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1 Predictive temporal codes and the SR
Many models of prospective coding in the hippocampus have drawn inspiration from the well-documented
ordered temporal structure of firing in hippocampus relative to the theta phase1–3, and considered the
many ways in which replaying hippocampal sweeps during sharp wave ripple events might be used for
planning4–9. The firing of cells in hippocampus is aligned to theta such that cells encoding more distant
places fire later during a theta cycle than immediately upcoming states (a phenomenon referred to as theta
precession). States fire in a sequence ordered according to when they will next appear, suggesting a likely
mechanism for forward sequential planning2, 10.

However, precession alone is probably not sufficient to enact backward expansion of place fields in
CA1, since NMDA antagonists that disrupt the persistent, backward expansion of place fields leave theta
precession intact11. Furthermore, precession in CA1 likely originates outside of the hippocampus, as it
arises in MEC independently12, and depends crucially on input from surrounding areas such as MEC and
CA313, 14. Thus, we think that it is worthwhile to consider the possible contributions of this backward
expansion to planning in addition to the contributions of the hippocampal temporal code examined by this
prior work.

The type of prospective coding implemented by theta precession and sharp wave ripple events is
reminiscent of model-based, sequential forward planning3; many experiments and theoretical proposals
have looked at how replaying these sequences at decision points and at rest can underlie planning4–6, 8, 9.
By integrating the reward reactivated at each state along a sweep through upcoming states, the value of a
specific upcoming trajectory can be predicted.

The SR is a different type of prospective code, with different tradeoffs. The SR marginalizes over
all possible sequences of actions, making predictions over an arbitrarily long timescale in constant time.
This results in a loss of flexibility relative to model-based planning, but greater computational efficiency.
Thus, the SR cannot replace the full functionality of model-based sweeps. However, as we allude to in the
article, the SR can provide a useful adjunct to the sweeps.

In Fig. S15, we illustrate how performing sweeps in the successor representation space (Fig. S15F)
or performing sweeps that terminate on a successor representation of the terminal state (Fig. S15G) can
extend the range of these predictions, making the hippocampal representations a more powerful substrate
for planning. This is tantamount to a “bootstrapped search” algorithm, variants of which have been
successful in a range of applications15, 16.

2 Why are the eigenvectors gridlike?
In this section, we discuss the mathematical properties of the successor representation (SR) that cause
many eigenvectors to be gridlike.

An eigenvector of a matrix M is defined as a vector v such that Mv = λv for some scalar λ (the
eigenvalue). The eigenvectors of the SR matrix M are the same as the eigenvectors of the transition
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probability matrix, T . This is because M can be written as a discounted sum of transition matrices taken to
different exponents (Equation 6 in the article).

M =
∞

∑
t=0

γ
tT t (1)

where γ is the discount factor. When two matrices A and B share an eigenvector v, that vector will also
be an eigenvector of their sum and their product. Thus, M and T share eigenvectors.

For a random walk policy, multiplying a vector by the matrix T applies one timestep of a random walk
to the vector v, diffusing the activity at each point in the vector to its neighbors. An eigenvector of T must
therefore be stationary under the transition policy described by T . The vector T v can only have a larger or
smaller magnitude, determined by the eigenvalue λ . It may not be rotated, skewed, or translated. This
means that wherever the vector has high positive values, there must be an adjacent, equally negative area
to balance it out. In this way, positive activity diffusing from the positive areas is balanced by negative
activity moving from the negative areas, and there is no net movement of any of the eigenvectors’ peaks or
troughs under a random walk. On a linear track, a sinusoidal wave solves this problem. A checkerboard,
gridlike pattern satisfies this problem in a rectangle environment.

The eigenvectors need to align to the boundaries in such a way that this positive/negative balance is
maintained. On a linear track, this constraint is satisfied when the eigenvectors are at their maximum or
minimum value. Otherwise, there will not be enough positive or negative activity to balance the adjacent
negative or positive peak, respectively. For a rectangular room, it is satisfied when the eigenvectors are at
the maximum or minimum value over the perpendicular cross-section. Because the boundary must align
with a peak or trough, there must be some exact integer number of half-peaks and half-troughs across the
environment for the track or rectangle. In more geometrically complicated rooms, such as in Figure 6, 7,
and 8, the arrangement of peaks is harder to characterize, but can still be understood as arranging peaks of
activity so as to maintain this positive/negative balance. Thus, the eigenvectors will be found at discrete
spacings relative to the size of the enclosure.

As an aside, these eigenvectors are the discrete mathematical equivalent of standing waves over the
topogy described by the transition matrix. In fact, the problem of finding these eigenvectors is related
to an old mathematical puzzle about “hearing the shape of a drum” (i.e., finding the modes of vibration
of an arbitrarily shaped drum)17. This is because the transition matrix shares its eigenvectors with the
graph Laplacian, a relationship we explore in the Supplemental Section “Partitioning the state space into
subgoals with normalized min-cut.”

3 Learning eigenvectors by stochastic gradient descent
Grid cells can be learned by stochastic gradient descent without directly computing the eigendecomposition
of the SR. Here we formulate this problem as a convex optimization problem that can be learned by
stochastic gradient descent.

The problem of computing the K eigenvectors with the largest eigenvalues of the successor representa-
tion matrix is equivalent to choosing an embedding matrix Y such that embedded states change slowly
under the transition policy18. The spectral interpretation of grid cells is therefore related to the idea that
grid fields can be learned using slowness as an objective19. If the probability of transitioning between
states s and s′ is high, Y (s, i) and Y (s′, i) should be similar to each other when the ith eigenvalue is large.
As the eigenvalues decrease, Y (:, i) is free to have higher frequency spatial variation over states. This
is why the eigenvectors in Figures S7 and S8, which are arranged in descending order of eigenvalue,
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have increasingly high spatial frequencies. The problem of finding the matrix Y is therefore equivalent to
minimizing the following cost function:

C(Y ) = ∑
s

∑
s′

E(ys,ys′)T (s,s
′), (2)

where ys ∈ RK is the embedding of state s and E(ys,ys′) = γ||ys− ys′||2. Intuitively, this cost function
favors embeddings that are similar for states which are likely to be visited sequentially. The optimal
embedding can be viewed as the solution to a kernel PCA problem with M as the kernel20.

The cost function can also be viewed as an expectation under the Markov chain induced by the
transition function T :

C(Y ) = Es′∼T (s,·) [E(ys,ys′)] . (3)

We can therefore minimize the cost function online by sampling transitions (s→ s′) from the Markov
chain and stochastically following the gradient:

yn+1
i = yn

i −α
n
∇yiE(y

n
s ,y

n
s′), (4)

where αn is the step-size (learning rate) at time n, and the gradient is given by:

∇yiE(y
n
s ,y

n
s′) = 2ηγ

yn
s − yn

s′

||yn
s − yn

s′||
, (5)

η =


1 if i = s
−1 if i = s′

0 otherwise.
(6)

In addition, the embedding vectors are subject to a normalization constraint such that ‖ys‖ = 1 for
every state.

4 Smoothing with Spectral Regularization
For Fig. S12A-B, spectral regularization was implemented by reconstructing the SR from the truncated
k-dimensional eigendecomposition at each timestep. This means that we set projections onto all but
the eigenvectors with the k highest eigenvalues to 0. To be more precise, the SR matrix M can be
eigendecomposed as:

M =UΛUT (7)

Where U is a matrix with the eigenvectors of M as its columns and Λ is a diagonal matrix with eigenvalues
along the diagonal. The SR M can be approximately reconstructed as Mk using only the first k eigenvectors
and eigenvalues, which we will denote as Uk and Λk respectively.
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Mk =Uk
Λ

kUkT . (8)

Note that the superscript k does not refer to exponentiation, but to the matrix rank (the number of non-zero
eigenvector components it contains). The superscript T signifies the matrix transpose. The subscript will
be used later on to index by timestep, for consistency with the equations in the main text.
Spectral regularization can be implemented online by projecting the full-rank, unsmoothed Mt onto the top
k eigenvectors of M after each update, and then computing the reconstructed Mk

t from the k components
with largest eigenvectors:

Mk
t =UkTUkMtUT kUk. (9)

We demonstrate how spectral regularization can improve SR approximation in a multicompartment
spatial task in Figure S12. Figure S12A demonstrates that spectral regularization improves SR approxima-
tion in a noisy environment. As the noise increases, the reconstructed Mk that correlates maximally with
the ground truth M is constructed from fewer components.

Importantly, the smoothing implemented by spectral regularization is topologically sensitive, meaning
that smoothing respects boundaries of the environment. Regularization using a Fourier decomposition
does not share this property, and will smooth over boundaries (Fig. S12B). This impairs reconstruction of
the SR matrix in multicompartment environments.

Spectral reconstruction can also be used to approximate SR matrices corresponding to large discount
factors from the eigenvectors of SR matrices with small discount factors, which can be learned much
faster with TD learning (Fig. S12C). This is because SR matrices for different discounts all share the same
eigenvectors, and have systematically shifted eigenvalues. We explore this more in Supplemental Section
6. TD learning can take a long time to converge when the discount factor is large. Spectral regularization
can allow the SR to support planning over a longer timescale after significantly less training.

5 Partitioning the state space into subgoals with normalized min-cut
We briefly discuss in the article how the SR eigenvectors can be used for subgoal discovery by identifying
“bottleneck states” that bridge large, relatively isolated clusters of states21, 22.

The eigenvectors can be used to partition the state space into subgoals using a form of the normalized
cuts algorithm23. Specifically, the normalized min-cut can be approximated by thresholding the eigenvector
with the 2nd largest eigenvalue (the Fiedler vector, u2) such that states i for which u2i < 0− ε go to 0, and
states for which u2i > 0+ ε go to 1 for some very small ε . This decomposes the state space into two sets
such that there are as few transition points between states in different sets as possible, while keeping the
sets as large as possible23. States such that −ε ≤ u2i ≤ ε will go to 0.5; these correspond to subgoals,
which connect the two sets of states. If no such states emerge, states on either side of an edge connecting
the partitions can be used.

Partial group membership can be implemented by rescaling the eigenvector to the [0,1] range rather
than thresholding. Subgoals then can be found at the states nearest 0.5.

An increasingly fine partition of the task space can emerge by including more thresholded eigenvectors.
This can be performed iteratively using the initially identified subgoal to partition the environment, and
then computing a new set of eigenvectors over the partitioned subspace. This recursive cutting leads
to a segmentation of the task, but requires multiple eigendecomposition computations (although the
computational complexity of the problem is reduced by half each time).
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Traditionally, the eigenvectors of the normalized graph Laplacian, a matrix frequently invoked in
spectral graph theory24, are used in spectral methods such as this one (rather than the eigenvectors of the
SR). However, the eigenvectors of the normalized graph Laplacian matrix and the random walk SR matrix
are approximately equivalent in cases where most nodes have the same degree, such as in spatial domains.
We sketch proof below.

Given an undirected graph with symmetric weight matrix W and given D is a diagonal degree matrix
with D(s,s) = ∑s′W (s,s′), the graph Laplacian is given by L = D−W . The normalized graph Laplacian
is given by L = I−D−1/2WD−1/2. For a random walk over this graph, the transition matrix is given by
T = D−1W . If φ is an eigenvector of the matrix I− γT and the degree is constant for all nodes, then φ is
an un-normalized eigenvector of the normalized graph Laplacian. In a spatial domain, where the degree
is constant everywhere except boundaries (almost everywhere as the discretization of the environment
approaches continuity), the eigenvectors of I− γT will approach those of the normalized Laplacian as
the discretization becomes increasingly fine. Since the SR, M, is equal to (I− γT )−1 and a matrix shares
its eigenvectors with its inverse, the eigenvectors of the SR will also be similar to the eigenvectors of the
normalized graph Laplacian.

6 Eigendecomposition of SR matrices with different discounts
As described in Supplemental Section 2, the SR matrix M can be written as a weighted sum of exponents
of the transition matrix T , and therefore shares its eigenvectors with T . Since T is not parameterized by a
discount factor γ , it follows that γ parameterizes the eigenvalues, and not the eigenvectors, of M. Here we
will derive how γ parameterizes the eigenvalues of the SR matrix. We include a subscript γ to indicate that
the SR is parameterized by some discount factor, γ .

Because the product of two matrices with the same eigenvectors will also have those eigenvectors, T
and T t have the same eigenvectors for any t. We demonstrate this below. Consider the eigendecomposition,
where each column of U is some eigenvector of T and Λ is a diagonal matrix where the diagonal element
λi is the ith eigenvalue:

T =UΛUT . (10)

Then we can write T t as:

T t =
(
UΛUT)t

=
(
UΛUT)(UΛUT) ...(UΛUT)=UΛUTUΛUT ...UΛUT (11)

Since the eigenvectors U are orthonormal (each column is orthogonal to each other column, and each
column has a Euclidean norm of 1), each pair of adjacent UTU will equal the identity matrix I. They
therefore cancel out, leaving us with:

T t =UΛΛ...ΛUT =UΛ
tUT (12)

Thus, T and T t share their eigenvectors U , and for each eigenvalue λi of T , the corresponding eigenvalue
of T t will be λ t

i .
Since Mγ is written as a weighted sum of matrices with the same eigenvectors as T , it will have the

same eigenvectors as T . This means that the eigenvectors of M depend entirely on the transition probability
matrix under the current policy, and not on the discount. The eigenvalues, on the other hand, will depend
on the discount, in the following way:

M =
∞

∑
t=0

γ
tT t =

∞

∑
t=0

γ
tUΛ

tU =U

(
∞

∑
t=0

γ
t
Λ

t

)
UT =U (I− γΛ)−1UT =U(I− γ

−1
Λ
−1)UT (13)
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Where the last step is permitted because I and Λ are both diagonal matrices. Thus, for an eigenvector
of T with eigenvalue λi, the same eigenvector will have eigenvalue 1−1/γλi for Mγ . This means that
in general, Mγ will have larger eigenvalues as γ increases. Furthermore, the increase in eigenvalue
with discount will be disproportionately felt by eigenvectors with smaller eigenvalues λi, which are the
eigenvector grids with larger spatial scales. Thus, as that as γ increases, Mγ shifts its weight to the slowly
varying eigenvectors with large spatial scales. The overall eigenvalue increase occurs because a larger
discount means the discounted expected visits to each state will be larger. The shift toward large spatial
scale eigenvectors can be understood as a shift toward the coarser, lower dimensional representation that is
required under a longer planning horizon. We visualize how the SR eigenvalues change with discount in
Figure S10. In order to look specifically at the shift toward lower spatial scale eigenvectors, rather than the
overall increase in eigenvalue with γ , the SR matrices in this plot are normalized by dividing each entry by
the maximum element in the SR matrix.

The fact that these eigenvectors are shared among SR matrices with different discounts and that their
eigenvalues can be systematically related can be exploited to learn SRs for large discounts more quickly.
Typically, TD learning will converge very slowly for SR matrices of large discounts, since visitation
information needs to propagate over large distances. However, since the eigenvectors and eigenvalues can
be derived from the eigenvectors and eigenvalues of an SR matrix with a much smaller discount, the SR
matrix can be approximately reconstructed much earlier from these components. This allows for faster
convergence of large discount SR matrices (Fig. S12C), which in turn permits SR planning over larger
spatial scales.

7 Eigenvector modularity
While place fields tend to increase gradually in size along the longitudinal axis of hippocampus25, grid
fields increase in scale in discrete increments26. Each “module” of grid cells contains cells with fields of
approximately the same spatial scale. The ratio between adjacent scales was reported to be approximately√

2 = 1.4 regardless of scale26.
The grid fields in our model will also have discretized spacing, as explained in Supplemental Section 2

(“Why are the eigenvectors gridlike?”). In the 1D environment, adjacent eigenvectors will have an integer
number of half-peaks and half-troughs, meaning the spatial scales will be 1/2, 1/3, 1/4, ... of the length of
the track. This gives adjacent “modules” a ratio of 1.5, 1.33, 1.25, etc (Fig. S11A). This departs from the
findings of Stensola and colleagues in that the ratio between adjacent modules is not constant. However, it
is reassuringly in the vicinity of 1.4 for experimentally plausible scales.

The same scale ratio occurs in the 2D rectangular environment as well. Looking at the spatial scale of
our grid fields in the rectangle requires us to define a spatial scale, since our grid fields in this environment
are not radially symmetric. In a perfect rectangle discretized with equal spacing, the grid field waveforms
can be decomposed into two waveforms: one aligned to the x-axis (sx) and one aligned to the y axis (sy).
Each of these waveforms can have a different spatial scale. We define the 2D spatial scale s to be the mean
of these two scales for each field, so that s = (sx + sy)/2 (Fig S11B). As shown in Fig. S11C, the 2D
eigenvectors can be clustered into modules with the same average spatial scale. These modules have the
same scale ratio between adjacent modules as do the 1D eigenvectors.

Another reasonable way to compute scale s would be to take the elliptical mean of an ellipse fit
to the 6 nearest peaks. The elliptical mean returns the average radius of an ellipse. This would mean
computing spatial scale as s =

√
a2 +b2/2, where a and b are the major and minor axes of the ellipse and

a = 2max(sx,sy)
√

/3 and b = min(sx,sy).
While the spatial scales returned by the two metrics are somewhat different, the scale ratio between
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modules is exactly the same under both metrics. We used the first because it seemed somewhat simpler
to conceptualize and made the same prediction. However, the elliptical measure may be easier to fit to
recorded grid fields, which can often be skewed or sheared but rarely seem to decompose neatly along
orthogonal axes.

8 Parameters
A key parameter of the SR is the discount, γ , which scales the planning horizon of the computed value. If γ

is 0, the value of each state will simply be the expected reward at that state, with no consideration of future
reward. The SR matrix in this case will be the identity matrix, since all predictions beyond the current state
will be discounted to 0. As γ increases, the discounted expected reward takes into account increasingly
distal rewards, and the SR fields spread out to cover increasingly distal states. As γ approaches 1, the
value of each state approaches the total expected reward over infinite time. If all states are reachable from
all other states with nonzero probability, the SR fields will swell to cover all reachable states. Without
normalization, the SR (and most likely the value function) will diverge to infinity. In Figure S4, we explore
the effects of changing parameters, including the discount factor, on SR fields for a 1D track and for a 2D
arena.

In our simulations, we use the same discount factor to compute the optimal policy as we do to
compute the successor representation. However, these can technically be treated as different terms. The
policy discount, γπ , would describe the planning horizon the agent has been using. The SR discount, γM,
modulates spatial scale of the SR field and determines what planning horizon that SR can be used to plan
on in the future. This distinction is useful for considering how the discount factor can be used to describe
the gradient of spatial scales found along the hippocampal longitudinal axis. We imagine all of these
parallel SRs would be trained on the same transition history, which will have been based on the same γπ .
In order to enable future planning on different spatial scales, each SR would be modulated by a different
discount γM. As far as interpreting the figures in the article, assume γπ = γM unless otherwise stated.

The other main parameter of the model is the softmax inverse temperature parameter, β , which
parameterizes the entropy of the policy. This determines whether the policy will be more random (low β )
or more deterministic (high β ). A high β (more deterministic policy) will produce SR fields with more
asymmetric expansion. In Figure S4, we explore the effects of changing β in conjunction with γ for SR
fields.

The discount factor γ and the softmax parameter β interact to determine how localized the effect of
reward on the grid cells will be. In order for a place field to be skewed, the reward-preferential bias must
be appreciably larger than the random noise in the policy permitted by β . If the discounted expected
number of visitations to a distal reward from the current location is discounted to near zero and β is finite,
the SR at this state will be unaffected by the reward.

When simulating the effects of reward on the SR, a variety of simulation options were introduced.
One involved how long the animal should remain at the rewarded location. The SR effects predicted by
our model occur because the animal will learn to move toward a reward and remain near the reward for
some length of time. In practice, the length of time will depend on how long it takes the animal to find
and deplete the reward. In simulation, the length of time can be calibrated by changing the absorption
probability at the rewarded location. In Figure S5, we show the effect of using different absorption
probabilities on the distribution and shape of place fields in 1D and 2D, and how it depends on the SR
discount γM. While this is a parameter that can be altered, in all of our other simulations, we used an
absorbing probability of 0.

Under a sufficiently large discount, the SR model predicts that firing fields centered near rewarded
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locations will expand to include the surrounding locations and increase their firing rate under the optimal
policy. The animal is likely to spend time in the vicinity of the reward, meaning that states with or near
reward are likely to be common successors. SR place fields in and near the rewarded zone will cluster
because it is likely that states near the reward were anticipated by other states near the reward (Fig. S3).
For place fields centered further from the reward, the model predicts that fields will skew opposite the
direction of travel toward the reward, due to the effect illustrated in Fig. 2: a state will only be predicted
when the animal is approaching reward from some more distant state. Given a large potentially rewarded
zone or a noisy policy, these somewhat contradictory effects are sufficient to produce clustering of place
fields near the rewarded zone (Fig. S3, S4). The punished locations will induce the opposite effect, causing
fields near the punished location to spread away from the rarely-visited punished locations (Fig. S3F).

Another simulation decision consisted of how to discretize the environment. This decision could
potentially affect the generated grid cells, which are sensitive to the topology of the underlying graph. For
various reasons, we decided to use a triangular lattice because it is the densest tiling of points in which all
adjacent points are equidistant. Furthermore, unlike with a square lattice, the triangular lattice cannot be
stretched or sheared in 2D without changing the length of edges in the graph. However, the generated
eigenvectors do not actually depend very strongly on the type of lattice, as we show in Figure S18. In Figure
S18A-B, we show the first 64 eigenvectors recovered using a square lattice (A) and a triangular lattice (B).
In Figure S18C, we use uniformly distributed points rather than a lattice. The weights in the adjacency
matrix are proportional to the diffusion distance between points s and s′, exp

(
‖x(s)− x(s′)‖2/σ2). This

measure corresponds to the transition probability for continuous Brownian motion, and is comparable
to sampling random points in a continuous diffusion process. These eigenvectors are distorted by the
heterogenous density of the points, but retain a grid structure. As the spacing between points becomes
more irregular, the eigenvectors become increasingly distorted.

The parameters used for each simulation are described below, organized by figure (including both
main text and supplement).

Figure 1: Updating value following change in reward
A. Discount γ = 0.75.

Figure 2: SR illustration and comparison to other models.
A-C. 1D tracks discretized to 500 states. 2D barrier environments discretized with 40×40. Parameters
described below as fraction of boundary length, so 0.5 refers to a half of the track or wall length. The
spatial scale parameters were chosen so that σ and γ lead to Gaussian and SR place fields, respectively,
with approximately the same width at half maximum.
A. µtrack = 0.75, σtrack = 0.04; µbarr = 〈0.50,0.45〉, σbarr = 0.066.
B. µtrack = 0.75, σtrack = 0.04; µbarr = (0.50,0.45), σbarr = 0.066.
C. xtrack(s) = 0.75, γtrack = 0.084; xbarr(s) = (0.50,0.45), γbarr = 0.13.
D-E. None

Figure 3: Behaviorally dependent changes in place fields.
B. Experience dependent asymmetric backward expansion. Discretized to 300 states. γ = 0.9, pright = 0.66,
pleft = 0.34.
F-H. Alvernhe et al. (2011) recordings from Tolman detour maze. Discretized maze enclosed by 20×10
box, channel width = 1, discount γ = 0.95, softmax inverse temperature parameter β = 5.
I-L. Simulated SR with reward. Track discretized to 121 states. The right transition probability
pR(s) = Cright/D(s), left transition probability pL(s) = Cleft/D(s), stay transition probability pS(s) =

8/34

Nature Neuroscience: doi:10.1038/nn.4650



Cstay/D(s)N(s− sR,100). N(s− sR,100) is the probability density function of the normal distribution
centered at s− sR with standard deviation 100, s is the index of the state, sR is the index of the rewarded
state (sR = 251), and σ = 100 parameterizes how much the agent slows near the reward. D(s) is the
degree of state s and serves as the normalizing constant so that transition probabilities sum to 1, with
D(s) = pR(s)+ pL(s)+ pS(s).
I-J. Cright = 1, Cleft = 0, Cstay = 1, Discount γ = .98. A larger discount was used for Fig. 6A-B than for
Fig. 6C-D to demonstrate the effects of the SR model more clearly – the difference in field shape shown in
Fig. 6B is quite small at the smaller discounts.
K-L. Cright = 1, Cleft = 0, Cstay = 1, Discount γ = .9. Smaller discount used for Fig. 6C-D than in Fig.
6A-B so that the SR would be near 0 at distal locations, which allows the shift to be demonstrated more
clearly.

Figure 4: Hippocampal representations in non-spatial task27

SR learned by TD learning with 500 step random walk, learning rate η = 0.1, discount γ = 0.98.

Figure 5: Hippocampal representations in spatio-temporal task28

Discount γ = 0.98. Representational similarity between states is computed as the correlation between
the two rows of the SR indexed by those states (the population vectors corresponding to those states).
Spatial distance refers to the Euclidean distance between states using the x,y locations of states using the
embedding shown in Figure 8D. Temporal distance refers to the number of states along the shortest path
between states, and “both” refers to the sum of spatial and temporal distance. The following pairs were
the top five states with the lowest (above) and smallest (below) spatial distance, temporal distance, and
both (spatial + temporal distance) between them.
Spatial pairs
Low distance: [5,1; 5,4; 10,7; 6,5; 4,1]
High distance: [9,3; 10,1; 10,4; 7,3; 10,3]
Temporal pairs
Low distance: [5,1; 5,4; 8,1; 9,3; 4,1]
High distance: [5,2; 4,2; 6,2; 3,2; 9,2]
Both pairs
Low distance: [5,1; 5,4; 4,1; 6,5; 10,7]
High distance: [5,2; 6,2; 4,2; 3,2; 9,2]

Figure 6: Grid cells in different geometric environments
Square. Discretization 40× 42. Eigenvector 37 shown. Split in half down the slightly longer edge
(between 21 and 22) for the split halves analysis.
Hexagon. Diameter (distance between opposite vertices) 40. Eigenvector 51 shown.
Circle. Diameter 40. Eigenvector 31 shown.
Trapezoid. Base 40, height 80, top 8. Eigenvector 52 shown. Split two thirds of the way between the
short edge and long edge of the trapezoid (between 53 and 54) for the split halves analysis to match results
to Krupic et al. (2015).
Orientation histograms. Includes all first 120 eigenvectors for which ellipses could be fit to the 6 central
peaks of the spatial autocorrelation (defined as the 6 peaks nearest the center). This eliminated fields with
very large scales (not enough peaks) or fields where the fit ellipse was a degenerate line (all peaks in a
row).
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Histogram used 1001 bins, which meant that no two eigenvector grid fields counted toward the same bin
unless their orientations were exactly the same. The histogram was then smoothed with a small kernel
with width σ = 5 bins (0.01π radians) and window size of 101 bins (0.1π radians) for display.
Grid similarity. All first 120 eigenvectors are included. To compute grid similarity, the spatial
autocorrelation was first computed for both halves of each environment. The circular window used to
compare autocorrelations had radius of 15 (since the dimensions of the autocorrelation are twice that of
the grid field, the window never went off the edge of the autocorrelation map). The autocorrelation outside
this window was set to zero for similarity comparisons. “Similarity” between two halves of a grid field
refers to the Pearson correlation coefficient of the windowed autocorrelations on each half of the maze.

Figure 7: Grid fragmentation in compartmentalized maze29

Discretization 40×40, 10 alternating channels of width 4. Eigenvectors (top row) 32, 13, (bottom row)
14, 22 shown. Eigenvectors 20 through 120 used for similarity matrix to exclude low-frequency, non-grid
eigenvectors.

Figure 8: Grid fields in multi-compartment environment30

Discretization 16× 12 with the two square compartments each discretized at 8× 8, the connecting
passageway at 16×4, and the opening to the passageway 6 nodes wide.
Local model initialization. Corresponding states in the different rooms were mapped to the same index
in the adjacency matrix to simulate local state aliasing as the initial condition. SR discount γ = .9, SR
learning rate α = 0.1 for the first 500 pre-training epochs and 0.01 for the next 500, SGD learning rate
0.0005, 1000 epochs total of 50 timesteps each.
Global model initialization. The SR was initialized to the local SR model learned, then constraint that
corresponding states in the different rooms be the same was removed so that the rooms could slowly
differentiate. SR discount γ = .9, SR learning rate α = 0.01, SGD learning rate 0.0005, 1000 epochs total
of 50 timesteps each.

Figure S1: Model Free versus SR
Channel width 1, channel lengths 4. Discount γ = 0.98, learning rate η = 0.01, noise ε ∈ [−0.05,−0.05],
100 epochs of 500 timesteps for each reward change, random walk policy.

Figure S2: SR place fields in Tolman Detour Maze
See parameters for Figure 5. Shown are place fields for every other state (even numbered indices) so that
states are sampled evenly from all parts of the maze.

Figure S3: SR place fields
Discretization 32×30, discount γ = 0.99.
A. Random walk policy.
B. Random walk policy with no transition permitted through the boundaries shown.
C. Random walk policy with no transition permitted through the boundaries shown.
D. Rewarded location = [14,18]× [13,17], softmax policy given inverse temperature parameter β = 1.
E. Rewarded location 1 = [20,24]× [10,14], rewarded location 2 = [5,10]× [20,25], softmax policy given
inverse temperature parameter β = 1.
F. Punished location 1 = [20,24]× [10,14], softmax policy given inverse temperature parameter β = 1.
Shown are SR place fields for the following states in the 32×30 = 960 state environment: 178, 464, 422,
611, 418, 363, 728, 755, 665, 303, 907, 33, 266, 45, 94, 789. The x-coordinate for state s can be recovered
with x = floor(s/30) and the y-coordinate with y = mod(s,30).
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Figure S4: Effect of model parameters
SR fields shown for different settings of the discount γ and inverse temperature parameter in 1D and 2D
environments.
A. 1D environment discretized with 200 states. 10 evenly spaced SR fields are shown for each condition.
B. 2D environment discretized to 25×25 states. SR fields for states [104,306,413,433] shown, with x,y
locations [(4,5),(6,13),(13,17),(8,18). Reward located at state 456, location (6,16).

Figure S5: Effect of model parameters γ and β

SR field arrangement shown for different discount factors and absorption probability at the rewarded
location.
A. Environment discretized to 30× 32. Rewarded location = [14,18]× [13,17], softmax policy given
inverse temperature parameter β = 1.
B. 1D environment discretized to 50 states. Reward at state 50, softmax policy given inverse temperature
parameter β = 1.

Figure S6: Multiscale representations
Discretization 20×20. Multicompartment environments have same discretization parameters as described
for Figure S6. Points mapped to 2D using multidimensional scaling.

Figure S7: Additional grid fields in compartmentalized environments
See parameters for Figures 9 and 10.

Figure S8: Additional grid fields in non-rectangular geometric environments
See parameters for Figure 9.

Figure S9: Ground truth and learned eigenvectors
See parameters for Figure 11.

Figure S10: Eigenvalues for SR matrices with different discount factors
Discretized 8×8. All other parameters shown.

Figure S11: Eigenvector modularity
1D discretization 100, 2D discretization 100×100. Spatial scale in 2D defined as (sx + sy)/2, where sx
and sy are the spatial scales in the x and y directions, as shown in Fig. S11B.

Figure S12: Spectral regularization
Discretization 30× 30. Metric used to evaluate learned and reconstructed SRs is correlation with the
ground truth SR matrix ((I− γT )−1).
A. Discount γ = 0.98. Noise added as some percent of maximum value of SR matrix (max = 3.01),
ranging from 1 - 40%. Reconstructions implemented for k dimensions, where k spans 1 - 900 (where 900
is the full dimensionality of the SR).
B. Discounts ranging from .5 - .98, evenly spaced on log scale. Simulated for dimensionalities between 1
and 900 (where 900 is the full dimensionality of the SR).
C. Discounts ranging from .5 - .98. Eigenvalues and eigenvectors are based on the eigenvectors of the SR
with the smallest discount, which gets learned quickly using TD learning. Eigenvalues from Mγ=0.5 are
rescaled using the relationship shown in the rightmost graph, shifting weight onto the lower-frequency
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eigenvectors, allowing the approximation of SR matrices for longer time scales. This enables SR matrices
for large discounts to be approximated much sooner than TD alone permits, since it takes many trials for
information to propagate over large spatiotemporal scales with TD alone.

Figure S13: Subgoals for hierarchical RL
Circles marking subgoals were placed where the eigenvector with the corresponding color was 0. Lines
were drawn when a whole contour was equal to zero.
A. Multicompartment environment I. Discretized at 20×20. Doorways placed at: (10,10), (5,8), (5,14).
Doorway width 2.
B. Multicompartment environment II. Discretized at 20× 20. Doorways placed at: (10,4), (10,16),
(5,8), (5,14). Doorway width 2.
C. 2-Step tree maze. Channel width 5, first channel length 10, other channel lengths 5.

Figure S14: Context preexposure facilitation
Discretization 10× 10, punished location R(5,5) = −1, discount γ = .9; 10 simulation trials shown,
2×104 timesteps.

Figure S15: Possible interactions between SR and hippocampal sweeps
D-F. Scatter plots. Noise drawn from normal distribution with sigma = 0.05. Discount factor γ = .6
where applicable (D,F).

Figure S16: SR transfer in tree-maze
Graph structure shown in Fig. S16A at full discretization. Discount γ = .98. Results shown for softmax
inverse temperature parameters β = 0.1,1,100.

Figure S17: Simulation visualization
Discretization 8×8. Discount γ = .95. SR field 36 (x,y) = (5,5) and eigenvector 4 shown.

Figure S18: Effects of discretization on simulated grid cells
A. Square Lattice. Discretization 29×30.
B. Triangular Lattice. Discretization 29×30.
C. Randomly Scattered points. N = 862 points, uniformly scattered in rectangle with dimensions 1×1.1
but with minimum distance between points limited to 0.02. The weights in the adjacency matrix are
proportional to the diffusion distance between points s and s′, exp

(
‖x(s)− x(s′)‖2/σ2). As mentioned

above, this measure corresponds to the transition probability for continuous Brownian motion, and is
comparable to sampling random points in a continuous diffusion process.

Figure S19: Effects of rewarded policy on SR eigenvectors
Discretization 32×30, rewarded location R(16,15) = 1, discount γ = .98, softmax inverse temperature
parameter β = 3 for optimal policy. First 64 eigenvectors shown.
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Figure S1. (A) Comparison between learning a value function with model-free (MF) TD learning
(black) and with SR TD learning (red) under a random walk policy with changing reward location. For an
MF agent, the value function must be entirely relearned each time the reward changes location. For an SR
agent, the error will jump when the reward changes, but quickly drops as soon as the new reward is found.
Furthermore, the SR provides an advantage over MF learning when there is noise in the state signal. The
error surpasses 100% when the animal has neither learned the current value function nor unlearned the
previous value function. The value functions corresponding to each reward location are shown on the
right.
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Figure S2. Full set of SR place fields corresponding to different barrier positions in Figure 3 of main
document. (A) No barrier. (B) Barrier at position 1. (C) Barrier at position 2. (D) Key showing barrier
positions, reward location, and regions classified as “near” and “far” for analysis in Figure 5.
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Rectangular room Multi-compartment I Multi-compartment II

Single reward Double reward Single punishment

A B C

D E F

boundary punishment (-1)reward (+1)

Rectangular room Multi-compartment I Multi-compartment II Single reward Double reward Single punishment
Boundaries and Reward

Figure S3. Example SR place fields corresponding to different environments and reward configurations.
(A) SR fields are radially symmetric, gradually decaying circles under a random walk. (B,C) SR fields are
constrained to remain within the compartments of the environment. (D,E) Place fields near the rewarded
locations swell to include the many states that predict them, those further away skew backwards. (F) Most
place fields are unaffected, those near the punished region skew slightly towards it to account for fleeing
from the punished area.
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Figure S4. To explore the effects of the discount parameter γ and the softmax inverse temperature
parameter β , we plot SR place cells simulated for differing values of these parameters. We place a reward
at the right-most point along the track (x = 200). (A) SR place fields along a 1D track. Increasing the
discount γ increases the spatial scale of the place fields, and in so doing increases the distance from the
reward at which place cells are affected by the presence of the reward. The parameter β scales how much
randomness will be included in the policy, where 0 is entirely random and ∞ is entirely deterministic.
When β is larger and the policy is less random, the place fields will be more skewed opposite the direction
of motion, and fields further from the reward will be affected. (B) SR place fields in a 2D rectangle. The
parameters have similar effects in 2D. The white + indicates the rewarded location, and the number on
each plot is the maximum SR firing rate. Once again, a larger discount factor γ induces wider place fields,
and a larger β parameter induces greater skew in a larger region of SR place fields.
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A

B

Multiscale representations in multi-compartment environment I

γ = 0.5 γ = 0.8 γ = 0.95 γ = 0.995

γ = 0.5 γ = 0.8 γ = 0.95 γ = 0.995

Multiscale representations in multicompartment environment II

Maze Graph

Maze Graph

Figure S6. Multi-dimensional scaling projections of the SRs for different states in multicompartment
environments. The two environments feature the same compartments connected in different ways. These
plots show a 2D projection that maximally preserves Euclidean distances among SR vectors for each state.
From left to right, we increase the discount factor γ used to compute the SR. The larger planning horizon
(γ = 0.995) causes states that predict each other on long time scales to cluster. This exposes the
long-timescale, low-dimensional organization of the environment. With small values of the discount
parameter, the macroscale structure of the maze is not readily apparent in the low dimensional embedding;
rather, different states in the same compartment are represented distinctly. Simultaneously representing
predictive representations over a range of planning horizons gives rise to a multiscale, hierarchical
embedding of states. We can thus visualize how a range of discounts expressed along the hippocampal
longitudinal axis may enable hierarchical planning and planning at different timescales.
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Figure S7. Additional eigenvector grids fields in rectangular and multi-compartment environments (see
Fig. 6, 7 in main document and Fig. S12, S13).
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SquareA Hairpin MazeB

TrapezoidC

Figure S8. Additional eigenvector grid fields in non-rectangular geometric environments (see Fig. 6 in
main document).
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Ground Truth EigenvectorsA Learned EigenvectorsB

A B

Boundaries and task space

Figure S9. Additional (A) ground truth SR eigenvector grid fields and (B) learned SR eigenvector grid
fields for two compartment environment described in Fig. 8 in the main text.

24/34

Nature Neuroscience: doi:10.1038/nn.4650



10 20 30 40 50 60

Index

0

1

2

3

4

5

6

7

8
E

ig
e

n
v
a

lu
e

 w
e

ig
h

ts

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-l
o

g
 d

is
c
o

u
n

t

0.5 1 1.5 2

-log discount of SR

0

1

2

3

4

5

6

7

8

E
ig

e
n

v
a

lu
e

 w
e

ig
h

ts

8

16

24

32

40

48

56

64

E
ig

e
n

v
e

c
to

r 
In

d
e

x

SR eigenvalues evaluated 
at different discountsA

spatial scale of SR place field

SR large

spatial scale

SR small

spatial scale

High frequency

eigenvector

Low frequency

eigenvector

Discount versus eigenvalue
for each SR eigenvectorB

Example SR field

Eigenvector components weighted by SR eigenvalues of some discountC
Discount = 0.68 Discount = 0.90 Discount = 0.99

Example SR field Example SR field

Dependence of SR eigenvalues on discount

Figure S10. (A) Each line plots the eigenvalues of an SR for a random walk policy in some environment.
The color of the line indexes the discount of the SR. All of the SRs have the same discount. When the
discount is higher, the eigenvalues on the low spatial frequency eigenvectors dominate. When the discount
is lower, the eigenvalues are more evenly distributed over low and high spatial frequency eigenvectors, as
these high frequency eigenvectors are required to fit the tighter peaks of the narrower SR place fields. (B)
Here we plot the eigenvalues of each eigenvector against the discount factor. The lines are indexed by
which eigenvector it refers to, so the kth line shows how much SRs of different discounts project onto the
kth eigenvector. This depicts the functional connectivity gradient along the longitudinal axis between
hippocampus and MEC predicted by the SR model. (C) SR thresholded eigenvector grid fields, scaled by
how much they project onto SRs of different discounts. Each SR was first rescaled by its maximum
element so that no values in the SR exceeded 1. An example SR field is plotted below for each discount.
This allows us to visualize the contribution of different frequency components to the SR. The low spatial
scale fields of SRs with smaller discounts require a larger number of eigenvectors to be accurately
reconstructed. The high spatial scale, smoother SRs with larger discounts tend to require fewer
components to be reconstructed accurately.
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Figure S12. (A) Denoised reconstructions of the SR can be obtained by reconstructing the SR from the
top k eigenvectors of the noisy SR. For each noise amount, we show the the correlation of each
reconstructed Mk with the ground truth, noiseless M. As the noise corruption decreases, the higher
frequency eigenvectors will contain increasingly meaningful information, as opposed to noise, and will
contributed positively toward the reconstruction of M. We also show example SR place fields for the
ground truth, noisy, and reconstructed M. (B) Here we demonstrate the advantages of the spectral
decomposition over the Fourier decomposition for reconstructing M. In a multicompartment environment,
the eigenvectors capture more variance than the Fourier basis. The spectral reconstructions are
consistently more highly correlated with the ground truth SR than the Fourier reconstructions given the
same number of components. Also shown are example SR fields for the ground truth SR, Fourier
reconstructed SR, and spectral reconstructed SR. This illustrates another potentially problematic feature of
using the Fourier basis for reconstruction: since the Fourier is smooth over barriers in the environment,
SRs reconstructed from only the top k Fourier components will be smooth over boundaries rather than
discontinuous. (C) For large discounts, the SR takes a while to converge through TD because information
must be propagated back many time steps. However, spectral reconstruction allows us to leverage the fact
that eigenvectors are shared over SRs with different discounts and that there is a systematic relationship
between the eigenvalues of SRs with different discounts. Since the SR will converge relatively quickly for
small discounts such as γ = 0.5, we can use the eigenvectors of Mγ=0.5 and the relationship between
eigenvalues of Mγ=0.5 and the eigenvalues of Mγ to approximate an arbitrary Mγ . This allows Mγ to be
approximated for large γ much earlier on in training, which can enable planning over longer timescales
earlier in training.
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Figure S13. Subgoals for hierarchical RL. (A) The eigenvectors with largest eigenvalues can be used to
partition the task space, with boundaries between the partitions producing useful subgoals. The remaining
eigenvectors are shown in Fig. S7. In compartmentalized environments, subgoal partitions tend to fall at
or near doorways. The environment is colored by setting the RGB values of each point in the maze to the
corresponding value of the 1st, 2nd, and 3rd eigenvectors used in the illustrated partition. (B) Different
environment topologies give rise to different subgoals. The partition is not as clean when compartments
are connected in a loop instead of hierarchically (as in A), but the doorways are still identified by the top 3
eigenvectors. (C) Extracted subgoals correspond to major decision points in a 2-step maze.
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Figure S14. (A) Fear-related freezing response in rats following fear conditioning has been shown to be
stronger if the animal is “pre-exposed” to the conditioning environment. This effect is much weaker
following hippocampal lesions. (B) Under an SR interpretation, exploring the environment allows the
hippocampus to learn a predictive representation. Since value is computed by multiplying the SR by the
reward function, an under-developed SR will produce an underestimate of the negative value in the room.
As the animal learns a model of how states in the environment predict each other, the value signal can be
approximated more fully. Model-free learning does not predict this, since the reward signal cannot
propagate through the environment without experience preceding the time of shock.
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Figure S15. (A) Illustration of theta phase precession reported by Skaggs and colleagues31. (B) A
depiction of the linear track environment used for the illustration. (C) Successor representation when the
animal is in the first state from the left, s1 (copied from Fig. 2D). (D-F) Illustrations of different ways for a
hippocampal sweep to interact with place cell expansion. The top panel illustrates which states have cells
in the active ensemble at point in the theta phase (discretized into gamma cycles), and how active each
place cell is. The cartoon below shows how spikes would be sampled from the ensemble at each gamma
cycle. The bottom panel illustrates the predicted relationship between a cell’s firing location and theta
phase under this model during the retrieval portion of the phase2. (D) A sweep through upcoming state
indices. (E) A sweep through a sequence of successor representations of upcoming states. (F) A sweep
through upcoming states terminating in a successor representation of the last state reached by the sweep.
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Figure S16. Testing the generalization of the SR when reward is moved. Here we illustrate how the
quality of SR generalization depends on the policy stochasticity (parameterized by the softmax inverse
temperature β ), and how similar the optimal paths are for the old and new rewarded location. When there
is greater stochasticity (closer to the random walk policy), the SR’s generalization to highly dissimilar
locations is less impaired, but there is also a reduced generalization advantage when the reward ends up
nearby. The random walk SR is used as a baseline. By diffusing value through the graph in accordance
with the task’s underlying adjacency structure, this representation always generalizes better than
re-initializing to a state index representation. The animal should maintain support for random actions until
it is very certain of the optimal path. Spectral regularization can promote this by smoothing the SR. (A)
Task graph for a depth-2 tree maze, in which the starting state is the root node. Rewards can be presented
at the 8 colored “leaf” nodes. The agent begins at state s. (B) Here, we demonstrate how much value
function estimation deteriorates when the reward is moved from state j to state i when using the SR for a
policy learned when the reward was at state j. To do this, we compute V (s) = ∑s′Mπi(s,s

′)R j(s′) for
every combination. The generalization is compared to a baseline of how well the SR for a random walk
does, which corresponds to a β = 0.
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Figure S17. (A) A rectangular space discretized as a triangularly latticed discrete MDP graph. Each
node is numbered according to its index in the SR and eigenvector matrix. (B) The full SR matrix M
computed for a random walk policy. Each row M(s, :) is a successor representation for some state s, and
each column M(:,s′) is the receptive field for a neuron encoding state s′. (C) The matrix U containing
eigenvectors of the SR matrix M. (D) Eigenvectors were thresholded at 0 to preclude the possibility of
negative firing rates. (E) To go from the computed matrices to plotting the receptive fields of simulated
neurons, the corresponding column of the matrix was reshaped and each node was colored according to
the value of the vector at each state. Here we demonstrate that on the SR receptive field for the neuron
encoding state 36. (F) Here we demonstrate how we go from coloring each node in the task graph as
shown in (E) to an image. (G) The same principle can be applied to plot simulated eigenvector grid cells,
as we demonstrate with the 4th eigenvector.
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Figure S18. Here we generate SR eigenvector grid fields for differently discretized environments to
compare the effects of different discretizations on the generated grid cells. The policy was a random walk
in all cases. (A) Square lattice. (B) Triangular lattice (this was used for all spatial simulations unless
otherwise specified). (C) Points are randomly, pseudo-uniformly scattered about the environment, subject
to a minimum distance between points of 0.02. The edge weight on the adjacency matrix is equal to the
diffusion distance between points, exp(−||x(s)− x(s′)||2/2σ2), which is proportional to the probability
density of the agent transitioning from location x to y under a continuous random walk in 2D (Brownian
motion).
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Figure S19. (A) SR eigenvectors under random walk policy and (B) under optimal softmax policy with
reward in center of room. The attractor state induced in the policy by the rewarded location warps the SR
eigenvectors.
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