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Balancing exploration and exploitation is one of the central

problems in reinforcement learning. We review recent studies

that have identified multiple algorithmic strategies underlying

exploration. In particular, humans use a combination of random

and uncertainty-directed exploration strategies, which rely on

different brain systems, have different developmental

trajectories, and are sensitive to different task manipulations.

Humans are also able to exploit sophisticated structural

knowledge to aid their exploration, such as information about

correlations between options. New computational models,

drawing inspiration from machine learning, have begun to

formalize these ideas and offer new ways to understand the

neural basis of reinforcement learning.
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Introduction
In order to maximize its long-term rewards, an agent must
collect information about the environment, possibly at the
expense of temporarily choosing less rewarding actions.
This dilemma between exploration and exploitation lies at
the heart of reinforcement learning. Computer scientists
and engineers have developed a broad array of tractable
algorithms for balancing exploration and exploitation, but
only recently have these ideas begun to penetrate compu-
tational neuroscience [1,2] and psychology [3].

We review recent progress in research on the algorithmic
architecture of exploration in the human brain. This
review mostly focuses on multi-armed bandit tasks, which
are frequently used to study the trade-off between explo-
ration and exploitation experimentally [1]. The term
multi-armed bandit comes from a casino metaphor where
there is a row of slot machines and each slot machine has

an independent payoff distribution. It is then an agents
goal to maximize rewards by repeatedly selecting an arm
and observing and collecting the resulting reward.

We first summarize evidence that humans use two dis-
tinct exploration strategies [4,5]: random exploration,
which increases choice stochasticity to the agent’s uncer-
tainty about the values of available actions, and directed
exploration which adds a bonus to each action in propor-
tion to the agent’s uncertainty about each action’s value.
These two algorithms offer heuristic yet efficient solu-
tions to the exploration–exploitation dilemma. Signatures
of directed and random exploration can be observed in
human choice behavior, develop differently across the
lifespan, and recruit distinct neural mechanisms.

In addition to using uncertainty to guide exploration,
recent evidence suggests that humans use structured
knowledge about the environment. For example, know-
ing that two options yield correlated rewards can enable
more sophisticated exploration policies. Recent work also
suggests that humans can adopt non-myopic policies,
evaluating the benefit of future information gain. Finally,
we review progress towards revealing the neural architec-
ture underlying these exploration strategies.

From optimality to heuristics
Optimal exploration involves combining the immediate
reward and the value of information for each action. This
is accomplished by thinking through future actions and
calculating how much future rewards could increase if
more knowledge about actions is collected. Except for
some special cases, optimal exploration is computation-
ally intractable. Intuitively, this is because the value of
information depends on how the information affects an
agent’s later choices, but these later choices may also
result in new information; thus, an optimal agent would
need to consider the full “policy tree” that describes all
possible future trajectories. Because the size of this tree is
an exponential function of the planning horizon, it cannot
be computed efficiently.

One approach to bypassing this problem is to start from
the observation that the optimal exploration policy will
almost always deviate from the greedy policy (which only
takes the action with the highest average payoff) on some
proportion of choices. Thus, one heuristic strategy is to
dispense entirely with computing the value of informa-
tion, and instead simply select a random action on some
proportion (e) of trials. Using this e-greedy strategy, and
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gradually decreasing e, an agent will eventually learn the
correct values (expected payoffs) for each action [6].

The e-greedy heuristic, while computationally efficient,
can be wasteful, because an exploratory choice is just as
likely to sample the action with the worst average payoff
as it is to sample the action with the second-best average
payoff. An alternative heuristic, known as softmax explo-
ration, implements a more graceful form of random sam-
pling in which options with greater average payoff are
chosen with higher probability:

Pða ¼ 1Þ ¼ exp ½bm1%P
k exp ½bmk%

; ð1Þ

where mk denotes the average payoff of option k, and the
“inverse temperature” parameter b maps out a spectrum
of policies ranging from a uniform distribution over
actions (b ! 0) to deterministically choosing the action
with the highest experienced payoff (b! 1). Softmax
exploration is the standard assumption in most studies of
reinforcement learning, due to its simplicity, biological
plausibility [7], and empirical support [8,9]. It is also
closely related to a number of other ideas about choice
behavior in psychology, such as probability matching [10
,11], Luce’s choice axiom [12], and the drift diffusion
model [13].

Uncertainty-based exploration
Decision making is normally affected by two types of
variances, risk and posterior uncertainty. Risk can be
defined as irreducible and expected payoff stochasticity,
posterior uncertainty is a form of uncertainty that can be
reduced through information gathering. It is this second
kind of reducible uncertainty that is sought out by uncer-
tainty-based exploration strategies.

The exploration heuristics reviewed in the previous sec-
tion only depend on the average payoffs for each action.
However, accumulating evidence suggests that people
are also sensitive to the variability of the payoffs, in two
distinct ways.

First, payoff variability increases the stochasticity of
choice, a phenomenon known as the payoff variability
effect [14–16]. Second, payoff variability can sometimes
systematically attract choices, resulting in a form of risk-
seeking [17,18]. Reinforcement learning theory offers an
algorithmic rationalization of these effects.

The payoff variability effect can be understood as a
consequence of random exploration strategies, which
increase choice stochasticity when an agent is more
uncertain. The classic example of such a strategy is
Thompson sampling, which draws a random sample from
the posterior distribution over action values and then

chooses greedily with respect to this random sample
[19]. When there are only two options and the posterior
distribution is Gaussian, Thompson sampling is equiva-
lent to a “probit” policy [20]:

Pða ¼ 1Þ ¼ F
m1 & m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1 þ s2
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where F(() is the Gaussian cumulative distribution func-
tion and s2

k is the posterior variance for option k. Since
posterior variance will generally increase with payoff
variability, Thompson sampling will increase choice sto-
chasticity when payoff variability is high. Despite its
simplicity, Thompson sampling is known to produce
competitive performance [21], and has recently gained
in popularity due to its empirical robustness [22].

Risk-seeking can be understood as a consequence of
directed exploration strategies, which attach an
“uncertainty bonus” to each action value [23,24),25].
The most well-known directed exploration strategy is
the Upper Confidence Bound (UCB) algorithm [26]. If
we assume that the action values are corrupted by a fixed
amount of Gaussian noise with variance t2, then the UCB
algorithm can also be expressed as a probit policy [20]:

Pða ¼ 1Þ ¼ F
m1 & m2 þ g½s1 & s2%

t

" #
; ð3Þ

where g is a parameter governing the strength of the
exploration bonus. UCB sampling tries to approximate
optimal exploration by adding a proxy for the value of
information (based on current uncertainty) to each action.
Like Thompson sampling, UCB has strong theoretical
properties [26,27], and is widely used in machine learning
applications.

We can understand the difference between these two
effects by visualizing the psychometric function relating
choice probability to the difference in average payoff
between two options (see Figure 1). For Thompson
sampling, increasing the total uncertainty across options
has the effect of reducing the slope of the choice proba-
bility function. For UCB, increasing the relative uncer-
tainty between options shifts the intercept of the choice
probability function.

A recent study [28] capitalized on these distinct psycho-
metric signatures by orthogonally manipulating total and
relative uncertainty in a bandit task with two independent
options. Specifically, relative uncertainty was manipu-
lated by making one option “risky” (paying off stochasti-
cally) and the other option “safe” (paying off determinis-
tically). Total uncertainty was manipulated by making
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both options risky or both options safe. Consistent with
earlier results [20], subjects exhibited sensitivity to both
manipulations: the slope of the choice probability func-
tion changed with the total uncertainty manipulation, and
the intercept changed with the relative uncertainty
manipulation.

In a large-scale comparison of models applied to a bandit
task with drifting rewards [24)], Speekenbrink and Kon-
stantinidis found that Thompson sampling accounted for
human decision making better than other standard forms
of random exploration, including softmax and e-greedy
sampling.

While both Thompson sampling and UCB assume that
the exploration policy depends only on summary statis-
tics of past experience (the posterior mean and variance),
another possibility is that people are able to modify their
policies based on beliefs about the future. To pursue this
idea, Wilson et al. [4] developed a “horizon task” in
which subjects played a bandit task in two contexts that
differed in the number of trials (the planning horizon).
Participants were allowed to make either a single choice
in each game, or six sequential choices, giving them

more opportunity to explore. Wilson and colleagues
found that subjects increased both directed and random
exploration with the longer horizon, broadly consistent
with the optimal (non-myopic) exploration policy. Intui-
tively, an agent should explore more when there are
more opportunities to compensate for early exploratory
choices. Random (but not directed) exploration also
decreased over the course of a game in the horizon
6 condition, consistent with the intuition that an agent
should increasingly focus on the option with highest
payoff as the horizon nears. Note, however, that random
exploration in the horizon task does not necessarily
imply Thompson sampling, but could alternatively be
formalized using other forms of explorations such as
softmax exploration, as long as the temperature parame-
ter is horizon-sensitive.

In addition to experimental dissociations, directed and
random exploration have been developmentally dissoci-
ated. Somerville and colleagues [29] found that directed
exploration emerges during adolescence and maintains its
level through early adulthood, whereas random explora-
tion happens at comparable levels over the whole age
range (though see [30] for contrasting findings).
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Illustration of the effect of uncertainty on choosing an option x2 over choosing an option x1. Upper panel shows two distributions with the same
level of uncertainty on the left, and different levels of uncertainty on the right. Lower panel shows the probability of choosing x2 over x1 as
predicted by different exploration strategies in dependency of the value difference m1 & m2.
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The horizon task has also been used to probe the neural
correlates of uncertainty-based exploration. Zajkowski
and colleagues [31))] found that inhibition of the right
frontopolar cortex (using transcranial magnetic stimula-
tion) reduced directed exploration while leaving random
exploration intact. This suggests a causal role for right
frontopolar cortex in directed exploration and also that
the two strategies could rely on dissociable neural
systems.

In another study, atomoxetine (a norepinephrine trans-
porter blocker that increases extracellular levels of nor-
epinephrine) was administered to subjects and their
behavior in the horizon task compared to a placebo
control group [32]. Whereas transient increases in norepi-
nephrine (NE) can be advantageous for task-relevant
behavior when applied at the right time, high NE can
also propagate the influence of noise and induce more
variable behavior. Accordingly, NE levels may govern the
balance between exploitative choices and random explo-
ration [33]. Specifically, the authors assessed if tonic
increases in NE levels from intermediate to high levels
promote disengagement from current behaviors thereby
increasing exploratory decision noise. Unexpectedly, ato-
moxetine reduced rather than increased random explora-
tion and had no effect on directed exploration as was
predicted by the authors. The authors speculated that this
effect could potentially be explained by the non-linear
relationship between tonic norepinephrine and explora-
tion, as well as an unforeseen interaction between ato-
moxetine and other neuromodulators.

Other more belief-directed strategies of exploration have
also been observed. For example, in a sequential decision
making task involving approach and avoidance decisions,
subjects increased their exploration when the expected
number of future encounters with an option was known to
be large [34))]. Furthermore, subjects were sensitive to
the relative frequency of future encounters when this
frequency was unknown and had to be inferred. This
suggests that people can adaptively use information about
the future when deciding to explore.

Exploration in structured spaces
Although standard multi-armed bandit problems capture
something quintessential about learning and decision
making, many realistic problems contain more structure
than choosing from a set of independent options. As long
as choices only concern deciding between independent
options as in standard bandit tasks or the horizon task, it
can be hard to distinguish between strategic random
choice behavior and randomness caused by an increased
task difficulty and thus slower learning rates. Therefore,
tasks with additional structure have been proposed in
which simple mean tracking models without exploration
cannot reproduce human-like performance.

Additional structure has been investigated in several
extensions of multi-armed bandit tasks, where the reward
probabilities for pairs of options were correlated across
trials. For example, in a version of the “acquired equiv-
alence” paradigm [35,36], subjects played a 4-armed
bandit in which (unbeknownst to them) the arms were
organized into two pairs with yoked reward probabilities
that changed gradually over time. Thus, the “true” num-
ber of arms was two, but subjects had to discover this fact
through trial and error. After this training phase, subjects
were exposed to one arm from each pair with differential
reinforcement. In a subsequent test phase, subjects gen-
eralized their learned preference to the other arm of each
pair, demonstrating that they had developed an associa-
tive structure mentally linking the yoked arms. This
generalization was accompanied by functional connectiv-
ity between hippocampus and striatum [36], consistent
with the hypothesis that the hippocampus encodes the
underlying structure of the state space [37].

Stojic et al. [38] designed a feature-based multi-armed
bandit task (also known as a “contextual bandit”) where
multiple alternatives were characterized by two features
(the lengths of a horizontal and a vertical line) that
mapped onto an option’s expected reward by an under-
lying linear function. Their results showed that partici-
pants used the feature information to direct their explo-
ration towards promising alternatives.

Using another contextual multi-armed bandit task, in which
global features (the conditions of fictitious galaxies) related
to different options’ expected rewards (the number of emer-
aldsmined on a chosen planet) by different functions, Schulz
and colleagues [39] showed that human generalization could
be well-captured with a Gaussian process regression frame-
work, consistent with other results in the human function
learning literature [40,41]. This framework combines pow-
erful non-linear function approximation with analytically
tractable computations. Model comparison indicated that
combining Gaussian process generalization with a directed
exploration strategy (UCB) produced the best account of
human choice behavior.

Human reinforcement learning has also been investigated
in spatially correlated multi-armed bandits [42], where
rewards are distributed on a grid and each tile of the grid is
the arm of a bandit; crucially, different arms’ rewards are
spatially correlated such that proximal arms produce
similar rewards, enabling participants to generalize over
many options. Human exploration in the spatially corre-
lated multi-armed bandit is best predicted by a Gaussian
process regression model paired with a sampling strategy
that combines structured generalization, directed (UCB)
and random (softmax) exploration [43]. In all of these
experiments, a combination of UCB and random explo-
ration performed better than either softmax-exploration
or e-greedy sampling.
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The studies reviewed above ask whether humans can
take advantage of correlations between options to explore
more efficiently. Others studies examine whether
humans can take advantage of dynamical structure. For
example, Knox et al. [44] developed a “leapfrog” task, a
two-armed bandit in which the payoff for one arm jumped
at random intervals, surpassing the payoff of the other
arm. Thus, the optimal arm switches according to a
change process, and the question is whether subjects
could learn and use this structure (“reflective” explora-
tion) or if they treated the task as a standard two-armed
bandit (“reflexive” exploration). Using a model-based
analysis, Knox and colleagues found that human choice
behavior followed the predictions of a reflective explora-
tion strategy: the probability of exploration increased with
number of trials since the last experienced jump. How-
ever, subjects did not show consideration of future states,
but rather only planned myopically.

The leapfrog task has also been used to probe the role of
dopamine in exploration [45)]. The catechol-O-methyl-
transferase (COMT) gene modulates dopamine levels in
prefrontal cortex, such that Met allele carriers have lower
COMT enzyme activity and thus higher dopamine levels
compared to Val allele carriers. Met carriers showed a
greater tendency to explore reflectively compared to Val/
Val homozygotes when put under cognitive load.

Non-myopic policies
The exploration algorithms discussed in previous section
are for the most part myopic: they do not consider
explicitly the value of future information, but rather
utilize heuristics based on summary statistics such as
reward mean and variance for each option. Whether
people engage non-myopic planning during exploration
remains controversial. Some of the studies reviewed
above find evidence for long-range planning [4], whereas
some do not [44]. However, given that there are two
repeated conditions of different sampling lengths in the
horizon task, the degree of exploration by condition could
still be tuned by a myopic and model-free learning
system.

Some recent evidence in favor of non-myopic exploration
comes from tasks that assess how humans explore their
environment in adaptive planning tasks with sequential
state dependence. These tasks are unlike traditional
bandit tasks in that past choices affect future states. This
means that parts of the state space might never be
revisited again. Exploration is particularly important in
such sequentially structured tasks.

For example, people plan ahead in a complex foraging
task not by updating all possible states but rather by
initializing beliefs first and then thinking ahead, a strategy
similar to random exploration as characterized by Thomp-
son sampling [46]. In another study [47], participants

performed an adaptive control task in which they had
to steer a boat through perilous sea in a simple video
game. The results of this study showed that participants
explored strategically, executing “test trials” of later
trajectories during times of free exploration.

A similar strategy of exploration, which takes into account
the future value of information, has also been formalized
and assessed behaviorally [48]. In a bandit task with
binary outcomes, human choices can be well-captured
by a model which combined exact Bayesian learning with
a decision policy that maximized a combination of imme-
diate rewards and long-term information gain. This idea
was then developed further to investigate behavior in a
task in which the informational value and the potential
rewards were directly manipulated on each trial [25]. As
before, the best-fitting computational model augmented
standard myopic algorithms by additionally incorporating
a value of information.

Disentangling the neural correlates of
exploration and exploitation
Although the distinction between exploration and exploi-
tation is well-defined computationally, it is much more
difficult to distinguish them empirically. Many theories
posit that choice is fundamentally stochastic (e.g., [13
,15]), which complicates the interpretation of apparently
exploratory choices. If a person chooses an option that has
a lower average payoff than another option, is that
because they were exploring, or because they made a
random mistake? This ambiguity means that one must be
careful when interpreting parameter estimates from rein-
forcement learning models; if the estimated inverse tem-
perature is low, this could mean that an individual is very
exploratory, but it could also mean that she is more
“noisy.” The same ambiguity applies to neuroimaging
correlates of exploration [8,49].

One solution to this problem is to use a task that
explicitly separates exploration and exploitation.
Tversky and Edwards [50] devised such a task, in which
subjects choose on repeated and independent trials to
either observe a reward (without collecting the payoff) or
to bet (collecting the payoff without observing it).
Observing corresponds unambiguously to exploration,
and betting corresponds unambiguously to exploitation.
Interest in this task has recently revived [51))], using
new computational methods to analyze how subjects
choose to observe or bet. Although people often
employed suboptimal strategies at the beginning, most
of them were able to approximate the correct strategy
after only minimal experience. Moreover, people devi-
ated from the optimal strategy by repeatedly switching
between observation and betting at the start—a strategy
that is well-suited for dynamic problems but ill-suited for
static ones.

Algorithms for exploration in the human brain Schulz and Gershman 11

www.sciencedirect.com Current Opinion in Neurobiology 2019, 55:7–14



Using the observe-or-bet task in the fMRI scanner, a
recent study found that insula and dorsal anterior cingu-
late cortex showed greater activity on observe trials
compared to bet trials [52)]. This suggests that these
regions play a role in driving pure exploration, consistent
with some earlier studies [53–55]. The activity of these
areas during exploratory choices cannot be explained by
simple value effects (i.e., that participants received sur-
prising rewards, as these choices were purely observatory
without actually gaining rewards).

Surprisingly, this study did not find a signature of explo-
ration in rostral prefrontal or frontopolar cortex, in contrast
with the results of several earlier studies [8,49,56,57],
possibly indicating that these earlier results were not
entirely pure signatures of exploration.

Conclusions
Problems requiring a trade-off between gathering infor-
mation and collecting rewards are ubiquitous in human
learning and decision making. We have reviewed recent
developments in research on the algorithmic architecture
of exploration in the human brain. These developments
have begun to coalesce around a few key computational
ideas. In particular, humans seem to employ a combina-
tion of both random and uncertainty-directed exploration
strategies, which rely on different brain systems, have
distinct developmental trajectories, and are sensitive to
different task manipulations. These two strategies, when
implemented mechanistically, correspond to two algo-
rithms found in the machine learning literature (Thomp-
son and Upper Confidence Bound sampling). Humans
also appear to take advantage of latent structure to
explore more efficiently, and in some cases explore
non-myopically.

Other explanations of participants’ sensitivity to the
variability of rewards also exist. For example, risk
aversion and risk seeking can also arise from nonlinear
marginal utility functions, although some of these
interpretations can be ruled out by computational
modeling [20,24)]. Additionally, an increase in
participants’ choice variability with outcome variance
can arise from learning alone, even in simple mean
tracking models that fully ignore uncertainty. How-
ever, mean tracking models alone cannot capture all of
the results presented here (e.g., [42,43]). Future work
should still try to further disentangle these competing
interpretations.

Another promising future avenue for research on
human exploration could be to further assess hybrid
algorithms of random and directed exploration strate-
gies that have been postulated in machine learning.
For example, May et al. [58] proposed a sampling
strategy called optimistic Bayesian sampling which,
like Thompson sampling, optimizes based on sampled

beliefs, but additionally inflates the probability of
choosing an action based on the uncertainty in the
estimate of the action value. Another possible hybrid
sampling strategy finds inspiration from work on sam-
pling strategies that switch between globally directed
and locally random sampling [59]. We believe that
further formalizing and testing ways in which people
combine random and directed exploration will provide
useful insights into both human and artificial rein-
forcement learning.

Conflicts of interest statement
Nothing declared.

Acknowledgments
This research was supported by the Office of Naval Research (Award
N000141712984) and the Harvard Data Science Initiative.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

) of special interest
)) of outstanding interest

1. Cohen JD, McClure SM, Yu AJ: Should I stay or should I go? How
the human brain manages the trade-off between exploitation
and exploration. Philos Trans R Soc Lond B: Biol Sci 2007,
362:933-942.

2. Laureiro-Martı́nez D, Brusoni S, Zollo M: The neuroscientific
foundations of the exploration–exploitation dilemma. J
Neurosci Psychol Econ 2010, 3:95-115.

3. Mehlhorn K, Newell BR, Todd PM, Lee MD, Morgan K,
Braithwaite VA, Hausmann D, Fiedler K, Gonzalez C: Unpacking
the exploration–exploitation tradeoff: a synthesis of human
and animal literatures. Decision 2015, 2:191-215.

4. Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD:
Humans use directed and random exploration to solve the
explore–exploit dilemma. J Exp Psychol Gen 2014,
143:2074-2081.

5. Gershman SJ: Reinforcement learning and causal models. In
The Oxford Handbook of Causal Reasoning. Edited by Waldmann
M. Oxford University Press; 2017.

6. Sutton RS, Barto AG: Reinforcement Learning: An Introduction.
MIT Press; 1998.

7. Collins AG, Frank MJ: Opponent actor learning (OpAL):
modeling interactive effects of striatal dopamine on
reinforcement learning and choice incentive. Psychol Rev 2014,
121:337-366.

8. Daw ND, O’doherty JP, Dayan P, Seymour B, Dolan RJ: Cortical
substrates for exploratory decisions in humans. Nature 2006,
441:876-879.

9. Yechiam E, Busemeyer JR: Comparison of basic assumptions
embedded in learning models for experience-based decision
making. Psychon Bull Rev 2005, 12:387-402.

10. Neimark ED, Shuford E: Comparison of predictions and
estimates in a probability learning situation. J Exp Psychol
1959, 57:294-298.

11. Vulkan N: An economist’s perspective on probability matching.
J Econ Surv 2000, 14:101-118.

12. Pleskac TJ: Decision and choice: Luce’s choice axiom..
International Encyclopedia of the Social & Behavioral Sciences
2015:895-900.

12 Machine Learning, Big Data, and Neuroscience

Current Opinion in Neurobiology 2019, 55:7–14 www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0005
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0005
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0005
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0005
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0010
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0010
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0010
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0015
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0015
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0015
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0015
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0020
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0020
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0020
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0020
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0025
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0025
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0025
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0030
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0030
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0035
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0035
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0035
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0035
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0040
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0040
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0040
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0045
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0045
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0045
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0050
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0050
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0050
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0055
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0055
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0060
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0060
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0060


13. Pedersen ML, Frank MJ, Biele G: The drift diffusion model as the
choice rule in reinforcement learning. Psychon Bull Rev 2017,
24:1234-1251.

14. Myers JL, Sadler E: Effects of range of payoffs as a variable in
risk taking. J Exp Psychol 1960, 60:306-309.

15. Busemeyer JR, Townsend JT: Decision field theory: a dynamic-
cognitive approach to decision making in an uncertain
environment. Psychol Rev 1993, 100:432-459.

16. Erev I, Barron G: On adaptation, maximization, and
reinforcement learning among cognitive strategies. Psychol
Rev 2005, 112:912-931.

17. Hertwig R, Barron G, Weber EU, Erev I: Decisions from
experience and the effect of rare events in risky choice.
Psychol Sci 2004, 15:534-539.

18. Weber EU, Shafir S, Blais AR: Predicting risk sensitivity in
humans and lower animals: risk as variance or coefficient of
variation. Psychol Rev 2004, 111:430-445.

19. Thompson WR: On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples.
Biometrika 1933, 25:285-294.

20. Gershman SJ: Deconstructing the human algorithms for
exploration. Cognition 2018, 173:34-42.

21. Agrawal S, Goyal N: Analysis of Thompson sampling for the
multi-armed bandit problem. Conference on Learning Theory
2012:39-41.

22. Chapelle O, Li L: An empirical evaluation of Thompson
sampling. Advances in Neural Information Processing Systems
2011:2249-2257.

23. Frank MJ, Doll BB, Oas-Terpstra J, Moreno F: Prefrontal and
striatal dopaminergic genes predict individual differences in
exploration and exploitation. Nat Neurosci 2009, 12:1062-1068.

24.
)

Speekenbrink M, Konstantinidis E: Uncertainty and exploration
in a restless bandit problem. Top Cogn Sci 2015, 7:351-367.

Behavioral evidence for uncertainty bonuses

25. Dezza IC, Angela JY, Cleeremans A, Alexander W: Learning the
value of information and reward over time when solving
exploration–exploitation problems. Sci Rep 2017, 7:16919.

26. Auer P, Cesa-Bianchi N, Fischer P: Finite-time analysis of the
multiarmed Bandit problem. Mach Learn 2002, 47:235-256.

27. Srinivas N, Krause A, Seeger M, Kakade SM: Gaussian process
optimization in the Bandit setting: no regret and experimental
design. Proceedings of the 27th International Conference on
Machine Learning 2010:1015-1022.

28. Gershman SJ: Uncertainty and exploration. bioRxiv
2018:265504.

29. Somerville LH, Sasse SF, Garrad MC, Drysdale AT, Abi Akar N,
Insel C, Wilson RC: Charting the expansion of strategic
exploratory behavior during adolescence. J Exp Psychol Gen
2017, 146:155-164.

30. Schulz E, Wu CM, Ruggeri A, Meder B: Searching for rewards
like a child means less generalization and more directed
exploration. bioRxiv 2018:327593.

31.
))

Zajkowski WK, Kossut M, Wilson RC: eLife 2017, 6:e27430.
Transcranial magnetic stimulation study dissociating different forms of
exploration

32. Warren CM, Wilson RC, van der Wee NJ, Giltay EJ, van
Noorden MS, Cohen JD, Nieuwenhuis S: The effect of
atomoxetine on random and directed exploration in humans.
PLoS One 2017, 12:e0176034.

33. Aston-Jones G, Cohen JD: An integrative theory of locus
coeruleus-norepinephrine function: adaptive gain and optimal
performance. Annu Rev Neurosci 2005, 28:403-450.

34.
))

Rich, A.S., Gureckis, T.M. Exploratory Choice Reflects the Future
Value of Information.

Evidence for non-myopic exploration.

35. Daw ND, Shohamy D: The cognitive neuroscience of motivation
and learning. Soc Cogn 2008, 26:593-620.

36. Wimmer GE, Daw ND, Shohamy D: Generalization of value in
reinforcement learning by humans. Eur J Neurosci 2012,
35:1092-1104.

37. Stachenfeld KL, Botvinick MM, Gershman SJ: The hippocampus
as a predictive map. Nat Neurosci 2017, 20:1643-1653.

38. Stojic H, Analytis PP, Speekenbrink M: Human behavior in
contextual multi-armed bandit problems. In Proceedings of the
37th Annual Meeting of the Cognitive Science Society 2015:2290-
2295.

39. Schulz E, Konstantinidis E, Speekenbrink M: Putting bandits into
context: how function learning supports decision making. J
Exp Psychol Learn Memory Cogn 2017.

40. Lucas CG, Griffiths TL, Williams JJ, Kalish ML: A rational model of
function learning. Psychon Bull Rev 2015, 22:1193-1215.

41. Schulz E, Tenenbaum JB, Duvenaud D, Speekenbrink M,
Gershman SJ: Compositional inductive biases in function
learning. Cognit Psychol 2017, 99:44-79.

42. Wu CM, Schulz E, Speekenbrink M, Nelson JD, Meder B: Mapping
the unknown: the spatially correlated multi-armed bandit.
Proceedings of the 39th Annual Meeting of the Cognitive Science
Society 2017:1357-1362.

43. Wu C, Schulz E, Speekenbrink M, Nelson JD, Meder B:
Exploration and generalization in vast spaces. bioRxiv
2017:171371.

44. Knox WB, Otto AR, Stone P, Love BC: The nature of belief-
directed exploratory choice in human decision-making. Front
Psychol 2012:2.

45.
)

Blanco NJ, Love BC, Cooper JA, McGeary JE, Knopik VS,
Maddox WT: A frontal dopamine system for reflective
exploratory behavior. Neurobiol Learn Mem 2015, 123:84-91.

Genetic analysis of belief-directed exploration

46. Krusche MJF, Schulz E, Guez A, Speekenbrink M: Adaptive
planning in human search. bioRxiv 2018.

47. Schulz E, Klenske E, Bramley N, Speekenbrink M: Strategic
exploration in human adaptive control. bioRxiv 2017:110486.

48. Zhang S, Yu AJ: Forgetful Bayes and myopic planning: human
learning and decision-making in a bandit setting.. Advances in
Neural Information Processing Systems 2013:2607-2615.

49. Boorman ED, Behrens TE, Woolrich MW, Rushworth MF: How
green is the grass on the other side? Frontopolar cortex and
the evidence in favor of alternative courses of action. Neuron
2009, 62:733-743.

50. Tversky A, Edwards W: Information versus reward in binary
choices. J Exp Psychol 1966, 71:680-683.

51.
))

Navarro DJ, Newell BR, Schulze C: Learning and choosing in an
uncertain world: an investigation of the explore–exploit
dilemma in static and dynamic environments. Cognit Psychol
2016, 85:43-77.

Revival of Tversky and Edward’s observe-or-bet task, which cleanly
dissociates exploration and exploitation

52.
)

Blanchard TC, Gershman SJ: Pure correlates of exploration and
exploitation in the human brain. Cogn Affect Behav Neurosci
2018, 18:117-126.

Neural analysis of the observe-or-bet task

53. Kolling N, Behrens TE, Mars RB, Rushworth MF: Neural
mechanisms of foraging. Science 2012, 336:95-98.

54. Boorman ED, Rushworth MF, Behrens TE: Ventromedial
prefrontal and anterior cingulate cortex adopt choice and
default reference frames during sequential multi-alternative
choice. J Neurosci 2013, 33:2242-2253.

55. Li J, McClure SM, King-Casas B, Montague PR: Policy
adjustment in a dynamic economic game. PLoS One 2006, 1:
e103.

Algorithms for exploration in the human brain Schulz and Gershman 13

www.sciencedirect.com Current Opinion in Neurobiology 2019, 55:7–14

http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0065
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0065
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0065
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0070
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0070
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0075
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0075
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0075
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0080
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0080
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0080
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0085
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0085
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0085
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0090
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0090
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0090
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0095
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0095
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0095
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0100
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0100
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0105
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0105
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0105
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0110
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0110
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0110
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0115
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0115
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0115
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0120
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0120
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0125
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0125
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0125
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0130
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0130
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0135
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0135
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0135
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0135
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0140
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0140
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0145
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0145
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0145
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0145
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0150
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0150
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0150
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0155
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0160
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0160
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0160
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0160
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0165
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0165
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0165
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0175
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0175
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0180
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0180
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0180
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0185
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0185
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0190
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0190
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0190
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0190
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0195
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0195
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0195
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0200
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0200
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0205
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0205
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0205
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0210
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0210
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0210
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0210
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0215
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0215
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0215
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0220
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0220
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0220
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0225
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0225
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0225
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0230
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0230
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0235
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0235
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0240
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0240
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0240
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0245
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0245
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0245
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0245
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0250
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0250
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0255
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0255
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0255
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0255
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0260
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0260
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0260
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0265
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0265
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0270
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0270
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0270
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0270
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0275
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0275
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0275


56. Badre D, Doll BB, Long NM, Frank MJ: Rostrolateral prefrontal
cortex and individual differences in uncertainty-driven
exploration. Neuron 2012, 73:595-607.

57. Beharelle AR, Polanı́a R, Hare TA, Ruff CC: Transcranial
stimulation over frontopolar cortex elucidates the choice
attributes and neural mechanisms used to resolve
exploration–exploitation trade-offs. J Neurosci 2015, 35:14544-
14556.

58. May BC, Korda N, Lee A, Leslie DS: Optimistic Bayesian
sampling in contextual-bandit problems. J Mach Learn Res
2012, 13:2069-2106.

59. McLeod M, Osborne MA, Roberts SJ: Optimization, fast and
slow: optimally switching between local and Bayesian
optimization. ArXiv 2018. [e-prints].

14 Machine Learning, Big Data, and Neuroscience

Current Opinion in Neurobiology 2019, 55:7–14 www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0280
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0280
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0280
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0285
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0285
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0285
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0285
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0285
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0290
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0290
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0290
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0295
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0295
http://refhub.elsevier.com/S0959-4388(18)30090-4/sbref0295

	The algorithmic architecture of exploration in the human brain
	Introduction
	From optimality to heuristics
	Uncertainty-based exploration
	Exploration in structured spaces
	Non-myopic policies
	Disentangling the neural correlates of exploration and exploitation
	Conclusions
	Conflicts of interest statement
	References and recommended reading
	Acknowledgments


