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Learning to predict long-term reward is fundamental to the survival 
of many animals. Some species may go days, weeks, or even months 
before attaining primary reward, during which time aversive states 
must be endured. Evidence suggests that the brain has evolved mul-
tiple solutions to this reinforcement learning (RL) problem1. One 
solution is to learn a model or cognitive map of the environment2, 
which can then be used to generate long-term reward predictions 
through simulation of future states1. However, this solution is com-
putationally intensive, especially in real-world environments where 
the space of future possibilities is virtually infinite. An alternative, 
model-free solution is to learn, from trial-and-error, a value function 
that maps states to long-term reward predictions3. However, dynamic 
environments can be problematic for this approach, because changes 
in the distribution of rewards necessitate complete relearning of the 
value function.

Here we argue that the hippocampus supports a third solution: 
learning of a predictive map that represents each state in terms of its 
successor states4. This representation is sufficient for long-term reward 
prediction, is learnable using a simple, biologically plausible algorithm, 
and explains a wealth of data from studies of the hippocampus.

Our primary focus is on understanding the computational function 
of hippocampal place cells, which respond selectively when an animal 
occupies a particular location in space5. A classic and still influential 
view of place cells is that they collectively furnish an explicit map 
of space5. This map can then be employed as the input to a model-
based6,7 or model-free8,9 RL system for computing the value of the 
animal’s current state. In contrast, the predictive map theory views 
place cells as encoding predictions of future states, which can then be 
combined with reward predictions to compute values. This theory can 
account for why the firing of place cells is modulated by variables like 
obstacles, environment topology, and direction of travel. It also gener-
alizes to hippocampal coding in nonspatial tasks. Beyond the hippoc-
ampus, we argue that entorhinal grid cells10, which fire periodically 
over space, encode a low-dimensional decomposition of the predictive 
map, useful for stabilizing the map and discovering subgoals.

RESULTS
The successor representation
An animal’s optimal course of action will frequently depend on the 
location (or more generally, the ‘state’) that the animal is in. The 
hippocampus’ purported role in representing location is therefore 
considered to be a very important one. The traditional view of state 
representation in the hippocampus is that the place cells index the cur-
rent location by firing when the animal visits the encoded location and 
otherwise remain silent5. The main idea of the successor representation 
(SR) model, elaborated below, is that place cells do not encode place 
per se but rather a predictive representation of future states given the 
current state. Thus, two physically adjacent states that predict divergent 
future states will have dissimilar representations, and two states that 
predict similar future states will have similar representations.

The SR emerges naturally from the definition of value (V) often used 
in RL. The value of a current state s is defined as the expected sum of 
the reward at each future state st, multiplied by an exponentially decay-
ing discount factor   [0, 1] that downweights distal rewards: 

V s R s s s
t

t
t( ) ( ) | ( )

0
0 1g

where st is the state visited at time t (see Online Methods for formal 
mathematical detail).

The value function can be decomposed into the inner product of 
the reward function with a predictive representation of the state (the 
SR)4, denoted by M: 

V s M s s R s
s
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The SR encodes the expected discounted future occupancy of state s  
along a trajectory initiated in state s: 
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where  (st = s ) = 1 if st = s  and 0 otherwise. Thus, we decompose the 
expected discounted reward into expected discounted future state 
occupancy and the reward at each state. An estimate of the SR (denoted 
M̂ ) can be incrementally updated using a form of the temporal difference 
learning algorithm (equation (8))4,11.

The SR combines the advantages of model-free and model-based 
algorithms. Like model-free algorithms, policy evaluation is com-
putationally efficient with the SR. Additionally, factoring the value 
function into a state expectation SR term and a reward term confers 
some of the flexibility usually associated with model-based meth-
ods12. Separating the terms for state dynamics and reward permits 
rapid recomputation of new value functions when reward is intro-
duced, moved, or changed, without relearning state dynamics, as 
demonstrated in Figure 1. A model-free agent would have to relearn 
value estimates for each location in order to make value predictions, 
and a model-based agent would need to aggregate the results of time- 
consuming searches through its model before it could produce an 
updated value prediction1,4. In Supplementary Figure 1, we demon-
strate that, while changing the reward function completely disrupts 
model-free learning of a value function in a two-step tree maze, SR 
learning can quickly adjust.

Two states that predict similar successor states are necessarily simi-
larly valuable13. This makes the SR a good representational space 
for generalizing value. As adjacent states will frequently lead to each 
other, the SR will naturally represent adjacent states similarly and 
therefore be smooth over time and space in spatial tasks. As the SR 
is well defined for any Markov decision process, we can use the same 
architecture for spatial and nonspatial tasks alike.

Hippocampal encoding of the successor representation
We now turn to our main theoretical claim: that the SR is encoded 
by the hippocampus. This hypothesis is based on the central role of 
the hippocampus in representing space and context5, as well as its 
contribution to sequential decision making7. Although the SR can 
be applied to arbitrary state spaces, we focus here on spatial domains 
where states index locations.

Place cells in the hippocampus have traditionally been viewed as 
encoding an animal’s current location. In contrast, the predictive 
map theory views these cells as encoding an animal’s future locations. 
Crucially, an animal’s future locations depend on its policy, which is 
constrained by a variety of factors such as the environmental topol-
ogy and the locations of rewards. We demonstrate that these factors 
shape place cell receptive field properties in a manner consistent with 
a predictive map.

According to our model, the hippocampus represents the SR as a rate 
code across the population. Each neuron represents some possible future 
state (for example, future spatial position) in the environment. At any 
current state s, the population will encode a row of the SR matrix, M(s:).  
The firing rate of a single neuron encoding state s  in the population 
is proportional to the discounted expected number of times it will be 
visited under the present policy given the current position s. An SR 
place field refers to the firing rate of a single SR-encoding neuron at 
each state in the task and corresponds to a column of the SR matrix 
M(:,s ). This vector contains the expected number of times a single 
encoded state s  will be visited under the current policy, starting from 
any state s. In general, we will refer to place fields simulated under our 
model as ‘SR receptive fields’ or ‘SR place fields’.

In an open, two-dimensional (2D) environment, the canonical 
place cell has a gradually decaying, roughly circular firing field. In 
such an environment, the SR place fields look the same; each has a 
peak of high firing surrounded by a radius of gradually reduced firing. 

The SR model makes this prediction because under a random walk, 
the animal is likely to visit its current location and nearby locations 
immediately and visit more distant locations later. Thus, the states 
closer to the encoded location of an SR place cell will predict a higher 
expected discounted number of visits to the encoded location and will 
elicit higher firing of the encoding cell.

Figure 2a–c illustrates the experimental conditions in which the 
predictions of the SR model (Fig. 2c) depart from the predictions 
of two alternative models (Fig. 2a,b). As examples, we implement 
the three models for a 2D room containing an obstacle and for a 
one-dimensional track with an established preferred direction of 
travel. The first alternative model is a Euclidean Gaussian place field 
in which firing is related to the Euclidean distance from the field 
center (Fig. 2a); this model is usually invoked for modeling place field 
activity in open spatial domains14. The second alternative model is 
a topologically sensitive place field in which firing is related to the 
length of the shortest path around obstacles from the field center9 
(Fig. 2b). Like the geodesic place fields and unlike the Gaussian place 
fields, the SR place fields respect obstacles in the 2D environment, 
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Figure 1 Updating value with the SR following change in reward. As the 
representations of state and reward are decoupled, value functions can 
be rapidly recomputed for new reward functions without changing the 
SR. M(s,s ) gives the expected number of visits to state s  given a current 
location of s (equation (3)). (a) Successor representation of state s4, 
which corresponds to a row M(s4,:) of the SR matrix. (b–d) Illustration of 
how the value of s4 changes under different reward functions.
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as states on opposite sides of a barrier cannot occur nearby in time. 
On the one-dimensional track, the SR place fields skew opposite the 
direction of travel (Fig. 2a–c). This backward skewing arises because 
upcoming states can be reliably predicted further in advance when 
traveling repeatedly in a particular direction. Neither of the control 
models provides a way for a directed behavioral policy to interact 
with state representation, and therefore they cannot show this effect. 
Evidence for predictive skewing comes from experiments in which 
animals traveled repeatedly in a particular direction along a linear 
track (Fig. 3)15. The authors noted this as evidence for predictive cod-
ing in hippocampus15. In Figure 2d,e, we demonstrate how a future-
oriented representation evokes a forward-skewing representation in 
the population at any given point in time but how such representa-
tion implies that receptive fields for any individual cell should skew 
backwards. For a given cell to fire predictively, it must begin firing 
before its encoded state is visited, causing a backward-skewed recep-
tive field. Figure 3a,b compares the predicted and experimentally 
observed backward skewing, demonstrating that the model captures 
the qualitative pattern of skewing observed when the animal has a 
directional bias.

Consistent with the SR and geodesic models, experiments have 
shown that place fields become distorted around barriers16–18.  
As shown in Figure 3c–h, we explored the effect on the SR place 
fields of placing obstacles in a Tolman detour maze and compared 
them to experimental results obtained by Alvernhe et al.18. When a 
barrier was placed in a maze such that the animal was forced to take 
a detour, the place fields engaged in local remapping. Place fields 
near the barrier changed their firing fields significantly more than  
those further from the barrier (P < 0.001; Fig. 3c–e). When barriers 
were inserted, SR place fields change more near the path blocked  
by the barrier and changed less at more distal locations where the  
optimal policy was unaffected (Fig. 3f–h). This locality is imposed 
by the discount factor. The full set of place fields is included 
Supplementary Figure 2.

The SR model can be used to explain how hippocampal place fields 
depend on behaviorally relevant features that alter an animal’s transi-
tion policy, such as reward. Using an annular water maze, Hollup and 
colleagues demonstrated that a hidden, stationary reward affects the 
distribution of place fields19. Animals were required to swim in some 
preferred direction around a ring-shaped maze filled with an opaque 
liquid until they reached a hidden platform where they could rest. 
Hollup and colleagues found that the segment containing the plat-
form had more place fields centered within it than any other segment 
and that the preceding segment consistently had the second-largest 
number of place fields centered within it.

We simulated this task using a sequence of states connected in a 
ring. The transition policy was such that the animal lingered longer 
near the rewarded location and had a preferred direction of travel, 
matching behavioral predictions recorded by the authors19. To simu-
late this, we set the probability of transitioning in the antipreferred 
direction to 0 and increased the stay probability near the reward. As 
we show in Figure 3i–j, the SR model predicts elevated firing near 
the rewarded location and backward skewing of place fields. This 
creates an asymmetry, whereby the locations preceding the rewarded 
location also experience slightly higher firing rates. Furthermore, this 
asymmetric backward skew makes it likely that fields will overlap 
with the previous segment, not the upcoming segment. Figure 3c,d 
demonstrates how this backward skewing can equate to a backward 
shift in cell peak in the presence of noise or location uncertainty. This 
may explain the asymmetry found in the distribution of place field 
peaks around the rewarded segment.

While Hollup and colleagues found an asymmetric distribution of 
place cells about the rewarded segment, they also found that place 
fields were roughly the same size at reward locations as at other loca-
tions. In contrast, the SR predicts that fields should get larger near 
reward locations (Fig. 3b), with the magnitude of this effect modu-
lated by the discount factor (Supplementary Figs. 3–5). Thus, the SR 
is still an incomplete account of reward-dependent place fields.

Note that the SR model does not predict that place fields would 
be immediately affected by or dependent on the introduction of a 
reward. Rather, the shape of the fields should change as the animal  
gradually adjusts its policy and experiences multiple transitions con-
sistent with that policy.

In addition to the influence of experimental factors, changes in 
parameters of the model will have systematic effects on the structure 
of SR place fields. Motivated by data showing a gradient of increasing 
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field sizes along the hippocampal longitudinal axis20, we explored the 
consequences of modifying the discount factor  in Supplementary 
Figures 4 and 6. Hosting a range of discount factors along the hip-
pocampal longitudinal axis provides a multi-timescale representation 
of space. It also circumvents the problem of having to assume the 
same discount parameter for each problem or adaptively computing 
a new discount. Another consequence is that larger place fields reflect 
the community structure of the environment. In Supplementary  
Figure 3, we show how the SR fields begin to expand their fields 
to cover all states with the same compartment for a large enough 
discount. This overlap drives the clustering of states within the same 
community. A gradient of discount factors might therefore be useful 
for decision making at multiple levels of temporal abstraction13.

An appealing property of the SR model is that it can be applied 
to nonspatial state spaces. Figure 4a–d shows the SR embedding of 
an abstract state space used in a study by Schapiro and colleagues13. 
Human subjects viewed sequences of fractals drawn from random 
walks on the graph while brain activity was measured using fMRI. 
The key experimental finding was that hippocampal pattern similarity 
mirrored the community structure of the graph: states with similar 
successors were represented similarly13. The SR model recapitulates 
these findings, as states in the same community tend to be visited 
nearby in time, making them predictive of one another (Fig. 4e–g).  
A recent, related fMRI result from Garvert and colleagues21 pro-
vides further support for the idea that the hippocampus represents 
upcoming successors in a nonspatial, relational task by showing that 
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a successor model provided the best metric for explaining variance 
in recorded hippocampal adaptation.

To demonstrate further how the SR model can integrate spatial and 
temporal coding in the hippocampus, we simulated results from a 
recent study22 in which subjects were asked to navigate among pairs 
of locations to retrieve associated objects in a virtual city (Fig. 5a).  
Because it was possible to ‘teleport’ between certain location pairs, 
while others were joined only by long, winding paths, spatial Euclidean 
distance was decoupled from travel time. The authors found that 
objects associated with locations that were nearby in either space or 
time increased their hippocampal pattern similarity (Fig. 5b). Both 
factors (spatial and temporal distance) had a significant effect when 
the other was regressed out (P < 0.05; Fig. 5c). The SR predicts this 
integrated representation of spatiotemporal distance: when a short 
path is introduced between distant states, such as by a teleportation 
hub, those states come to predict one another.

Dimensionality reduction of the predictive map by entorhinal 
grid cells
Because the firing fields of entorhinal grid cells are spatially peri-
odic, it was originally hypothesized that grid cells might represent 
a Euclidean spatial metric to enable dead reckoning10. Other the-
ories have suggested that these firing patterns might arise from a 
low-dimensional embedding of the hippocampal map14. Combining 
this idea with the SR hypothesis, we argue that grid fields reflect a  

low-dimensional eigendecomposition of the SR. A key implication of 
this hypothesis is that grid cells will respond differently in environ-
ments with different boundary conditions.

The boundary sensitivity of grid cells was recently highlighted by 
a study that manipulated boundary geometry23. In square environ-
ments, different grid modules had the same alignment of the grid 
relative to the boundaries (modulo 60°, likely due to hexagonal sym-
metry in grid fields), whereas in a circular environment grid-field 
alignment was more variable, with a qualitatively different pattern 
of alignment (Fig. 6a–c). Krupic et al.23 performed a ‘split-halves’ 
analysis, in which they compared grid fields in square versus trap-
ezoidal mazes to examine the effect of breaking an axis of symmetry 
in the environment (Fig. 6d,e). They found that moving the animal 
to a trapezoidal environment, in which the left and right halves of the 
environment had asymmetric boundaries, caused the grid parameters 
to be different on the two sides of the environment. In particular, the 
spatial autocorrelograms—which reveal the layout of spatial displace-
ment at which the grid field repeats itself—were relatively dissimilar 
over both halves of the trapezoidal environment. The grid fields in 
the trapezoid could not be attributed to linearly warping the square 
grid field into a trapezoid, raising the question of how else boundaries 
could interact with grid fields.

According to the SR eigenvector model, these effects arise because 
the underlying statistics of the transition policy changes with the geom-
etry. We simulated grid fields in a variety of geometric environments  
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used by Krupic and colleagues (Fig. 6f–h and Supplementary Figs. 7a  
and 8). In agreement with the empirical results, the orientation of 
eigenvectors in the simulated circular environment tend to be highly 
variable, while those recorded in square environments are almost 
always aligned to either the horizontal or vertical boundary of the 
square (Fig. 6g,j). The variability in the circular environment arises 
because the eigenvectors are subject to the rotational symmetry of 
the circular task space. SR eigenvectors also emulate the finding that 
grids on either side of a square maze are more similar to each other 
than those on either side of a trapezoid are, because the eigenvectors 
capture the effect of these irregular boundary conditions on transi-
tion dynamics.

Another main finding of Krupic et al.23 was that when a square 
environment is rotated, grids remain aligned to the boundaries rather 
than to distal cues. SR eigenvectors inherently reproduce this effect, as 
a core assumption of the theory is that grid firing is anchored to state 
in a transition structure, which is itself constrained by boundaries. The 
complete set of the first 64 eigenvectors is shown in Supplementary 
Figures 7a and 8. While many fields conform to the canonical grid 
cell, others have skewed or otherwise irregular waveforms. Our model 
predicts that such shapes would be included in the greater variety of 
firing fields found in medial entorhinal cortex that do not match the 
standard grid-like criterion.

A different manifestation of boundary effects is the fragmenta-
tion of grid fields in a hairpin maze24. Consistent with the empirical 
data, SR eigenvector fields tend to align with the arms of the maze 
and frequently repeat across alternating arms (Fig. 7)24. While pat-
terns at many spatial scales can be found in the eigenvector popula-
tion, those at alternating intervals are most common and therefore  

replicate the checkerboard pattern observed in the experimental data 
(Supplementary Fig. 8).

To further explore how compartmentalized environments could 
affect grid fields, we simulated a recent study25 that characterized how 
grid fields evolve over several days’ exposure to a multicompartment 
environment (Fig. 8). While grid cells initially represented separate 
compartments with identical fields (repeated grids), several days of 
exploration caused fields to converge on a more globally coherent 
grid (Fig. 8d,f). With more experience, the grid regularity of the 
fields simultaneously decreased, as did the similarity between the 
grid fields recorded in the two rooms (Fig. 8c). The authors conclude 
that grid cells will tend to a regular, globally coherent grid to serve as 
a Euclidean metric over the full expanse of the enclosure.

Our model suggests that the fields are tending not toward a globally 
regular grid but toward a predictive map of the task structure, which 
is shaped partly by the global boundaries but also by the multicom-
partment structure. We simulated this experiment by initializing grid 
fields to a local eigenvector model, in which the animal has not yet 
learned how the compartments fit together. After the SR eigenvec-
tors have been learned, we relax the constraint that representations 
be the same in both rooms and let the model learn eigenvectors and 
the SR for the full environment. As the learned eigenvectors converge, 
they increasingly resemble a global grid and decreasingly match the 
predictions of the local fit (Fig. 8h–l and Supplementary Fig. 9). 
As with the recorded grid cells, the similarity of the fields in the two 
rooms drops to an average value near zero (Fig. 8i). They also have 
less-regular grids compared to those for a single-compartment rec-
tangular enclosure, explaining the drop in grid regularity observed by 
Carpenter et al. as the grid fields became more ‘global’25, as separating 
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barriers between compartments perturb the task topology from an 
uninterrupted 2D grid.

The eigenvectors of the SR are invariant to the discount factor of 
an SR matrix. This is because any SR can be written as a weighted 
sum of transition policy matrices (Supplementary Note Section 6).  
The same eigenvectors will therefore support multiple SR matri-
ces learned for the same task but with different timescales. As dis-
count is increased, the eigenvalues gradually shift their weight from 
the smaller scale to the larger scale eigenvectors (Supplementary  
Fig. 10). This mirrors data suggesting that hippocampal connections 
to and from medial entorhinal cortex vary gradually alongside place 
field spatial scale along the longitudinal axis20. Grid fields, in contrast, 
cluster in discrete modules20. The SR eigenvectors are quantized as 
discrete modules as well, as we show in Supplementary Figure 11.

A normative motivation for invoking low-dimensional projec-
tions as a principle for grid cells is that they can be used to smooth 
or ‘regularize’ noisy updates of the SR. When the projection is 
based on an eigendecomposition, this constitutes a form of spectral  
regularization26. A smoothed version of the SR can be obtained 
by reconstructing the SR from its eigendecomposition using only  

low-frequency (high eigenvalue) components, thereby filtering out 
high-frequency noise (Online Methods). This smoothing will fill 
in the blanks of a partially learned SR, enabling faster convergence 
time and a better approximation of the SR while it is still being 
learned (Supplementary Fig. 12). Spectral regularization has been 
shown to improve the approximation of large, incomplete matri-
ces in real-world domains26, and the utility of a spectral basis for 
approximating value functions in spatial and other environments 
has been demonstrated in the computational RL literature27. The 
regularization hypothesis is consistent with data suggesting that, 
although grid cell input is not required for the emergence of place 
fields, place field stability and organization depends crucially on 
input from grid cells28,29.

Subgoal discovery using grid fields
In structured environments, planning can be made more efficient 
by decomposing the task into subgoals, but the discovery of good 
subgoals is a difficult problem. The SR eigenvectors can be used for 
subgoal discovery by identifying ‘bottleneck states’ that bridge large, 
relatively isolated clusters of states and grouping together states that 
fall on opposite sides of the bottlenecks30. Because these bottleneck 
states are likely to be traversed along many optimal trajectories, they 
are frequently convenient waypoints to visit. Navigational strategies 
that exploit bottleneck states as subgoals have been observed in 
human navigation31. Furthermore, accompanying the neural results 
displayed in Figure 4, the authors found that when subjects were 
asked to parse sequences of stimuli into events, stimuli found at topo-
logical bottlenecks were frequent breakpoints13.

In a clustered or compartmentalized environment, the eigenvector(s) 
with the largest spatial scale will partition the environment across a 
bottleneck (Online Methods). We show in Supplementary Figure 13  
that the subgoals that emerge in a two-step decision task and in a  
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Figure 6 Grid fields in geometric environments. (a) Grid fields recorded 
in a variety of geometric environments23. Grid fields in trapezoid and 
square environments are split at the dividing line shown for split-halves 
analysis. (b,c) Grid fields in the square environment had more consistent 
orientations with respect to boundaries and distal cues than those in 
the circular environment. The numbers inside the grid indicate the 
fraction of cells. (d) While grid fields tend to be similar on both halves 
of a square (sq) environment, they tend to be less similar across halves 
of the irregular trapezoidal (tr) environment. Error bars show 1 s.e.m. 
(e) Autocorrelograms for different halves of trapezoidal and square 
environments in circular windows used for split-halves analysis. (f–h) 
Simulations of experimental results in a–e (n = 120 eigenvectors).
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Figure 7 Grid fragmentation in compartmentalized maze. (a) Barriers in 
the hairpin maze cause grid fields to fragment repetitively across arms24. 
The arrow indicates the direction of travel. (b) Spatial correlation between 
activity in different arms. The checkerboard pattern emerges because grid 
fields frequently repeat themselves in alternating arms. (c,d) Simulations 
of the experimental results in a and b (n = 100 eigenvectors).
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correlation recorded for a different animal. (d,f) To explain this decline in intercompartmental similarity, Carpenter and colleagues fit a local model  
(grid constrained to replicate between the two compartments) and a global model (single continuous grid spanning both compartments). They found  
that the local fit decreased across sessions, while the global fit increased, and correspondingly, the difference between the two models increased.  
(g–l) Simulation of experimental results in a–f. (i–k) Blue or black circles, individual samples; thick red line, mean; thin red lines, 1 s.d. from the mean; 
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multicompartment environment tend to fall near doorways and decision  
points: natural subgoals for high-level planning. The SR matrices 
parameterized by larger discount factors  will project predomi-
nantly on the large-spatial-scale grid components (Supplementary 
Fig. 10). The relationship between more temporally diffuse, abstract 
SRs, in which states in the same room are all encoded similarly 
(Supplementary Fig. 6), and the subgoals that join those clusters 
can therefore be captured by different eigenvalue thresholds.

It has been shown experimentally that entorhinal lesions impair 
performance on navigation tasks and disrupt the temporal ordering 
of sequential activations in hippocampus, while leaving performance 
on location-recognition tasks intact29,32. This suggests a role for grid 
cells in spatial planning and encourages us to speculate about a more 
general role for grid cells in hierarchical planning.

DISCUSSION
The hippocampus has long been thought to encode a cognitive map, 
but the precise nature of this map is elusive. The traditional view, 
that the map is essentially spatial5, is not sufficient to explain some 
of the most striking aspects of hippocampal representation, such as 
the dependence of place fields on an animal’s behavioral policy and 
the environment’s topology. We argue instead that the map is essen-
tially predictive, encoding expectations about an animal’s future state. 
This view resonates with earlier ideas about the predictive function 
of the hippocampus7,15,33–36. Our main contribution is a formaliza-
tion of this predictive function in a reinforcement-learning frame-
work, offering a new perspective on how the hippocampus supports  
adaptive behavior.

Our theory is connected to earlier work by Gustafson and Daw9 
that showed how topologically sensitive spatial representations reca-
pitulate many aspects of place cells and grid cells that are difficult 
to reconcile with a purely Euclidean representation of space. They 
also showed how encoding topological structure greatly aids rein-
forcement learning in complex spatial environments. Earlier work 
by Foster and colleagues8 also used place cells as features for RL, 
although the spatial representation did not explicitly encode topologi-
cal structure. While these theoretical precedents highlight the impor-
tance of spatial representation, they leave open the deeper question 
of why particular representations are better than others. We showed 
that the SR naturally encodes topological structure in a format that 
enables efficient RL.

The work is also related to work by Dordek et al.14, who demon-
strated grid-like activity patterns from principal components of the 
population activity of simulated Gaussian place cells. As we mentioned 
in the Results, one point of departure between empirically observed 
grid cell data and the SR eigenvector account is that, in rectangular 
environments, SR eigenvector grid fields can have different spatial 
scales aligned to the horizontal and vertical axis (Supplementary  
Fig. 7)10. In grid cells, the spatial scales tend to be approximately con-
stant in all directions unless the environment changes37. However, 
Dordek et al. found that when the components were constrained 
to have non-negative values and the constraint that components be 
orthogonal was relaxed, the scaling became uniform in all direc-
tions and the lattices became more hexagonal14. This suggests that  
the difference between SR eigenvectors and recorded grid cells is not 
fundamental to the idea that grid cells are doing spectral dimension-
ality reduction. Rather, additional constraints such as non-negativity 
are required.

The SR can be viewed as occupying a middle ground between 
model-free and model-based learning12. Model-free learning 
requires storing a look-up table of cached values estimated from the 

reward history1. By decomposing the value function into a predictive  
representation and a reward representation, the SR allows an agent to 
flexibly recompute values when rewards change, without sacrificing 
the computational efficiency of model-free methods4. Model-based 
learning is robust to changes in the reward structure, but it requires 
inefficient algorithms, like tree search, to compute values1.

Certain behaviors often attributed to a model-based system can 
be explained by any model in which the reward function is learned 
separately from predictions based on state dynamics. For instance, 
the ‘context pre-exposure facilitation effect’ refers to the finding that 
contextual fear conditioning is acquired more rapidly if the animal 
has the chance to explore the environment for several minutes before 
the first shock38. The facilitation effect is classically believed to arise 
from the development of a conjunctive representation of the context 
in the hippocampus, though areas outside the hippocampus may also 
develop a conjunctive representation in the absence of the hippoc-
ampus, albeit less efficiently39. The SR provides a somewhat differ-
ent interpretation: over the course of pre-exposure, the hippocampus 
develops a predictive representation of the context, such that subse-
quent learning is rapidly propagated across space. Supplementary 
Figure 14 shows a simulation of this process and how it accounts for 
the facilitation effect.

Much prior work on prospective coding in the hippocampus has 
drawn inspiration from the well-documented ordered temporal struc-
ture of firing in hippocampus relative to the theta phase7,40 and has 
considered the many ways in which replaying hippocampal sweeps dur-
ing sharp wave-ripple events might support model-based, sequential 
forward planning41–43. The SR model, in contrast, is a predictive rate 
code, drawing its inspiration from the backward expansion of place 
cells that occur independently of sweeps and theta precession (see 
Supplementary Note Section 1 for more discussion)44,45.

The SR cannot replace the full functionality of model-based sweeps. 
However, it might provide a useful adjunct to the efficiency of this 
functionality. One way to combine the strengths of model-based 
planning with the SR would be to use the SR to extend the range of 
forward sweeps. In Supplementary Figure 15, we illustrate how per-
forming sweeps in the successor representation space (Supplementary  
Fig. 15f,g) can extend the range of predictions, making the hippoc-
ampal representations a more powerful substrate for planning. This is 
tantamount to a bootstrapped search algorithm46.

The SR model we describe is trained on the policy the animal has 
experienced. When the reward is changed, the new value function 
computed from the existing SR is initially based on the previous 
policy. The new optimal policy is unlikely to be the same as the old 
one, which means that the new value function must be refined as the  
animal optimizes its behavior. This is a tradeoff encountered with 
all learning algorithms that learn cached statistics under the current 
policy dynamics.

In some cases, the previous SR will be a reasonable initialization 
(Supplementary Fig. 15). Certain aspects of a task’s dynamics might 
not be subject to the animal’s control; notably, the underlying topol-
ogy of the task. If new goals or subgoals are found in the vicinity of old 
goals, many policy components will generalize. It is hard to make com-
prehensive claims about whether or not the space of naturalistic tasks 
adheres to these properties in general. However, recent computational 
work has demonstrated that deep successor features (a more powerful 
generalization of the successor representation model) generalize well 
across changing goals and environments in the domain of navigation47. 
Furthermore, the SR for a policy that supports more random explora-
tion will naturally promote generalization. Spectral regularization can 
promote this by smoothing the SR over actions.
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When the SR fails to support value computation given the new 
reward, other mechanisms can compensate. Models such as Dyna 
update cached statistics using sweeps through a model, revising them 
flexibly46. The original form of Dyna demonstrated how model-
based and model-free mechanisms could collaboratively update a 
value function. However, the value function can be replaced with 
any statistic learnable through temporal differences, including the 
SR, as demonstrated by recent work12. Furthermore, there is evidence 
from humans that when reward is changed, revaluation occurs in a 
policy-dependent manner, consistent with the kind of partial flex-
ibility conferred by the SR48.

Recent work has elucidated connections between models of episodic 
memory and the SR. Specifically, Gershman et al. demonstrated that the 
SR is closely related to the temporal context model (TCM) of episodic 
memory11. The core idea of TCM is that items are bound to their tem-
poral context (a running average of recently experienced items), and 
the currently active temporal context is used to cue retrieval of other 
items, which in turn cause their temporal context to be retrieved. The 
SR can be seen as encoding a set of item–context associations. The con-
nection to episodic memory is especially interesting given the crucial 
mnemonic role played by the hippocampus and entorhinal cortex in 
episodic memory. Howard and colleagues49 have laid out a detailed 
mapping between TCM and the medial temporal lobe (including 
entorhinal and hippocampal regions).

Spectral graph theory provides insight into the topological struc-
ture encoded by the SR. We showed specifically that eigenvectors of 
the SR can be used to discover a hierarchical decomposition of the 
environment for use in hierarchical RL. Spectral analysis has also fre-
quently been invoked as a computational motivation for entorhinal 
grid cells (for example, Krupic, Burgess & O’Keefe50). The fact that 
any function can be reconstructed by sums of sinusoids suggests that 
the entorhinal cortex implements a kind of Fourier transform of space. 
However, Fourier analysis is not the right mathematical tool when 
dealing with spatial representations in a topologically structured envi-
ronment (Supplementary Fig. 13b), as we do not expect functions to 
be smooth over boundaries in the environment. This is precisely the 
purpose of spectral graph theory: instead of being maximally smooth 
over Euclidean space, the eigenvectors of the SR (equivalently, the 
eigenvectors of the graph Laplacian) embed the smoothest approxima-
tion of a function that respects the graph topology28 (Supplementary 
Note Sections 2–7).

In conclusion, the SR provides a unifying framework for a wide range 
of observations about the hippocampus and entorhinal cortex. The 
multifaceted functions of these brain regions can be understood as 
serving a superordinate goal of prediction.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
The reinforcement learning problem. We consider the problem of RL in a 
Markov decision process consisting of the following elements51: a set of states 
(for example, spatial locations), a set of actions, a transition distribution P(s |s,a) 
specifying the probability of transitioning to state s  from state s after taking action 
a, a reward function R(s) specifying the expected immediate reward in state s, and 
a discount factor   [0, 1] that downweights distal rewards. An agent chooses 
actions according to a policy  (a|s) and collects rewards as it moves through the 
state space. The value of a state is defined formally as the expected discounted 
cumulative future reward under policy  (same as equation (1), with dependence 
on  included in notation here):

V s R s s s
t

t
t( ) ( ) | ( )

0
0 4g

where st is the state visited at time t. Our focus here is on policy evaluation 
(computing V). In our simulations we feed the agent the optimal policy; in the 
Discussion we discuss algorithms for policy improvement. To simplify notation, 
we assume implicit dependence on  and define the state transition matrix T, 
where 

T s s a s P s s a
a

( , ) ( | ) ( | , ) ( )p 5

Task simulation. Environments were simulated by discretizing the plane into 
points and connecting these points along a triangular lattice (Supplementary 
Fig. 17a). The adjacency matrix A was constructed such that A(s,s ) = 1 wherever 
it is possible to transition between states s and s  and 0 otherwise. The effect of 
different discretizations is considered in Supplementary Note Section 8 and 
Supplementary Figure 18.

The transition probability matrix T was defined such that T(s,s ) is the prob-
ability of transitioning from state s to s  (equation (5)). Under a random walk 
policy, where the agent chooses randomly among all available transitions, the 
transition probability distribution is uniform over allowable transitions. This 
amounts to simply normalizing A so that each row of A sums to 1 to meet the 
constraint that all possible transitions from s must sum to 1. When reward or 
punishment was included as part of the simulated task, we computed the optimal 
policy using value iteration and a softmax value function parameterized by   
(ref. 51). Supplementary Note Section 8 and Supplementary Figure 4 consider 
the effect of manipulating the softmax parameter .

Parameters for all simulations are included in Supplementary Note Section 8.

SR computation. The successor representation is a matrix, M, where M(s,s ) is 
equal to the discounted expected number of times the agent visits state s  start-
ing from s (see equation (3) for the mathematical definition and Supplementary 
Fig. 17b for an illustration). When the transition probability matrix is known, 
we can compute the SR as a discounted sum over transition matrices raised to 
the exponent t. The matrix Tt is the t-step transition matrix, where Tt(s,s ) is the 
probability of transitioning from s to s  in exactly t steps. 

M T
t

t t

0
6g ( )

This sum is a geometric matrix series, and for  < 1, it converges to the follow-
ing finite analytical solution: 

M T I T
t

t t

0

1 7g g( ) ( )

where I is the identity matrix. In most of our simulations, the SR was computed 
analytically from the transition matrix using this expression. The effects of 
manipulating the discount factor is discussed in Supplementary Note Section 8 
and illustrated in Supplementary Figure 5.

The SR can be learned online using the temporal differences update rule shown 
below after each transition4 (also see ref. 51 for background on TD learning;  

(4)(4)

(5)(5)

(6)(6)

(7)(7)

Fig. 8 and Supplementary Figs. 2, 10, and 13). After observing a transition st  
st + 1, the estimate is updated according to 

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ), , ( ) , ,M s s M s s s s M s s M s st t t t t t t t t1 1h g ( )8

where  is a learning rate (unless specified otherwise,  = 0.1 in our simulations). 
The form of this update is identical to the temporal difference learning rule for 
value functions51, except that in this case the reward prediction error is replaced 
by a successor prediction error (the term in brackets). Note that these prediction 
errors are distinct from state prediction errors used to update an estimate of the 
transition function52; the SR predicts not just the next state but a superposition 
of future states over a possibly infinite horizon. The transition and SR functions 
only coincide when  = 0. We assume the SR matrix M is initialized to the identity 
matrix, meaning M(s,s ) = 1 if s = s , and M(s,s ) = 0 if s  s . This initialization can 
be understood to mean that each state will necessarily predict only itself.

Eigenvector computation and spectral regularization. In generating the grid 
cells shown, we assume a random walk policy, which is the maximum entropy 
prior for policies (see ref. 53 for why maximum entropy priors can be good priors 
for regularization). However, as the learned eigenvectors are sensitive to the sam-
pling statistics, our model predicts that regions of the task space more frequently 
visited would come to be over-represented in the grid space (see Supplementary 
Fig. 19 for examples). After computing the eigenvectors, we then threshold them 
at 0 so that firing rates are not negative (Supplementary Fig. 17d).

For Figure 8, eigenvectors were computed incrementally using candid covari-
ance-free incremental PCA (CCIPCA), an algorithm that efficiently implements 
stochastic gradient descent to compute principal components54 (eigenvectors and 
principal components are approximately equivalent in this domain). Spectral 
regularization was implemented by reconstructing the SR from the truncated 
eigendecomposition (Supplementary Note Section 4 and Supplementary  
Fig. 12). Spectral reconstruction for Supplementary Figure 12 was implemented 
by shifting the eigenvalues to place more weight on low-frequency eigenvectors 
rather than imposing a hard cutoff on high-frequency eigenvectors and by recon-
structing an SR that corresponded to a larger discount factor. This allowed larger-
discount SRs to be more exactly approximated. The reconstructed SR matrices 
Mrecon were compared to the ground truth matrix Mgt by taking the correla-
tion between Mrecon and Mgt (Supplementary Fig. 12). This measure indicates 
whether policies based on SR-based value functions for different reward functions 
will to tend send the animal in the right direction.

Subgoal partitioning with normalized min-cut. In Supplementary Figure 13, 
we show subgoals computed from the first k eigenvectors of the graph Laplacian. 
The formal problem of identifying bottlenecks in a graph to produce subgoals 
is known as the k-way normalized min-cut problem. An approximate solution 
can be obtained using spectral graph theory55. First, the top log k eigenvectors 
of a matrix known as the graph Laplacian are thresholded such that negative ele-
ments of each eigenvector go to 0 and positive elements go to 1. Edges that travel 
between these two labeled groups of states are ‘cut’ by the partition, and nodes 
adjacent to these edges are a kind of bottleneck subgoal. The first subgoals that 
emerge will lie on the edges cut by the lowest-frequency eigenvector, and these 
subgoals will approximately lie between the two largest, most separable clusters in 
the partition (see Supplementary Note Section 5 for more detail). A prioritized 
sequence of subgoals is obtained by incorporating increasingly higher frequency 
eigenvectors that produce partition points nearer to the agent. The SR shares its 
eigenvectors with the graph Laplacian (Supplementary Note Section 5), making 
SR eigenvectors equally suitable for this process of subgoal discovery.

Plotting receptive fields. To visualize place fields under the SR model, we cre-
ated heat maps of how active each SR-encoding neuron would be at each state in 
the environment (Supplementary Fig. 17e,f). These maps show the discounted 
expected number of times the neuron’s encoded state s will be visited from each 
other state in the environment and correspond to taking a column M(s,:) from 
the SR matrix and reshaping it so that each element appears at the x,y location 
of its corresponding state. We use the same reshaping and plotting procedure to 
visualize eigenvector grid cells, using the columns of the thresholded eigenvector 
matrix U in place of M.

(8)(8)
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Statistics.  In Figure 8, spatial similarity was computed by taking the Fisher z 
transform of spatial correlation between fields. Statistics shown (mean, s.d.) were 
computed in this z space.

Grid field quantifications paralleled the analyses of Krupic et al.23: an ellipse 
was fit to the six peaks closest to the central peak, and ‘orientation’ refers to 
the orientation of the main axes (a,b). ‘Correlation’ always refers to the Pearson 
correlation, ‘spatial correlation’ refers to the Pearson correlation computed over 
points in space (as opposed to points in a vector), and spatial autocorrelation 
refers to the 2D autoconvolution.

To measure similarity between halves of the environment in Figure 6, we (i) 
computed the spatial autocorrelation for each half, (ii) selected a circular window 
in the center of the autocorrelation, and (iii) computed the correlation between 
autocorrelations of the two halves in the window. This paralleled the analysis per-
formed by Krupic et al.23 and provides a measure of grid similarity across halves 
of the environment. The circular window is used to control for the fact that the 
boundaries of the square and trapezoid in the two halves of the respective envi-
ronments differ. The mean similarity was not computed in Fisher z-transformed 
space, as one would normally do, but rather in correlation space. This was because 
the similarity for many of the square eigenvectors and at least one trapezoidal 
eigenvector was exactly 1, for which z = `. A dot plot is superimposed over this 
plot so the statistics of the distribution can be visualized.

In evaluating our simulations of the grid fields reported by Carpenter et al.25 
(Fig. 8), the local model consisted of the set of 2D Fourier components bounded 

by the size of the compartment, and the global model consisted of the set of 2D 
Fourier components bounded by the size of the environment. ‘Model fit’ was 
measured for each eigenvector by finding maximum correlation over all model 
components between the eigenvector and model component.

Code availability. These results were generated using code written in Matlab. 
Code is available at https://github.com/kstach01/predictive-hc.

Data avilablity. Data sharing is not applicable to this article as no datasets were 
generated or analyzed during the current study.

A Life Science Reporting Summary for this paper is available.
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