Even if all this combines to yield only 20 or 30 unique

coded dimensions, we still end up with a billion possible patterns of output. This number seems big
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enough, with assistance from other systems (we do not propose this to be the only learning signal)

and with contextual modulation of the processing (i.e. some factors might be given priority or not,

depending on situation, by modulating inputs), to deal with much of the problem of dimensionality.

Finally it is worth noting that the demonstration here mirrors advances in the computational field,

where distributed, multidimensional error signaling is a key component of more advanced algo-

rithms, such as distributed reinforcement learning and successor representation (Dabney et al.,

2017; Dayan, 1993). In both, the error driving learning is not unitary but rather is represented as a

vector. Distributed reinforcement learning has recently been suggested as an explanation for the

heterogeneity of the responses of individual dopamine neurons to errors in predicting reward value

(Kurth-Nelson et al., 2019). The current results extend this to show for the first time that an assem-

bly of dopamine neurons can function to represent the content of errors, even outside the realm of

value. That the same information available in the pattern of activity is not readily apparent in the

activity of individual neurons is in accord with ideas guiding behavioral neurophysiology in other

areas (Yuste, 2015), and suggests it is time to consider the functions of the dopamine system across

rather than within individual neurons.

Materials and methods

Experiment 1
Subjects
Ten male Long-Evans rats (Charles River Labs, Wilmington, MA), aged approximately 3 months at

the start of the experiment and single-housed once the experiment began, were used in this study.

Rats were tested at the NIDA-IRP in accordance with NIH guidelines determined by the Animal Care

and Use Committee.

Surgical procedures
All surgical procedures adhered to guidelines for aseptic technique. For electrode implantation, a

drivable bundle of eight 25 um diameter NiCr/Formvar wires (A-M Systems, Sequim, WA) chronically

implanted dorsal to VTA in the left or right hemisphere at 5.2 mm posterior to bregma, 0.7 mm lat-

erally, and 7.5 mm ventral to the brain surface at an angle of 5˚ toward the midline from vertical.

Wires were cut with surgical scissors to extend ~2.0 mm beyond the cannula and electroplated with

platinum (H2PtCl6, Aldrich, Milwaukee, WI) to an impedance of 800–1000 kOhms. Cephalexin (15

mg/kg p.o.) was administered twice daily for two weeks post-operatively.

Histology
All rats were perfused with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde

(Santa Cruz Biotechnology Inc, CA). Brains were cut in 40 mm sections and stained with thionin and

then examined to determine electrode placement.

Behavioral task
Training and recording was conducted in aluminum chambers approximately 18’ on each side with

sloping walls narrowing to an area of 12’ x 12’ at the bottom. A central odor port consisting of a

small hemicylinder accessible by nose-poke was located about 2 cm above two fluid wells, and

higher up on the same wall were mounted two lights. The odor port was connected to an airflow

dilution olfactometer to allow the rapid delivery of olfactory cues, which were chosen from com-

pounds obtained from International Flavors and Fragrances (New York, NY). Trial availability was sig-

naled by illumination of the panel lights inside the box. When these lights were on, a nosepoke into

the odor port resulted in delivery of the odor cue for 500 ms. One of two different odors was deliv-

ered to the port on each trial in a pseudorandom order such that in each 50 trials there were 25 of

each, and the same odor was never presented for more than three consecutive trials. At odor offset,

the rat had 3 s to make a response at one of the two fluid wells. One odor indicated that reward

would be available at the left well, while the other indicated it would be available at the right well;

errors resulted in no reward delivery and the lights turning off (errors occurred on about 5% of trials

across all recording sessions; see Figure 1b). On correct trials, lights turned off once rats had
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finished licking at the well; the intertrial interval was ~2–3 s before the light turned on once again.

Once the rats were shaped to respond accurately (at least ~75%) on both odors, we introduced trial-

blocks in which the number and flavor of reward drops (one or three drops of Grape or Tropical

Punch Kool-Aid solution) were constant within a block but changed between blocks according to the

schedule summarized in Figure 1a. The drop volume was ~0.05 ml and multiple drops were deliv-

ered 1000 ms apart. For each recording session, wells were randomly designated such that in the

first trial-block, correct responses at one well resulted in delivery of 3 drops of grape solution while

correct responses at the other well resulted in 3 drops of tropical punch solution. In the second trial-

block, the number of drops available on both sides changed from three to one, with the flavor

remaining the same. In the third trial-block, the number of drops available on both sides changed

from one back to three, again with the flavor remaining the same. On the fourth trial-block, the fla-

vor of all three drops on each side were switched to the other flavor. Finally, in the fifth trial-block,

the flavor of the second drop on each side was switched to the opposite flavor, with the other two

on both sides remaining the same. Thus, in each session, there was one number downshift transition

(drop omission), one number upshift transition (new drop deliveries), one flavor transition across all

three drops, and one flavor transition occurring at only the second drop. In each of the two flavor

transitions, one side went from grape to tropical punch, while the other did the opposite.

Flavor preference testing
After the completion of all recording sessions, we conducted two-bottle consumption tests of the

Kool-Aid solutions two times over two days for nine of the ten rats. These tests were run in a housing

cage different from home-cages and experimental chambers. Tests were 2 min in duration and the

location of the bottles was swapped roughly every 20 s to equate time on each side. The flavor and

the initial location of the bottles were randomized in rats and swapped between the 1st and 2nd

tests.

Single-unit recording
Wires were screened for activity daily; if no isolable single-unit activity was detected, the rat was

removed and the electrode assembly was advanced 40 or 80 mm. Otherwise active wires were

selected to be recorded, a session was conducted, and the electrode was advanced at the end of

the session. Neural activity was recorded using Plexon Multichannel Acquisition Processor systems

(Dallas, TX). Signals from the electrode wires were amplified 20X by an op-amp headstage (Plexon

Inc, HST/8o50-G20-GR), located on the electrode array. Immediately outside the training chamber,

the signals were passed through a differential pre-amplifier (Plexon Inc, PBX2/16sp-r-G50/16fp-

G50), where the single unit signals were amplified 50X and filtered at 150–9000 Hz. The single unit

signals were then sent to the Multichannel Acquisition Processor box, where they were further fil-

tered at 250–8000 Hz, digitized at 40 kHz and amplified at 1-32X. Waveforms (>2.5:1 signal-to-noise)

were extracted from active channels and recorded to disk by an associated workstation.

Measures and statistical analyses
Average percent correct and choice latency (defined as the time from the end of odor delivery to

withdrawal from the odor port on trials resulting in a correct response) were calculated by trial-type

(3-drop, 1-drop, grape, tropical punch) across all trials. The flavor of the reward was defined as that

of the first drop.

Units were sorted using Offline Sorter software from Plexon Inc (Dallas, TX). Sorted files were

then processed and analyzed in Matlab (Natick, MA). Dopamine neurons were identified via a wave-

form analysis. Briefly, a cluster analysis was performed based on the half-time of the spike duration

and the ratio comparing the amplitude of the first positive and negative waveform segments. The

center and variance of each cluster was computed without data from the neuron of interest, and

then that neuron was assigned to a cluster if it was within 3 s.d. of the cluster’s center. Neurons that

met this criterion for more than one cluster were not classified. This process was repeated for each

neuron. Neurons were considered putatively dopaminergic if they were in the wide waveform cluster

and were also reward-responsive, defined as those that were significant at p<0.05 by t-test compar-

ing baseline firing rate with the first 500 ms of reward delivery across all rewarded trials. This wave-

form analysis is based on criteria similar to that typically used to identity dopamine neurons in
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primate studies (Bromberg-Martin et al., 2010; Fiorillo et al., 2008; Hollerman and Schultz, 1998;

Kobayashi and Schultz, 2008; Matsumoto and Hikosaka, 2009; Mirenowicz and Schultz, 1994;

Morris et al., 2006; Waelti et al., 2001) and isolates neurons in rat VTA whose firing is sensitive to

intravenous infusion of apomorphine or quinpirole (Jo et al., 2013; Roesch et al., 2007). Neurons

identified in this manner are also selectively eliminated by expression of a Casp3 neurotoxin in TH+

neurons in VTA (by infusion of AAV1-Flex-TaCasp3-TEVp into TH-Cre transgenic rats;

Takahashi et al., 2017).

To calculate difference scores and firing rates for scatter plots, firing rates were aligned to drop

delivery and baseline-subtracted using the 500 ms immediately before the light-on at the start of the

trial. To capture the peak reward-responsive activity, firing rates from 200 ms to 700 ms after the

timestamp for the relevant drop delivery or drop omission were calculated. For number errors, the

epochs were aligned to the first omitted drop (at the time the second drop would normally be deliv-

ered) in block 2, and the first newly delivered drop (second drop) in block 3. For flavor errors, the

epochs were aligned to the first new flavor drop in both blocks 4 and 5. Difference scores were cal-

culated for number transitions as the difference between the average firing rate on the first three

rewarded trials in the relevant block and the last five rewarded trials in the same block and direction,

and for flavor transitions as the difference between the average firing rate in the first three rewarded

trials in the relevant block and the last five trials in the previous block in the same direction.

For the decoding analyses, we used Matlab code from the Neural Decoding Toolbox (www.read-

out.info) (Meyers, 2013) to construct pseudoensembles consisting of all 30 putative dopamine neu-

rons as described below. Decoding using pseudoensembles has been found to reveal the

information held by the activity of populations of neurons in well-learned tasks such as the one we

used here as effectively as analyses of real-time simultaneously recorded ensembles (Rigotti et al.,

2013; Schoenbaum and Eichenbaum, 1995). The spike-trains of the 30 neurons were aligned to var-

ious trial events (light-on, odor delivery, odor port withdrawal, reward delivery, and light-off),

concatenated according to the average time between these events, and then binned into sliding 900

ms bins across the resulting spike-trains. All the correct trials from blocks 4 and 5 were labeled

according to the flavor delivered on that trial, with trials from block five labeled according to the fla-

vor of the second drop (the changed drop). The first ten trials in each block for each flavor were

then taken from blocks 4 and 5, resulting in 40 total trials for each neuron. This selection resulted in

flavor being fully crossed with side (10 trials from each flavor being left-well rewarded and 10 being

right-well rewarded). The trials were then randomly divided into 18-20 splits, in each of which there

was one test trial of each flavor for each neuron and the remaining 17-19 training trials of each flavor

for each neuron. For each split, the flavor of each test trial was classified according to which training

set had the highest correlation coefficient with it across the 30 neurons. This random split and test

procedure was then repeated 500 times for every epoch to yield the average 1–0 accuracy of the

classification at that epoch. This entire procedure was then repeated for sliding sets of 10 trials

across the blocks (i.e. trials 1–10 of each flavor in each block, trials 2–11 of each flavor in each block,

etc., ending with the last 10 trials of each flavor in each block). The 1–0 accuracy was then plotted

separately for test trials taken from block 4 and block 5. The one-tailed 95% confidence interval for

chance for the first sliding set of trials was calculated by shuffling the flavor labels 100 times and per-

forming the entire analysis on each resulting dataset.

The decoding analysis shown in Figure 3c was similar to that described above, except that only

the 900 ms epoch beginning 100 ms after the first new flavor drop was used, test data from blocks 4

and 5 were included together, and the first ten and last ten trials were labeled separately and both

included in the same analysis. The resulting classification accuracy was compared with a control clas-

sification of flavor in which the identical procedure was followed, except that data from the first

drop of block three and the first drop of block five were used. These drops were selected because

flavor was unchanged at those drops compared to the previous blocks, because they were part of 3-

drop sequences just as in the experimental dataset, and because flavor was crossed with direction

just as in the flavor transition analysis. The patterns in the flavor transition vs. flavor unchanged con-

fusion matrices were compared by permutation test in which the flavor labels were shuffled 100

times for each analysis and 100,000 comparisons between the resulting confusion matrices were

used to construct a distribution of comparisons. We then calculated the probability that the actual

pattern of the two confusion matrices would be observed by chance. That is, we calculated the

chance that the differences between flavor transition vs. flavor unchanged in grape early and tropical
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punch early would be as great as they were in the real data, while the differences in grape late and

tropical punch late would be as small as they were in the real data.

The decoding analysis shown in Figure 3d was similar to that described above, except that the

decay of decoding accuracy across the block was tested by using a sliding set of trials for both the

flavor transition and flavor unchanged analyses. Each curve was then compared to chance by permu-

tation tests with 100 shuffles of the flavor labels each. The accuracy in the unshuffled data was con-

sidered significantly greater than chance when it was in the top 5% of the shuffle distribution for five

consecutive sliding sets of trials. Average baseline firing rate on the trial-sets included in each of the

decoding algorithms was also calculated and shown on Figure 3d.

We tested the latency of flavor decoding in the first ten trials of blocks 4 and 5 combined by

advancing a 200 ms sliding epoch from the time of new flavor drop delivery until significance (by

permutation test, p<0.05) was reached and maintained for at least five consecutive bins. We identi-

fied the latency as the end of the first significant epoch.

Experiment 2
Subjects
Twenty three human participants (nine male, ages 19–34, mean ± SD = 25.5±4.1 years) with no his-

tory of psychiatric illness gave informed written consent to participate in this study. The study proto-

col was approved by the Northwestern University Institutional Review Board.

Odor stimuli and presentation
Eight food odors, including four sweet (strawberry, caramel, cupcake, gingerbread) and four savory

(potato chips, pot roast, sautéed onions, garlic), were provided by International Flavors and Fragran-

ces (New York, NY). For all experimental tasks, odors were delivered directly to participants’ noses

using a custom-built computer-controlled olfactometer.

Odor selection and task familiarization
In an initial behavioral testing session, hungry participants (fasted for at least 6 hr) first provided

pleasantness ratings of the eight food odors. Based on these ratings, one sweet odor and one savory

odor were chosen such that they were matched as closely as possible in pleasantness. Next, we

acquired pleasantness ratings for the two selected odors across a range of odor concentrations,

diluted to varying degrees with odorless air. Based on these ratings, we selected two concentrations

for each odor, such that the two low-concentration odors had the same pleasantness and the two

high-concentration odors had the same pleasantness.

Participants next completed 84 trials of the instrumental reversal learning task they would eventu-

ally complete in the fMRI scanner. For this task, two abstract visual symbols were randomly chosen

to serve as conditioned stimuli (CS) throughout the rest of the experiment. Each trial started with

either one of the two CS’s (indicating it was a forced choice trial) or a question mark (indicating it

was a free choice trial) presented for 4 s. Both CS’s were then presented on either side of a center

crosshair (side fully randomized and counterbalanced) for 1.5 s, during which time participants were

instructed to choose via left or right mouse click the CS that appeared alone in the preceding screen

(in the case of a forced choice trial), or whichever CS they preferred (in the case of a free choice

trial). If no response was made within 1.5 s, ‘TOO SLOW’ appeared on the screen and the next trial

was initiated after a variable delay. If a response was made, the odor currently paired with the

selected CS was delivered after a 2 s delay. Odor delivery, lasting 3 s, was indicated by changing

the color of the center crosshair to blue, informing participants to sniff. Participants then rated either

the pleasantness or identity of the received odor (rating type randomized), followed by a 0–2 s inter-

trial interval.

Across the 84 trials, the choice task was covertly subdivided into 8 blocks of trials delineated by

the specific CS-US associations predetermined for that block. Each block consisted of either 9 or 12

trials, and the length of blocks across the session was pseudorandomized. Within a given block, one

of the CS’s was paired deterministically with the high concentration of one odor identity (e.g., sweet

high: SWH), while the other CS was paired deterministically with the low concentration of the same

odor identity (e.g., sweet low: SWL). After each block, the CS-US associations were changed without

warning, and new blocks always began with two forced choice trials (one for each CS). In the case of
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flavor reversals, the flavor of the US was changed for both CS’s while leaving CS-value associations

the same. In the case of reward value reversals, the CS-value association was swapped between the

two CS’s, while leaving flavor unchanged. Reversals alternated between flavor and value, and there

were seven total reversals across the 84-trial task.

Choice task during fMRI scanning
The fMRI scanning session was conducted within ~10 days (mean ± SD = 10.0±4.4 days) of the initial

behavioral session. During scanning, hungry participants (fasted for at least 6 hr) completed 3 runs

of the 84-trial reversal learning task described above. Each run lasted ~21 min, and the sequence of

alternating flavor and value reversals was counterbalanced across subjects.

fMRI data acquisition
MRI data were acquired on a Siemens 3T PRISMA system equipped with a 64-channel head-neck

coil. Echo-Planar Imaging (EPI) volumes were acquired with a parallel imaging sequence with the fol-

lowing parameters: repetition time, 2 s; echo time, 22 ms; flip angle, 90˚; multi-band acceleration

factor, 2; slice thickness, 2 mm; no gap; number of slices, 58; interleaved slice acquisition order;

matrix size, 104 � 96 voxels; field of view 208 mm x 192 mm. The functional scanning window was

tilted ~30˚ from axial to minimize susceptibility artifacts in OFC (Weiskopf et al., 2006). Each fMRI

run consisted of 640 EPI volumes covering all but the dorsal portion of the parietal lobes. To aid in

co-registration and normalization of the functional scans, we also acquired 10 EPI volumes for each

participant covering the entire brain, with the same parameters as described above except 95 slices

and a repetition time of 5.25 s. A 1 mm isotropic T1-weighted structural scan was also acquired for

each participant. This image was used for spatial normalization.

fMRI data preprocessing
All image preprocessing and general linear modeling was done using SPM12 software (www.fil.ion.

ucl.ac.uk/spm/). To correct for head motion during scanning, for each subject all functional EPI

images across the 3 fMRI runs were aligned to the first acquired image. The motion-corrected

images were smoothed with a Gaussian kernel at native scan resolution (2 � 2�2 mm) to reduce

noise but retain potential information content (Gardumi et al., 2016). For reverse normalization of

midbrain regions of interest to participant-specific native space, each participant’s T1-scan was nor-

malized to Montreal Neurological Institute (MNI) space using the 6-tissue probability map provided

by SPM12. The inverse deformation field resulting from this normalization step was then applied for

each participant to a region of interest in MNI space defined by spheres of 4-voxel radius centering

on the two midbrain coordinates reported to show a significant univariate response to flavor predic-

tion errors (left: x=-16, y=-14, z=-12; right: x = 6, y=-14, z=-14) (Howard and Kahnt, 2018).

General linear modeling and MVPA analyses
For the decoding analysis, we constructed independent subject-level event-related general linear

models (GLMs) for each fMRI run using finite impulse response (FIR) functions specified over 12 time

bins time-locked to the onset of each trial. Nuisance regressors included: normalized respiratory

activity traces (measured by MR-safe breathing belts affixed around the torso); the six realignment

parameters calculated for each scanned image during motion-correction; the derivative, square, and

square of the derivative of each realignment regressor; the absolute signal difference between even

and odd slices, and the variance across slices, in each functional volume; additional regressors as

needed to censor individual volumes in which particularly strong head motion occurred. Odor onsets

corresponding to 13 conditions were specified in each GLM: SVfiSW reversals, SWfiSV reversals,

SW and SV 1, 2, 3, and four trials after reversals, SW and SV on the trial immediately preceding

reversals, and all other trials. The resulting parameter estimates within a region of interest (ROI)

defined by the intersection of an un-normalized anatomical mask of the midbrain and the un-normal-

ized spherical mask described above were extracted for each subject, fMRI run, and condition at the

time bin corresponding most closely to odor delivery given hemodynamic lag. Prior to decoding,

voxels within each subject’s midbrain ROI were sorted according to the difference in responses to

flavor transitions on the error trial (combined across SVfiSW and SWfiSV) and responses on the trial

preceding error trials (combined across SW and SV).
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The resulting sorted parameter estimates were then submitted to pairwise linear support vector

machine decoding analyses using the libsvm implementation (Chang and Lin, 2011). Each pairwise

analysis corresponded to the SW and SV conditions at a given trial point (i.e., error trial, error trial

+1, error trial +2, etc.), and was conducted using a nested cross-validation approach in which we first

performed leave-one-subject-out cross-validation in increasing numbers of voxels within the ROI to

determine the number of voxels that most effectively decodes reward flavor in a ‘training set’ of sub-

jects. Leave-one-run-out cross-validated decoding of flavor in the left out subject was then con-

ducted in the number of voxels giving maximal decoding accuracy from the training set of subjects.

This process was repeated for each subject, resulting in an independent decoding accuracy value

calculated for each subject and decoding pair.

An identical analysis was conducted for value transitions (i.e., flavor unchanged), in which GLM’s

were specified using the same condition types time locked to these type of reversals: SW and SV at

the value error trial, SW and SV at 1, 2, 3, and four trials after value reversal and immediately before

value reversal, and all other trials. We then implemented the same nested cross-validation method

to generate decoding accuracies for pairwise tests at each trial point.

The patterns in the flavor transition vs. flavor unchanged confusion matrices were compared by

permutation test. For each analysis and subject we shuffled the condition labels (first sweet, first

savory, last sweet, last savory, within each run) 100 times. For each of these shuffled permutations,

we conducted the decoding analysis to generate a confusion matrix. We then randomly sampled

one of these confusion matrices for each subject 100 times and averaged the sampled matrices

across subjects to generate 100 population averages. We then randomly sampled from these 100

averages to generate 100,000 comparisons between the two matrices to generate a distribution of

comparisons. From this distribution, we calculated the probability that differences between flavor

transition vs. flavor unchanged in sweet error trial and savory error trial were as great as they were in

the real data, and differences in sweet last trial and savory last trial were as small as they were in the

real data.
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and use committee protocols of the NIH. The protocol (#15-CNRB-108) was approved by the NIDA-

IRP ACUC. All surgery was performed under isoflurane anesthesia, and every effort was made to

minimize suffering.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.49315.009

Author response https://doi.org/10.7554/eLife.49315.010

Additional files

Supplementary files
. Transparent reporting form DOI: https://doi.org/10.7554/eLife.49315.007

Data availability

The raw data that went into the analyses shown in Figures 1, 2 and 3 are archived at https://github.

com/tastalnaker/dopamine_ensemble_analysis.git (copy archived at https://github.com/elifescien-

ces-publications/dopamine_ensemble_analysis).
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