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A B S T R A C T

How are people able to understand everyday physical events with such ease? One hypothesis suggests people
use an approximate probabilistic simulation of the world. A contrasting hypothesis is that people use a
collection of abstractions or features. While it has been noted that the two hypotheses explain complementary
aspects of physical reasoning, there has yet to be a model of how these two modes of reasoning can be
used together. We develop a ‘‘blended model’’ that synthesizes the two hypotheses: under certain conditions,
simulation is replaced by a visuo-spatial abstraction (linear path projection). This abstraction purchases
efficiency at the cost of fidelity, and the blended model predicts that people will make systematic errors
whenever the conditions for applying the abstraction are met. We tested this prediction in two experiments
where participants made judgments about whether a falling ball will contact a target. First, we show that
response times are longer when straight-line paths are unavailable, even when simulation time is held fixed,
arguing against a pure-simulation model (Experiment 1). Second, we show that people incorrectly judge the
trajectory of the ball in a manner consistent with linear path projection (Experiment 2). We conclude that
people have access to a flexible mental physics engine, but adaptively invoke more efficient abstractions when
they are useful.
1. Introduction

From catching a phone as it slides off an arm-rest, to tossing keys
to a friend, to building a tower of blocks with a child, people adeptly,
quickly, and automatically reason about the physics of everyday ob-
jects. This ‘intuitive physics’ is a core component of commonsense
reasoning (Kubricht, Holyoak, & Lu, 2017; Lake, Ullman, Tenenbaum,
& Gershman, 2017), and much of it is early-developing or potentially
innate, cross-cultural, and shared with non-human animals (Bremner,
Slater, & Johnson, 2015; Spelke, 2022; Spelke & Kinzler, 2007).

The subjective effortlessness of intuitive physics masks the complex-
ity of the underlying computations. Despite a great deal of progress
over the past decade, state-of-the-art artificial intelligence systems
still struggle to reason about everyday physical phenomena, including
stability (Buschoff, Akata, Bethge, & Schulz, 2023; Zhang, Wu, Zhang,
Freeman, & Tenenbaum, 2016), collisions (Smith et al., 2019), trajec-
tories (Chang, Ullman, Torralba, & Tenenbaum, 2016), and physical
puzzles (Cherian, Peng, Lohit, Smith, & Tenenbaum, 2023). The inabil-
ity of our current best engineered AI systems that aim to mimic human
intelligence and match human-level intuitive physics shows that the
problem is non-trivial, and that we still lack a comprehensive model
of how humans engage in intuitive physics.

∗ Corresponding author at: Department of Psychology, Harvard University, 52 Oxford St, Cambridge MA 02138, USA.
E-mail address: fsosa@fas.harvard.edu (F.A. Sosa).

There have been several different approaches to modeling the com-
putations that underlie intuitive physics. Each approach has had success
in explaining different phenomena. One approach posits that people
reason about physics through an approximate mental simulation of the
world (Battaglia, Hamrick, & Tenenbaum, 2013; Hamrick, Battaglia,
Griffiths, & Tenenbaum, 2016; Hegarty, 2004; Smith et al., 2024). By
contrast, alternatives to mental simulation include reasoning based on
visual or physical features (Baillargeon, 2002; Fragkiadaki, Agrawal,
Levine, & Malik, 2015; Lerer, Gross, & Fergus, 2016; Mottaghi, Bagher-
inezhad, Rastegari, & Farhadi, 2016), heuristics (Gilden & Proffitt,
1989; Nusseck, Lagarde, Bardy, Fleming, & Bülthoff, 2007; Proffitt,
Kaiser, & Whelan, 1990), logical rule-like structures (Davis, 1990;
Siegler & Chen, 1998), qualitative reasoning (Forbus, 1988), deep
learning (Piloto, Weinstein, Battaglia, & Botvinick, 2022), and pre-
Newtonian theory-like structures (McCloskey & Kohl, 1983). While
these alternatives to mental simulation differ significantly in their
details, they share a notion of abstracting away from some of the
details necessary for a simulation. We briefly consider strengths and
weaknesses of mental simulation and these alternative accounts, and
consider previous work to unify the two modes of reasoning. Then, we
turn to our proposal of how these accounts of physical reasoning can
https://doi.org/10.1016/j.cognition.2024.105995
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Cognition 254 (2025) 105995 
be unified into a single model, and our experiments that test this new
‘‘blended model’’ against mental simulation and alternative models.

Models of intuitive physics based on mental simulation have quan-
titatively and qualitatively accounted for many aspects of physical
judgment, including judgments about object motion (Smith & Vul,
2013), task-relevant and goal-oriented object properties (Bramley, Ger-
tenberg, Tenenbaum, & Gureckis, 2018), collisions (Sanborn, Mans-
nghka, & Griffiths, 2013; Smith, Battaglia, & Tenenbaum, 2023),

mass (Hamrick et al., 2016), fluids (Bates, Yildirim, Tenenbaum, &
Battaglia, 2019), causality (Gerstenberg & Stephan, 2021; Sosa, Ullman,

enenbaum, Gershman, & Gerstenberg, 2021), and stability (Battaglia
t al., 2013). Simulation also captures important aspects of the de-
elopment of intuitive physics, and has been used to explain physical
easoning in pre-verbal infants (Téglás et al., 2011), build computa-

tional models that pass developmental benchmarks (Smith et al., 2019),
and explain how children adapt cognitive strategies with respect to life
xperience (Allen et al., 2021) and goal-directed behavior (Bramley

& Ruggeri, 2022). Mental physical simulation has also found support
from recent work in neuroscience that points to a ‘‘physics engine’’ in
he brain (Fischer, 2021; Fischer, Mikhael, Tenenbaum, & Kanwisher,

2016; Schwettmann, Tenenbaum, & Kanwisher, 2019).
Despite the success of mental simulation accounts, they have been

criticized on both empirical and theoretical grounds (Kubricht et al.,
2017). Empirically, people sometimes deviate from the predictions
made by simulation. For example, people may systematically devi-
ate from the predictions of an accurate simulation when they reason
about the trajectories of moving objects (McCloskey, 1983; McCloskey,
Caramazza, & Green, 1980), predict trajectories past collision (DiSessa,
1982), judge the relative probabilities of events happening (Ludwin-
Peery, Bramley, Davis, & Gureckis, 2021), evaluate the mechanics of
otation (Proffitt et al., 1990) and pulley systems (Hegarty, 1992), and
o on. Some of these issues can be resolved through a mental simulation

that uses principled approximations (Bass, Smith, Bonawitz, & Ullman,
2021; Ullman, Spelke, Battaglia, & Tenenbaum, 2017), or by using
timuli that are more familiar (Kaiser, Jonides, & Alexander, 1986),

or more realistic/dynamic (Kaiser, Proffitt, & Anderson, 1985; Kim &
Spelke, 1999) but the general point stands. Mental simulation has also
been challenged on theoretical grounds (Ludwin-Peery et al., 2021;
Marcus & Davis, 2013). One of the principal theoretical challenges
s that simulating the motion of every objects in a scene is slow,
omputationally expensive, memory taxing, and unnecessary compared
o simpler alternatives.

While the non-simulation approaches to intuitive physics are not a
nified camp, they often point to simplicity and speed as advantages.
or example, according to models based on a bottom-up analysis of per-
eptual features (Barsalou, 1999), people assess the impending collapse

of a teetering tower by considering features like its height or top-
heaviness. Such calculations are seemingly done faster than a program
hat constructs the scene and runs it forward in time. Also, more recent
terations of feature-based accounts leverage deep neural networks
o operationalize learning physical reasoning from experience. This

includes learning to reason about stability (Conwell & Alvarez, 2019;
Lerer et al., 2016), trajectory prediction (Piloto et al., 2022; Zhang
t al., 2016), and the inference of physical variables like mass (Wu,
ildirim, Lim, Freeman, & Tenenbaum, 2015).

While useful, feature-based accounts face two major challenges.
First, they do not capture the flexibility of human physical inferences.
To go back to the example of block-towers: people can determine
the stability of a tower of blocks, but also predict the tower’s falling
direction, anticipate the scattering distance of the blocks, imagine
possible outcomes when two blocks are glued, consider the impact of
striking the tower at an angle, and generally answer a host of other
questions about the way the scene could unfold (Battaglia et al., 2013).
Such generalization is handled by accounts that construct and simulate
scenes. By contrast, feature-based models often require retraining for
ach new query, and exhibit poor generalization from one query to
2 
another. A second challenge for feature-based accounts is that quanti-
ative comparisons to human performance often show low correlations
etween people and these models when tested outside their training
ets (e.g. Bear et al., 2021).

Given the successes of, and challenges to, both simulation and
on-simulation accounts, it has been proposed that humans have the
bility to use both flexible simulation models and efficient abstractions

in tandem (Smith et al., 2023). We refer to non-simulation accounts
broadly as abstractions due to non-simulation accounts often utiliz-
ing less information to perform prediction compared to simulation
accounts, for example by relying on high-level visual features rather
han low-level variables such as instantaneous velocity, mass, or others
equired for computing dynamic forces. By utilizing less information to
erform prediction, the abstraction often happening in non-simulation
ccounts occurs at the algorithm or process level. To motivate the
ynthesis, consider the following thought experiment: place a straight
traw vertically above a cup, put a small round bead into the top of
he straw, and let go of the bead. Will the bead fall into the cup? The
nswer is an almost immediate ‘yes’. Now suppose the straw is twice as
ong. The answer is still an obvious ‘yes’, and it does not take twice as

long to answer that. On its own, this is an argument against simulation.
However, now consider dropping the bead into a convoluted straw, the
ind that might be handed out as a party favor. The answer becomes
on-obvious, as the bead might get stuck in the twists and turns. The
ime to come up with an answer now depends on how convoluted the
traw is. But how does one switch between simulation and abstraction
n a flexible, efficient manner?

Previous work has suggested that one way by which people might
arbitrate between simulation and abstraction is by applying either
simulation or abstraction on a per-scenario basis, based on the expected
value of that mode of reasoning for that scenario (Smith et al., 2023).

onsidering our previous thought experiment about straws: the model
n Smith et al. (2023) would suggest that for the straight straw, we

apply a simple rule that says the bead will fall out the other end
of the straw, and for the convoluted straw we would use simulation
to determine whether the bead gets stuck in the loops of the straw
or passes through and ultimately reaches the cup, and that there is
some sort of cost-driven control mechanism outside of the model that
determines when to apply one or the other. While this model is able
to explain people’s behavior on physical reasoning puzzles, we believe
that a model of intuitive physics must be able to explain how people
select between which mode of reasoning to use in real time, not on
a per-scenario basis. For example, what if we had a semi-convoluted
straw with only one small loop whose tails are long and straight?
Do we use simulation or abstraction for the whole straw or do we
selectively use simulation and abstraction where it is best fit for the
straw, e.g. abstraction for the straight portions and simulation for the
loop? While the previous work discussed would say it is either/or, we
suggest people flexibly balance the inferences made by both modes of
reasoning for a single scenario in real time.

In this work, we formalize the suggestion that people adaptively
rade off simulation and abstraction based on threshold conditions that
re computed in real-time, allowing for our model to use simulation
nd abstraction on-the-fly as it sees fit (Fig. 1). We test our proposal

experimentally using established experimental designs from previous
work in intuitive physics (e.g. Allen, Bakhtin, Smith, Tenenbaum, &
van der Maaten, 2020; Ludwin-Peery et al., 2021). The blended model
suggests that when people mentally simulate the motion of objects,
they periodically check whether certain threshold conditions are met
if simulation were to be replaced by an appropriate abstraction at
that point in time. If the conditions are met, the person’s belief of
the next state of the scene is adjusted according to the appropriate
abstraction, rather than being updated according to simulation. This
real-time trade-off short-circuits simulation and saves on computational
resources. If the conditions are not met, mental simulation continues

as usual. Importantly, it is not the case that our model completely
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Fig. 1. Single pass through the blended model: (a) The model is given the current state as input, including the position and velocity of the ball, (b) The model predicts two
future states, one using 𝑁 steps of partial simulation (orange line), and one using a path-projection abstraction of length 𝐷 (blue line), (c) the model determines the similarity
of the two possible states (cosine similarity between resulting translation vectors). If the similarity 𝑆𝐶 (𝜃) is above a threshold 𝐸, path projection determines the next state. If
similarity is below the threshold, partial simulation determines the next state. The next state is handed back to the model as the new current state and the process is repeated until
the end state of the scenario. Importantly, if the amount of partial simulation steps 𝑁 is smaller than the length of the path-projection D, this can result in plausible cognitive
resource-saving. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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simulates a scene, also considers an abstraction, and then trades off the
two. Such a model would be both cognitively implausible and not result
in any resource savings over simply simulating the scene. Rather, as we
detail below and in the Modeling section, the blended model computes
a possible next state of the scene according to a partial simulation
of 𝑁 steps, and computes an abstraction of path length D in parallel.
Computational and cognitive savings emerge from this process in the
event that abstraction is favored over simulation for a given inference
step, and if the path traveled by the abstraction D is greater than the
path traveled by the 𝑁 steps of simulation.

While many different abstractions might be used to get around sim-
ulation, here we focus on an abstraction we term linear path projection.
The abstraction is blended with simulation as follows: At any given
moment 𝑡 in a mental simulation, the blended model computes two
possible future states: one according to abstraction, and one according
to partial simulation. In our case, the future states are predicted by
translating an object in a straight line path that starts at the moving
object’s current location 𝑥𝑡, 𝑦𝑡, and extends for some specified distance
𝐷 in the direction of the object’s velocity. This leads to a prediction
of the next state according to abstraction. At the same time, a second
possible future state of the object is predicted by mental simulation to
 minimal degree of 𝑁 ticks in parallel with abstraction. This partial

simulation is what ensures that abstraction can lead to computational
savings, as discussed above. If the similarity of the future trajectories
from abstraction and partial simulation is higher than a threshold, the
blended model updates its internal belief of the next state of the scene
according to the prediction made by abstraction. If similarity is below a
threshold, the partial simulation is used to update the blended model’s
state instead. The process is then repeated (see the Modeling section
for more information). To the degree that the straight line projection

oves the object past the point of partial simulation (i.e., D>N),
t can save significantly on the computational costs associated with
imulation. However, such computational cost-cutting comes with a
rice: it can lead to systematic deviations from the true trajectory.

In two experiments, we contrasted the predictions of the blended
odel with those of two models of pure simulation and two models

of pure abstraction. Both experiments asked participants to view 2D
scenes in which a ball was dropped under gravity, and to rapidly judge
whether the ball will eventually reach a goal location. Experiment
1 found that response times monotonically increased in simulation
time, as predicted by simulation models. However, as predicted by
the blended model, response times were shorter for judgments with
straight paths compared to judgments without straight paths, even
when the true simulation time was the same for both. Experiment
2 found that people give systematically wrong answers, as predicted
by the use of linear path projection. Taken together, these results
suggest people flexibly combine simulation and abstractions to solve
physical reasoning problems, as captured by a blended model that uses

a combination of simulation and a visuo-spatial abstraction. f

3 
2. Methods

2.1. Transparency and openness statement

The experiments and analyses presented here were not pre-
egistered. We make all data, models, and analyses publicly available

in the project’s Github repository: https://github.com/flxsosa/physics_
abstraction.

2.2. Participants

Participants were recruited using Prolific (www.prolific.co) for both
xperiment 1 (n = 50, of which 20 identified as female, 𝑀𝑎𝑔 𝑒 = 29) and

Experiment 2 (N = 49, of which 20 identified as female, 𝑀𝑎𝑔 𝑒 = 36).
All participants provided informed consent before partaking in both
experiments, and were compensated for their time ($12.00/h). Three
participants were excluded from Experiment 1, and two participants
were excluded from Experiment 2 due to failing comprehension checks.

2.3. Procedure

For both experiments, participants were told that they would be
iewing videos depicting physical scenes containing a ball, a goal, and
 random number of slides. Participants observed the ball falling for
 s (64 steps of simulation), after which it vanished. Subsequently,
articipants were tasked with determining whether the ball would
ltimately collide with the goal (see Fig. 2). The order of the stimuli

were randomized across participants. Participants were told to use their
keyboard to respond with ‘‘Yes’’ or ‘‘No’’, with the assigned keys for
either response being randomized across participants. For each scene,
a participant would watch a short 1-second video of the ball beginning
to fall, as it fades out of scene. Participants were told to imagine the
ball was still falling, and to respond as quickly as possible to the query.

Before the main experiment, participants were also shown four
example stimuli, to familiarize them with the physical dynamics of
the scenes, and to check their comprehension of the task. The four
nitial stimuli consisted of two videos in which the ball did not fade

out (familiarization), followed by two videos in which the ball faded
out after 1 s just as it would in the actual trials (comprehension).

omprehension was passed if participants correctly predicted whether
he ball collided with the goal or not at the end of the video. Only after

passing the comprehension trial were participants allowed to move on
to the main experiment. Participants who failed the comprehension
heck more than two times were removed from further analysis (N = 3
or Experiment 1, N = 2 for Experiment 2).

https://github.com/flxsosa/physics_abstraction
https://github.com/flxsosa/physics_abstraction
https://github.com/flxsosa/physics_abstraction
http://www.prolific.co
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2.4. Stimuli

Experiment 1 used 48 stimuli, and Experiment 2 used 58 stimuli.
Order of presentation for stimuli were randomized across participants
for both experiments. All stimuli were designed using the 2D rigid-body
hysics engine Pymunk.1 Each stimulus showed a single scenario with

a ball (a randomly-colored circle), goal (a randomly-colored rectangle),
and slides (narrow, rigid black rectangles) set atop a gray background.
After generating the stimuli, a random subset of stimuli was flipped
about the horizontal axis before being shown to participants. All stimuli
an be viewed in the project’s GitHub repository (see our Transparency

and openness statement above).

2.4.1. Physics engine parameters
The objects in Pymunk are rigid bodies defined about a set of

ertices. In our stimuli, the ball is defined as a rigid circle with radius
f 20 and a mass of 10, and the slides are defined as rigid polygons

with infinite mass. Additionally, Pymunk also accepts values for global
variables that govern the dynamics of simulations, such as gravity,
object elasticity, and friction. For our work here, we set these values
such that simulations appeared realistic, and note that the values
themselves are unitless. Gravity set was to a value so that objects fell at
ealistic speeds (i.e., (0, 300)), elasticity was set to a value that produced
ealistic bouncing when a ball collided with a slide (i.e., 1.0). Friction
s replicated via damping in Pymunk, which was also set to a value that
roduced realistic effects of friction on objects (i.e., 0.6). The settings of
hese parameters and their effects on the dynamics of the scenes in our
xperiments can be observed in the projects Github repository under
xperiments/experiment1/img/stimuli/comprehension.
he URL for the repository is noted in our Transparency and openness
tatement above.

2.4.2. Experiment 1
The stimulus set for Experiment 1 consisted of 48 scenarios. The

bject placements in each stimulus were randomly generated according
o a 3 𝑥 2 𝑥 2 design (Simulation Time 𝑥 Collision 𝑥 Trajectory),
ith 4 unique instances of each combination setting. Simulation time
aried how many steps the physics engine needed to take to complete
he simulation, and was either Short (0–150 steps), Medium (150–

300 steps), or Long (300–450 steps). Collision was a binary outcome,
whether the ball and goal collided according to pure simulation (‘‘Yes’’
or ‘‘No’’). Trajectory was a binary property of the scenario, indicating
whether the ball’s trajectory formed a straight line or not (‘‘Yes’’ or
‘‘No’’).

2.4.3. Experiment 2
The stimulus set for Experiment 2 consisted of 58 scenarios. In order

o generate response time curves that qualitatively differ between the
ifferent models, the stimuli were designed with a multi-step process:
e first sampled random scenario configurations (random starting

ositions the ball and goal, random number and position of slides.
e next simulated the trajectory of the ball according to ground-truth

simulation. We then picked 29 evenly-spaced positions along the sim-
ulated trajectory of the ball, and generated response time predictions
for each, which together gave response-time-curves for each scenario.
We chose 29 positions as this number led to visually distinct stimuli,
where each goal placement was sufficiently visually different (i.e., if
we used more placements, stimuli would begin to look similar). We
repeated this process until the predicted response time curves from
pure simulation and the blended simulation and abstraction model
qualitatively differed, at which point we accepted the stimuli created
by the generative process. We performed this procedure twice, leading
to 58 generated scenarios.

1 www.pymunk.org.
4 
2.5. Modeling

We consider five models: pure simulation, pure simulation with
velocity damping, pure abstraction, pure abstraction with a collision
constant, and a blended model that combines pure simulation and
pure abstraction. Each model is defined by a transition function that

oves the physical scenes from the current state to the next state.
In the experiments reported in this paper, the only dynamic object is
the ball. The state corresponds to the x–y ball position, and the state
evolution equation specifies the ball dynamics. To generate judgments
about whether the ball will hit the goal object, the evolution equation
is run forward until the ball contacts either the goal object or the
round. In the context of pure abstraction with a collision constant
nd pure simulation with velocity damping, collisions between the ball
nd the slides are also recorded and used at inference time according
o the respective model’s transition function. After a given model
enerates a judgment for a scene, the execution time of the model, 𝜏,
s then transformed into the human response time by a noisy linear
ransformation:

R̂T = 𝛽0 + 𝛽1𝜏 + 𝜖 , (1)

where 𝜖 ∼  (0, 𝜆) models random noise in the response genera-
tion process. The coefficients (𝛽0, 𝛽1) and noise variance (𝜆) are fit
to human response time data, as described below. In addition to the
noise inherent to the response, for each model considered, we assume
noise over the initial position of the ball, corresponding to imperfect
perception or memory, as is standard in many intuitive physics models
(c.f. Battaglia et al. (2013)). We assume this positional noise is a zero-

ean 2-dimensional Gaussian with standard deviation 𝜎, which is a free
arameter fit to data as described below.
Pure Simulation. The state evolution equation for the pure sim-

ulation model uses a deterministic, 2-dimensional, rigid-body physics
engine (Pymunk, www.pymunk.org) that updates the ball position
according to Newtonian dynamics, approximated in discrete time using
Euler integration

Pure Simulation With Velocity Damping. We develop another
odel of pure simulation where we add uncertainty over post-collision

elocity on top of the zero-mean Gaussian noise described above.
Uncertainty over the velocities resulting from collisions has been sug-
gested as a source of additional uncertainty that might contribute to
people’s systematic errors in physical reasoning (Sanborn et al., 2013;
Smith & Vul, 2013). Here, we consider a model that approximates these
sources of uncertainty by sampling post-collision velocities from a Beta
distribution whose parameters are fit to empirical response time. The
state evolution equation for the pure simulation model with velocity
damping uses the same deterministic, 2-dimensional, rigid-body physics
engine as pure simulation. Upon collision between the ball and any
other object in the scene, a damping value 𝛿 is sampled from a beta
distribution with parameters 𝛼 and 𝛽, which reduces the ball’s resultant
velocity post-collision proportional to 𝛿. For example, a 𝛿 = 0.1 reduces
the ball’s velocity post-collision by 10%.

Pure Abstraction. The state evolution equation for the pure ab-
straction model is based on a linear projection from the ball’s current
position. The abstraction model uses the simulation engine to deter-

ine the ball’s current heading (in this weak sense, it is not truly
‘‘pure’’). It then translates the ball in that direction until either a
maximum distance 𝐷 is reached, or the ball collides with another
bject. In the case of a potential collision, the ball is projected up until
hat point of collision, rather than the full length 𝐷 so as to prevent

physically impossible predictions, such as objects teleporting through
each other. The state evolution equation has 1 free parameter (𝐷).

Pure Abstraction With Collision Constant. Previous work demon-
trated that response time in physical prediction tasks increases with
he number of collisions as well as the ground-truth simulation time
Hamrick, Smith, Griffiths, & Vul, 2015). As an alternative to pure

abstraction that is in line with this proposal, we developed a derivative

http://www.pymunk.org
http://www.pymunk.org
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Cognition 254 (2025) 105995 
of pure abstraction that includes a constant for the number of collisions
ncountered during abstraction. The state-evolution equation for the
ure abstraction with collision constant model is the same as the

pure abstraction model, with an added coefficient in its noisy linear
transform that accounts for the number of collisions between the ball
and any object in a given scene. For this model, the noisy linear
transformation that maps model-execution time to human-response
time is:
𝑇̂ (𝑠) = 𝛽0 + 𝛽1𝜏 + 𝛽2𝐶𝐴(𝑠) + 𝜖 (2)

, where 𝐶𝐴 is the number of collisions recorded while evolving the
scene 𝑠 according to the pure abstraction model 𝐴.

Blended model. Pure simulation and pure abstraction are combined
in the blended model by deciding at each iteration which state evolu-
tion equation to use (see Fig. 1). The exact state-evolution algorithm
sed by the blended model is as follows:

Algorithm 1 Blended model state evolution algorithm
𝑠𝑡 ← 𝑠0 ⊳ Get starting state of scene
while 𝑠𝑡 ≠ End do ⊳ Repeat until end state of scene is reached

𝑠𝜋𝑡+1 ← 𝜋(𝑠𝑡; 𝑁) ⊳ Infer future state according to partial
simulation of 𝑁 steps

𝑠𝐴𝑡+1 ← 𝐴(𝑠𝑡; 𝐷) ⊳ Infer future state according to abstraction of
length 𝐷

𝜖 ← 𝑆𝐶 ([𝑠𝑡, 𝑠𝜋𝑡+1], [𝑠𝑡, 𝑠𝐴𝑡+1]) ⊳ Compute similarity between
predictions

if 𝜖 > 𝐸 then ⊳ Predictions are similar; set next state to
abstraction

𝑠𝑡 ← 𝑠𝐴𝑡+1
else ⊳ Predictions are not similar; set next state to simulation

𝑠𝑡 ← 𝑠𝜋𝑡+1
end if

end while

Unlike Pure Simulation, simulation in the Blended Model is lim-
ited by the parameter 𝑁 : Simulation in the blended model evolves
he state forward by 𝑁 ticks, where 𝑁 can possibly be less than
eeded to reach the end of the ground-truth trajectory. 𝑁 is empirically

determined from the data gathered in Experiment 1. Abstraction in
the Blended Model evolves the state forward the same as it does for
Pure Abstraction. If the cosine similarity 𝑆𝐶 between the simulation
and abstraction vectors is greater than a threshold 𝐸, abstraction (the
omputationally cheaper option) is used to project the ball forward a
istance 𝐷. If the cosine similarity is less than the threshold, simulation
s used for 𝑁 iterations (i.e., 𝑁 steps of Euler integration). Potential
omputational savings are born out of the difference between 𝑁 and
. Additionally, this similarity metric acts as a regularizer for the

blended model, preventing abstraction from making significant errors
(e.g. projecting the ball infinitely upwards against gravity) unless those
errors are within the bounds of the threshold of the similarity metric.
The state evolution equation has 3 free parameters (𝐸 , 𝐷 , 𝑁) and can
be formalized with the following piecewise state evolution equation:

𝑠𝑡+1 =

{

𝜋(𝑠𝑡; 𝑁) 𝑆𝐶 ([𝑠𝑡, 𝜋(𝑠𝑡;𝑁)], [𝑠𝑡, 𝐴(𝑠𝑡;𝐷)]) < 𝐸
𝐴(𝑠𝑡; 𝐷) 𝑆𝐶 ([𝑠𝑡, 𝜋(𝑠𝑡;𝑁)], [𝑠𝑡, 𝐴(𝑠𝑡;𝐷)]) > 𝐸 (3)

where 𝜋(𝑠𝑡; 𝑁) and 𝐴(𝑠𝑡; 𝐷) are the pure simulation and pure abstrac-
ion state evolution equations, parameterized by 𝑁 and 𝐷, respectively,
nd 𝑆𝐶 refers to the cosine similarity metric. During inference in the

blended model, the ball’s velocity is updated according to whether
simulation or abstraction sets the blended model’s prediction. In the
event that simulation is used to update the blended model’s prediction
of the next state, the ball’s velocity is integrated according to the
physics engine’s Euler integrator. In the event that abstraction is used
o update the blended model’s prediction, the ball’s velocity is simply
preserved from the input state. m
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Collision handling for the blended model depends on the method
being used: collisions encountered by simulation are addressed by
the physics engine’s collision handler and Euler integrator, and colli-
sions encountered by the abstraction are handled via the short-cutting
method described above.

Parameter estimation and model comparison. All parameters for
all models were fit to response times averaged across participants for
each scene, using maximum likelihood estimation (the computational
cost of running the physics engine meant that it was not feasible to fit
parameters to individual participants). Estimates of the state evolution
parameters were found using grid search; estimates of the linear coef-
ficients and response noise variance were found using ordinary least
squares. The best fitting parameters for each model are summarized
n Table 1. The maximized log-likelihood was used to calculate the
ayesian information criterion (BIC) for model comparison. Impor-
antly, model fitting was only performed on data from Experiment
.

3. Results

3.1. Experiment 1: A blended model of simulation and abstraction accounts
or response times better than pure simulation or pure abstraction

In Experiment 1, we used response time data in a physical prediction
ask to discriminate between simulation, abstraction, and a blended
odel. Participants saw a series of 2D videos depicting Plinko-style

cenes (see Fig. 2), which included a ball falling under gravity, a goal
object, and physical barriers (‘slides’). The videos showed the ball
falling for 1 s, after which it faded away. Participants were told to
assume the ball was still in the scene after it faded away, and tasked
with judging whether the ball would eventually collide with the goal.

Across the videos, we varied the length of the ground-truth trajec-
tory that the ball would have taken to get to the goal, according to
an accurate simulation model. We were specifically interested in the
relationship between the length of this trajectory, and the time it took
participants to respond whether the ball would collide with the goal.
Different models of physical reasoning predict different response time
curves as a function of the ground truth trajectory (see Fig. 3): If people
use a mental simulation that moves the ball step-by-step, we would
expect response times to increase as the length of the ground truth
trajectory increases. However, if people reason by abstracting away
from a simulation, we would expect reaction time to depend on visual
scene features, such as the existence of a straight path between the
ball and the goal. Lastly, the blended model makes a more nuanced
prediction, according to which response time should be a function of
both the ground-truth trajectory length, and the existence of straight
paths between the ball and the goal.

Experiment 1 found evidence for the blended model. In line with the
imulation hypothesis, we found that response time overall increased
ith simulation time across the three levels of low, medium, and high

imulation time (see Fig. 4a). The ordering of the response time from
low to high was significant by a Mann–Whitney U test that examined
relationships between all categories : short vs. medium 𝑝 < 0.001,
medium vs. long 𝑝 < 0.001, 𝑈 = 1.99𝑒5, short vs. long 𝑝 < 0.001,

= 1.00𝑒5. However, deviating from the simulation model, we found
hat within the three simulation time levels, scenes with an observable
traight path between the ball and the goal resulted in significantly
horter reaction times than scenes with non-straight paths (see Fig. 4b).

Two forms of ordinary regression were performed comparing model
nd human data. The first ordinary regression was fit using only mean
imulation time, and coefficient’s of determination (𝑅2) were observed

for each of the investigated models against human data (see Fig. 5).
he blended model had the highest 𝑅2 = 0.71, 𝑝 < 1𝑒−13, followed by

the pure abstraction model with 𝑅2 = 0.63, 𝑝 < 1𝑒−11, then the pure
imulation model with 𝑅2 = 0.45, 𝑝 < 1𝑒−7, then the pure abstraction
odel with a collision constant with 𝑅2 = 0.15, 𝑝 = 0.006, and finally
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Table 1
Parameter estimates. N is the number of simulation steps taken by the blended model (i.e., the amount of ‘‘minimal simulation’’ the blended
model performs per forward pass). E is the cosine similarity threshold; if the threshold is met then the blended model chooses the prediction
made by abstraction over simulation. D is the length or distance of the path projection abstraction. 𝜎 is the standard deviation of the zero-mean
Gaussian noise injected into the starting position of the ball. 𝜆 is the noise variance of the response generation process (see Eq. (1)). (𝛽0 , 𝛽1 , 𝛽2)
are the coefficients of the linear map between model outputs and response time predictions (see Eqs. (1) and (2)).
Model N E D 𝜎 𝜆 𝛽0 𝛽1 𝛽2
Blended 5 0.9 75 (0.01, 0.01) 0.069 794.93 6.04 N/A
Pure abstraction N/A N/A 75 (0.01, 0.01) 0.24 1189.64 0.073 N/A
Pure simulation N/A N/A N/A (0.04, 0.04) 0.13 908.98 1.35 N/A
Velocity damping N/A N/A N/A (0.0, 1.11) 0.83 1173.52 0.069 N/A
Abstraction + Coll N/A N/A 37.55 (0.22, 1.33) 0.56 1228.52 −1.72 3.46
Fig. 2. Experiment design. Participants were first familiarized with the overall scene used in the upcoming trials. Participants were then instructed to determine as quickly as
possible whether the ball will collide with the goal at the end of its trajectory. Participants then viewed dynamic scenes in which a ball fell under gravity and faded after 1 s.
Participants could respond at any time.
Fig. 3. Illustration of response time predictions. (I) The starting state of a scene. (II) Simulation updates the scene step by step. (III) Under simulation, response time to judge
whether the ball will reach the goal scales with the number of simulation steps. (IV) Abstractions can be applications of rules such as ‘‘Is the ball following a straight path?’’. (V)
The amount of time it takes to apply an abstraction to a scene is independent of simulation time, and should lead to a constant response time.
the pure simulation model with velocity damping with 𝑅2 = 0.12, 𝑝 =
0.02. The second form of ordinary regression lines were fit to the data
using mean simulation time and path condition as a categorical variable
in order to assess statistical difference in response time between scenes
with and without straight paths. Analysis of covariance of the resulting
regression lines indicated straight paths (blue line in Fig. 4b) contained
both significantly different intercept terms (𝑝 < 1𝑒−10) and slopes (𝑝 <
1𝑒−11) than non-straight paths (orange line). These results are captured
by the blended model, supporting the claim that participants used an
integration of simulation and abstraction. Model comparison using the
Bayesian information criterion (BIC) favored the blended model (BIC =
18.95) over the other models of pure abstraction (BIC = 76.89), pure
simulation (BIC = 46.68), pure abstraction with a collision constant
(BIC = 115.19), and pure simulation with velocity damping (BIC =
133.48).
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3.2. Experiment 2: A blended model of simulation and abstraction accounts
for accuracy better than pure simulation or pure abstraction

While abstractions may save on computation time compared to
simulation, they can introduce errors in their deviation from the ground
truth. In Experiment 2 we were interested in whether we could induce
systematic errors based on abstraction. We introduced variations in
the visual features of a different set of scenes from Experiment 1 by
using an algorithm for generating stimuli described in the Methods,
such as altering the horizontal distance between slides and the goal.
These stimuli contained visual features designed to induce activation of
the hypothesized abstraction system, in cases where it would produce
the incorrect answer. For example, at first glance, it might appear that
the ball in scene 3 of Fig. 6 will narrowly miss a nearby slide and fall
directly to the goal. However, under pure simulation, the ball actually
collides with the slide and misses the goal.
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Fig. 4. Experiment 1 results. (a) Example stimuli for each Simulation Time and Trajectory condition setting. (b) Human response time in milliseconds (y-axis) for all stimuli across
Simulation Time and Trajectory condition settings (x-axis). (c) z-Scored response time for humans and fitted models (y-axis) against z-scored ground-truth simulation time (x-axis).
Each dot represents a single scene, the dashed line represents response time prediction of ground-truth simulation (without fitting to human data). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Experiment 1 model comparisons. Mean human response times (x-axis) are plotted against mean fitted-model response times (y-axis). The black diagonal dashed line is a
reference line for human response times; all human response times lie on the dashed line. Each dot represents a single scene. Left: mean response times on scenes with no straight
paths. Right: mean response times on scene with straight paths. 𝑅2 values are written for each model, demonstrating the blended model matches human response times best,
followed by pure abstraction, pure simulation, pure abstraction with a collision constant, and finally pure simulation with velocity damping. Shaded regions surrounding model
lines are 95% confidence intervals.

Cognition 254 (2025) 105995 
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Fig. 6. Experiment 2 results. Top row: Accuracy (y-axis) as a function of the distance the ball traveled (x-axis), with each point showing mean accuracy across participants with
95% confidence intervals and spline fits. Spline fits are purely visual aids to demonstrate qualitative trends in the data. Participant accuracy (‘‘Human Data’’) is a nonlinear function
of the distance traveled by the ball across the ball’s trajectory. Accuracy starts off near ceiling for the first group of stimuli in Section 1, in which distance is short and follows a
straight path. Accuracy then takes a sharp dip for the second group of stimuli in Section 2, before rising slightly in Section 3, and dipping again in Section 4. These results are
qualitatively captured by the blended model and a pure abstraction model, but not by the remaining models. Bottom row gives representative examples of the stimuli featured
for each of the Sections 1–4 shown in the accuracy plots of the participants and the models (e.g., stimulus 1 is an example of the stimuli for Section 1, etc.). Dashed black line
indicates the expected trajectory of the ball under pure simulation.
Participant accuracy was systematically affected by the distance
between the ball and the goal (Fig. 6), following a non-monotonic
pattern that mirrors the predictions of both the blended model and
the abstraction model. The ability of our blended model to capture this
trend suggests that people’s performance is systematically affected by
features of the task in similar ways to our blended model. An important
note is that the model predictions for Experiment 2 were based on
parameter values derived from fitting to data collected in Experiment
1; no model fitting was performed on the data from this experiment.
The blended model captures this non-monotonic pattern as does the
abstraction model, which leads us to believe most of the predictive
power is coming from the abstraction model. In contrast, the simulation
model predicts a flat accuracy curve that remains at ceiling for all
distances. While both a pure abstraction and blended model capture the
non-monotonic pattern observed from participants, model comparison
using the Bayesian information criterion (BIC) favored the blended
model (BIC = −41.60) over the other models of pure abstraction (BIC
= −35.74), pure simulation (BIC = 81.18), pure simulation with ve-
locity damping (76.94), and pure abstraction with a collision constant
(61.35).

Taken together, the results support our hypothesis that people use a
combined approach to reason about the physics in the scenes presented,
and that a blended model which uses both abstraction and simulation
can specifically account for the resulting behavior.

4. Discussion

How people reason about the physical world so easily is not so
easily understood. Different computational accounts of intuitive physics
have made very different assumptions and commitments about the
underlying mental process. In this work, we broadly categorized the
different accounts as either based on mental simulation (proposing
that human physical reasoning is based on a noisy step-by-step process
that recreates the objects and dynamics of the perceived scene), or
not based on mental simulation (including models based on heuristics,
logical rules, features, qualitative theories, and so on). Like previous
work (e.g. Smith et al., 2023), we proposed a blended model, in
which simulation gives way to cost-cutting abstractions when certain
conditions are met. Unlike previous work, our model computes these
conditions in real-time based on the state of the scenario, rather than
once for the scenario as a whole, allowing us to model how people
8 
flexibly reason about physics in real time. To test our account, we
ran novel experiments that presented people with physically controlled
visual stimuli, and measured their accuracy and response time, while
varying the scene configuration. We found that neither models of pure
simulation with and without additional sources of uncertainty nor a
pure abstraction model with and without additional coefficients for
the number of collisions captured people’s response time or accuracy,
but that the blended model correctly accounts for both, supporting our
hypothesis that people use both simulation and abstraction to perform
physical reasoning. In the case of accuracy, we observe that a pure
abstraction model captures participant accuracy as well, though has a
lower log-likelihood compared to the blended model.

The blended model accounts for participant behavior in the limited
settings we investigated, but we see our blended model as an instance
of a more general computational framework, in which simulation and
abstraction can be used in conjunction as instances of broad classes of
inference methods for physical reasoning. The idea of using multiple
modes of reasoning that balance efficiency and fidelity is a domain
general phenomenon that extends beyond physical reasoning.

The framework we proposed here does not address the question
of where abstractions originate. One possibility is that some modes
of reasoning such as simulation are innate or early developing (Smith
et al., 2019), and that various abstractions are then learned on top
of this foundation. Our main claims in this work do not hinge on
innateness or developmental claims, and the available evidence is not
enough to distinguish whether it is simulation that is innate or early-
developing, or various abstractions that are innate or early-developing.
However, if simulation is the earlier of the two, both infants and
adults could in principle learn abstractions via a process driven by
compressing over previous simulation traces that led to satisfactory task
performance. In other words, we can in principle explain abstraction
learning as the process of actively attempting to reduce the cost of
our innate or early-developing simulation engine, which can be done
by caching the results of different simulations and clustering similar
results into a category based on the features of the simulation, such
as the existence of straight paths. Over time, these clusters could then
be used as abstractions to reason about scenes or tasks that share their
defining features.

This idea draws parallels with recent models of efficient concept
learning, where the objective is to acquire a collection of maximally-
compressed concepts that effectively address the tasks encountered
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by the agent (Dechter, Malmaud, Adams, & Tenenbaum, 2013). In
these models of ‘‘library learning’’, the emphasis is on minimizing
the complexity of learned concepts while still solving the given tasks,
striking a balance between model performance and computational
cost (Ellis, Morales, Sablé-Meyer, Solar-Lezama, & Tenenbaum, 2018;
Ellis et al., 2023). In the context of our framework, abstractions can be
epresented as subroutines integrated with simulation, as demonstrated
n the blended model. These abstractions could then undergo iterative
ompression, ensuring a balance between computational efficiency and
ask performance. As we discuss below, we are actively working on
odels of how abstractions might be learned, and investigating how
ell these learned abstractions explain human physical reasoning in

he context of our stimuli.

4.1. Limitations and future directions

People use more than one abstraction. The blended model con-
sidered here included only one kind of abstraction (path projection),
but people likely use all kinds of additional abstractions. One example
of a different useful abstraction for physical prediction is the notion of
containment, which has been posited as one of the earliest abstractions
children develop in order to reason about the physical world (Piaget &
Inhelder, 1969). The more general computational framework proposed
ere treats abstractions, such as path projection or containment, as
ubroutines which can be used in place of simulation when certain
ask features are present, such as the visual presence of straight paths

or containers. Current and future work is addressing this challenge
by replacing our path projection abstraction with learned function ap-
proximators. Under certain environmental (learning) conditions, these
function approximators may begin to form a repertoire of abstractions
whose dynamics, such as if, when, and how they lead to cost-saving
inferences or inaccurate predictions that mirror those found in people.

Threshold conditions do not work for all abstractions. Another
limitation of the blended model used in this work is the specific
algorithm used to trade off between simulation and abstraction, which
is not general enough to handle abstractions other than path projection.
Currently, the algorithm used to arbitrate between abstraction and
simulation relies on the calculation of the cosine similarity between
the resulting translation vectors between path projection and minimal
simulation, and the parameters of this trade-off are fit to our specific
implementation of path projection abstraction (see Methods). A more
general method for arbitrating abstractions and simulation would be
to learn a mapping between observable or latent (inferred) features
of the current state of the scene and the choice of inference method
(i.e., simulation or some particular abstraction). Such a method could
e integrated with models of resource rationality: The features of the
tate of a scene would activate a potential set of relevant abstrac-
ions to use for a given task, while a decision model would select

among those activated abstractions based on their expected cost savings
gainst simulation. These abstractions could be partially evaluated to
ome to a final inference of the next state of the scene, conditioned
n the cost of partially evaluating these abstractions in comparison
ith other available modes of reasoning, such as simulation. Such a
ecision model could be built from merging our current blended model
ith a Bayesian model of resource rationality, which would offer a
arsimonious explanation of how people balance the resource costs
f inference against expected task performance (Griffiths, Lieder, &

Goodman, 2015; Ma & Woodford, 2020).
We are currently exploring a generalization of the algorithm used

o arbitrate between simulation and abstraction that utilizes predicted
ncertainty on the side of the abstraction. In this regime, when an
bstraction is selected, it predicts a future state of the scene and assigns
 computed uncertainty to that prediction. In the event that uncertainty
s too high, control is given back to simulation for the time being.
n concert with the learned abstractions we described above that we
are investigating, we can determine the extent to which threshold V
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conditions might serve as a suitable framework for arbitrating between
modes of reasoning on-the-fly, as they are a computationally easy and
cognitively plausible method of arbitration.

Richer measurements. The experiments presented here rely on
esponse-time and accuracy measurements from online studies. While
hese data are valuable and support our framework of blended rea-
oning, we believe this support can be strengthened further with more
igh-resolution behavioral data such as eye tracking data. Eye tracking
rovides rich data on the mechanism and time course of cognitive pro-
essing (Beesley, Pearson, & Le Pelley, 2019), such as those processes
hat we investigate here in the context of physical reasoning. In visual

stimulus tracking studies (e.g. being tasked with looking at target loca-
tions on a screen), rapid eye movements known as saccades have been
shown to not only be reactive to visual stimuli when they appear, but
also anticipate visual stimuli before they appear in the event previous
visual stimuli are predictive of future visual stimuli (Polidora, Ratoosh,
& Westheimer, 1957; Stark, Vossius, & Young, 1962). Overall, the liter-
ature on eye tracking suggests that a person’s eye follows their mind’s
eye, looking toward where the person anticipates a target stimulus
might appear, as well as reacting to where target stimuli have already
ppeared (Shelhamer & Joiner, 2003). Eye tracking has recently been

used to investigate mental simulation in the context of counterfactual
reasoning in intuitive physics tasks (Beller, Xu, Linderman, & Gersten-
berg, 2022; Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum,
2017). We are currently conducting eye tracking studies using stimuli
similar to those presented in Experiment 1 and Experiment 2 to test the
predictions of the blended model.

5. Conclusion

Our ability to reason about the physical world with ease is both
mpressive and a mystery. Here, we suggest that one aspect of the
erceived effortlessness of our physical reasoning is due to a form of
lever laziness, where we adeptly decide where to simulate and where
o abstract on the fly in order to make sense of the physical world.

hen something is potentially complicated, we might take our time to
imulate what might happen next, but if it is familiar or simple, we
ake what happens next for granted and abstract, at a potential cost
f accuracy. We developed a computational framework that trades off
imulation and abstraction in a way that explains human response time
nd accuracy on a novel physical reasoning task in way neither models
f simulation or models of abstraction can alone, suggesting that people
rade off between similar modes of reasoning in a similar way.

The computational commitments of our general framework and the
iscussed extensions for future work are motivated by a fundamen-

tal question: How do people reason so rapidly and efficiently about
everyday physics? Is it exclusively through mental simulation, or a
different process altogether? Our theoretical proposal, substantiated
by empirical findings, asserts that it is both—a blend of simulation
and abstraction. While other proposals have also tried to provide a
synthesis of approaches, they have tended to suggest a divide-and-
conquer approach based on task: for two-dimensional static sketches of
familiar scenes, it makes more sense to deploy static reasoning, whereas
for realistic animations of novel and complex phenomena mental sim-
ulation might be more appropriate. By contrast, the proposed blended

odel dynamically combines simulation and abstraction for the same
ask, on the fly, offering a unique synthesis. Moreover, our proposed
odel serves as a specific instance within a broader framework, laying

the groundwork for the development of more realistic and human-like
models of intuitive physics.
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