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Abstract Cells in the hippocampus tuned to spatial location (place cells) typically change their

tuning when an animal changes context, a phenomenon known as remapping. A fundamental

challenge to understanding remapping is the fact that what counts as a ‘‘context change’’ has

never been precisely defined. Furthermore, different remapping phenomena have been classified

on the basis of how much the tuning changes after different types and degrees of context change,

but the relationship between these variables is not clear. We address these ambiguities by

formalizing remapping in terms of hidden state inference. According to this view, remapping does

not directly reflect objective, observable properties of the environment, but rather subjective

beliefs about the hidden state of the environment. We show how the hidden state framework can

resolve a number of puzzles about the nature of remapping.

Introduction
Place cells of the hippocampus fire when an animal occupies specific spatial locations (place fields;

O’Keefe, 1976). Each place cell has its own respective place fields, so collectively the population of

place cell comprise a map of an environment, in which each location corresponds to activity of a par-

ticular subset of place cells. The hippocampus is thought to use independent maps for each context.

These independent maps can be observed through ‘‘place field remapping’’, in which the location

of a place field may change or the place field may disappear entirely between contexts (Muller and

Kubie, 1987; Colgin et al., 2008; Kubie et al., 2019). The sensitivity of place cells to context

changes is consistent with many other studies implicating the hippocampus in context-dependent

behavior (Holland and Bouton, 1999; Gershman et al., 2010; Anagnostaras et al., 2001;

Smith and Mizumori, 2006a). Despite its acknowledged importance, the precise relationship

between context changes and remapping has remained elusive, due in part to ambiguity as to what

counts as context change.

Researchers have operationalized context in many different ways. For example, some researchers

investigated the role of sensory cues (Knierim et al., 1998; O’Keefe and Conway, 1978;

Muller and Kubie, 1987), whereas others investigated the effect of changing spatial location or

geometry (Skaggs and McNaughton, 1998; Lever et al., 2002), or changing the task (O’Keefe and

Speakman, 1987; Markus et al., 1995). Not surprisingly, different effects have been observed for

these different manipulations, without cohering into a unified picture of how context changes deter-

mine remapping.

Some of the confusion about what counts as a context change is due to inconsistent definitions of

the word ’context’. Sometimes ’context’ refers to experimenter-defined variables, such as physical

location or sensory cues. In other cases, ’context’ refers to the animal’s internal assessment of the

environment as indicated by neural activity or behavioral response. For example, in the fear condi-

tioning literature, animals are assumed to preferentially freeze in the ’same’ context as that in which
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they received the shock. This doesn’t necessarily have to be physically the same environment, as

long as the animal infers that it is the same environment (Chang and Liang, 2017; Gershman et al.,

2010). Invoking subjective inferential factors in the interpretation of remapping compels us to con-

sider basic questions about the nature of these inferences. What is the animal’s hypothesis space?

How does it represent and update beliefs over this hypothesis space?

The goal of this paper is to develop formal answers to these questions, and thereby provide a

coherent account of diverse experimental findings. Key to this account is the idea that the relation-

ship between observable properties of the environment (including context) and remapping is medi-

ated by inferences about unobservable properties of the environment (hidden states). We

emphasize for clarity that the ‘‘observable’’ properties of the environment have themselves been

inferred through sensory processing and therefore are in a sense hidden, but when we refer to hid-

den states, we are referring to regularities in the environment that could not be observed even with

perfect sensory reproduction of the environment. According to this view (see also Fuhs and Tour-

etzky, 2007; Gershman et al., 2014; Penny et al., 2013), place fields remap when the animal

believes that it has entered a new hidden state. By specifying the animal’s internal model of how hid-

den states relate to observable stimuli, we can make principled predictions about when, why and

how place fields remap.

Before describing the details and applications of this computational framework, we will briefly

review some of the key empirical and theoretical background.

Empirical background
Remapping phenomena have been divided into several classes (Colgin et al., 2008; Muller, 1996;

Kubie et al., 2019). At the extremes, there is ‘global’ or ‘complete’ remapping (where no place

fields are shared between contexts) and ‘null’ or ‘lack of’ remapping (where all place fields are

shared between contexts). Between these extremes is ‘partial remapping’ (where some place fields

are shared between contexts but some are not) and ‘rate remapping’ (where place fields are shared

between contexts but have characteristically different firing rates). However, none of these catego-

ries can be regarded as strictly exclusive.

The extent to which place fields are shared between contexts can be quantified by looking at the

spatial correlations of place cell firing rates between contexts. Although studies report correlations

near zero between place fields in different contexts (Leutgeb et al., 2004; Muller and Kubie, 1987;

Schlesiger et al., 2015), there are reasons to believe that correlations are not actually zero. A recent

report suggests that previous observations of global remapping might be artifacts of misalignment

of maps between contexts (Kinsky et al., 2018). Some place cells have been found to consistently

encode reward across virtual reality contexts that otherwise express ‘global

remapping’ (Gauthier and Tank, 2018), so there is at least one class of place cells that have recently

been found not to remap across contexts. More generally, many studies reporting global remapping

report low but non-zero correlations (Leutgeb et al., 2004; Skaggs and McNaughton, 1998;

Spiers et al., 2015).

Conversely, studies reporting lack of remapping never report perfect place field overlap between

contexts. Indeed, even within a single context, patterns of spatial firing show variability over time, as

if more than a single map is used in a given context (Fenton and Muller, 1998; Kay et al., 2019;

Kelemen and Fenton, 2016). Additionally, the extent of remapping for repeated presentations of

the same context depends on the amount of experience the animal has had (Law et al., 2016).

Rate remapping is also not a strict category. Manipulations used to generate rate remapping do

so for a fraction of the place cell population, while other cells in the population maintain or lose their

place fields (Wood et al., 2000; Leutgeb et al., 2005a). In this way, rate remapping is always

accompanied by partial remapping. Additionally, protocols for generating rate remapping can

sometimes produce a range of remapping states during learning, ranging from no remapping to

global remapping. For example, Leutgeb et al., 2005a found rate remapping when comparing

place field maps between circle and square enclosures. However, Lever et al., 2002 make the same

comparison between circle and square enclosures, and find rate remapping as an intermediate state

as the animal transitions from no remapping to global remapping over the course of learning.
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The complications discussed above highlight the fact that virtually all remapping is partial remap-

ping. Place cell responses to manipulations are extremely heterogeneous (Lee et al., 2004;

Shapiro et al., 1997; Chen et al., 2013; Anderson and Jeffery, 2003). Additionally, remapping

behavior can vary across animals (Wills et al., 2005; Lever et al., 2002) as well as across laboratories

(Guzowski et al., 2004; Wills et al., 2005; Leutgeb et al., 2005b; Colgin et al., 2010), see the

‘‘Morph Experiments’’ section of the Results for an in-depth exploration of one example). We will

argue that this heterogeneity arises from variability in beliefs across animals.

Theoretical background
Our theory of hidden state inference is motivated by, and builds upon, prior research into the nature

of context-dependent learning. Since Pavlov, experimentalists have recognized that extinguishing an

association after Pavlovian conditioning is not the same as unlearning it. The association can return

under a variety of circumstances (Bouton, 2004), such as returning the animal to the conditioning

context, or simply waiting a period of time before testing the animal. These phenomena seem to

suggest that the animal is forming a new memory during extinction, which could compete with the

conditioning memory at the time of retrieval. Context, on this view, serves as a particularly powerful

retrieval cue. The fundamental challenge posed by this interpretation is to define precisely the condi-

tions under which a new memory is formed or an old memory is updated, and the conditions under

which a particular memory is retrieved at the time of test.

One approach to these questions is to frame them in terms of hidden state inference

(Gershman et al., 2010; Gershman et al., 2017a): new memories are formed when an animal has

inferred that it has encountered an unfamiliar (previously unvisited) state, and old memories are

updated when it has inferred that it has encountered a familiar state. As we formalize below, these

inferences can be calculated using Bayes’ rule, which computes a posterior probability distribution

over hidden states by integrating prior beliefs about the hidden states with the likelihood of those

hidden states given the animal’s observations. The hidden states are sometimes interpreted as latent

causes (Courville et al., 2006; Gershman and Niv, 2012b), to emphasize the idea that the animal is

forming beliefs about the causal structure of the environment.

The state inference framework can naturally explain many animal learning phenomena (see

Gershman et al., 2015), for a review). For example, a conditioned response takes longer to extin-

guish when reward is delivered probabilistically during the acquisition phase, a phenomenon known

as the partial reinforcement extinction effect (e.g., Gibbon et al., 1980). This phenomenon is surpris-

ing for classical associative learning accounts, since the learned association should be weaker under

partial reinforcement, and hence should be faster to extinguish. According to the state inference

framework, partial reinforcement renders the hidden state ambiguous; it takes more extinction trials

until the animal is confident that acquisition and extinction trials were generated by different states

(Courville et al., 2006; Gershman and Blei, 2012a).

In this paper, we argue that the same framework can unify many different place field remapping

phenomena, under the assumptions that (i) each map corresponds to a unique hidden state, and (ii)

a map is activated in proportion to the posterior probability of the corresponding hidden state. A

closely related idea was pursued by Fuhs and Touretzky, 2007, to which we owe the inspiration for

the present work. Our goal is to explain a significantly broader range of phenomena using a some-

what simpler model, and to resolve a number of lingering empirical puzzles. In particular, we stress

the role of uncertainty in hidden state inference and its connection with partial remapping, rate

remapping, and population heterogeneity. This connection allows us to explain phenomena such as

the stabilization of place cell maps over time and the potential role of experience in place cell

responses to morph enclosures, among other phenomena.

Results

Conceptual overview of the model
The computational problem facing the animal is to infer the posterior probability of each hidden

state c given its observations y (e.g., geometric or color features of a box), as stipulated by Bayes’

rule:
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PðcjyÞ / PðyjcÞPðcÞ; (1)

where PðyjcÞ is the likelihood of the observations under the hypothetical state c, and PðcÞ is the prior

probability of state c. A more detailed formal description of these terms can be found in the Materi-

als and methods. In this section, we describe intuitively what they mean and how they work.

The animal is presented with observations that are generated by an unknown number of states

through a process that the animal is not aware of (left side of Figure 1A). The animal builds an inter-

nal model of the world (thought bubble in Figure 1A). That model doesn’t have to mimic the world

exactly, it simply needs to be flexible enough to be able to capture the structure that it is presented

with. We suggest that the animal’s internal model provides a generative ‘‘recipe’’ through which it

assumes observations are produced: first a state is sampled from PðcÞ, and then an observation is

sampled from the distribution associated with that state PðyjcÞ. The job of the animal is to invert this

generative process and infer the posterior probability of each hidden state c given its observations

y. Since different states could theoretically produce the same observations, the animal is faced with

fundamental ambiguity. The posterior distribution PðcjyÞ represents the animal’s uncertainty about

the hidden state. As it collects more observations and thereby reduces its uncertainty, the posterior

will tend to progressively concentrate on a single explanation of which observations come from

which states.

Because there is no reason to assume that the animal has a priori knowledge about the set of

states, we allow the state space to potentially grow as the animal collects new observations. The ani-

mal starts off with a single state, and at each new observation it can assign some probability to a

new state or one of its previously inferred states. As detailed in the Materials and methods, we

accomplish this using a Bayesian nonparametric prior over hidden states. Importantly, this prior

favors a small number of hidden states, encoding a form of ‘simplicity bias’ or Occam’s razor.

As mentioned in the Introduction, we assume a one-to-one correspondence between hidden

states and maps. Thus, we transpose the question ‘did the place field remap?’ to ‘were these obser-

vations generated by the same hidden state?’ More precisely, we report the log posterior probabil-

ity ratio between 1-state and 2-state hypotheses (or evidence ratio, for brevity), which we take to be

related to the degree of remapping (see Materials and methods for definitions of two versions of

the evidence ratio: the partition evidence ratio and the state evidence ratio). When the evidence

ratio is near 0, the animal is indifferent between the two hypotheses, and in this case we expect par-

tial remapping. No remapping occurs when the evidence ratio is strongly positive (favoring the 1-

state hypothesis), rate remapping occurs when the log probability ratio is weakly positive, and global

remapping occurs when it is strongly negative. Keep in mind, following our overview of the literature

in the Introduction, that these are heuristic categories without strict boundaries. On the probabilistic

view, these categories occupy different points along a spectrum.

The effect of sensory cues
One of the first questions asked about hippocampal remapping was which sensory cue controls

whether a map is used. The first study of remapping O’Keefe and Conway, 1978 found that in an

environment with four cues, some place fields disappeared with the removal of one or two cues, but

most place fields maintained their firing with the removal of any two cues. In more modern terms,

removal of a subset of cues caused partial remapping, but there was not a one-to-one correspon-

dence between place fields and cues. Thus, from the very beginning it was clear that remapping is

not in response to cues but in response to cue constellations (see also Shapiro et al., 1997;

Fenton et al., 2000; Muller and Kubie, 1987). Each of these studies involved separately rotating or

removing groups of stimuli, finding that many place fields that rotated when a given stimuli was

rotated still maintained their firing when that stimuli was removed. A similar early result was that of

O’Keefe and Speakman, 1987, where cues necessary for orientation of the map were removed, but

the place cell map was maintained. The significance of these results is that the place field map is

responsive to cues but is not controlled by cues in a one-to-one fashion.

Viewing remapping as hidden state inference provides an important insight into this behavior.

Our model posits that the cues jointly inform the posterior over hidden states. Individual cues will

typically only exert a weak effect on the posterior, and hence exert only a weak effect on

remapping.
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To simulate the effect of cue configurations on remapping, we assume that the observation vec-

tor consists of four features, each drawn from a Gaussian with mean 0 and standard deviation of 0.2.

We provide the model with 20 observations drawn from that distribution and then provide one of

four probe observations. For each probe, we compute the state evidence ratio (Figure 2).

The first probe is an observation where each feature has a value of 0 (no cues changed). The

model prefers assigning the probe observation to the same hidden state as the previous observa-

tions, corresponding to no remapping. The second probe is an observation where the first feature

has a value of 1 and the other features have a value of 0 (cue 1 changed). The third probe is an
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Figure 1. The hidden state inference framework. (A) Schematic of hidden state inference. We impute an internal

generative model to the animal, according to which observations are generated by a small number of hidden

states. States are sampled from the Chinese Restaurant Process, parametrized by a (see Materials and methods

for details). Each state is associated with a particular distribution over observations. The animal receives those

observations but does not have direct access to the states that generated them. We model the animal as

probabilistically inverting this generative model by computing the posterior distribution over hidden states given

observations. (B) Example inference problem. Given a set of observations (x’s), the animal must infer how many

hidden states there are. There is a tradeoff between increasing the number of hidden states in order to better fit

the observations vs. decreasing the number of states in order to decrease the complexity of the explanation. The

partition evidence ratio can be calculated given a particular set of observations to express the relative preference

for the 1-state model vs. the 2-state model. See Equation 7 in the Materials and methods section for more details.

(C) Another example inference problem. Given an assignment of past observations (green and orange x’s) to

hidden states (green and orange) and a novel observation (gray x), the animal forms a belief about hidden state

assignment of the novel observation. This belief consists of probabilities of assigning the novel observation to

each of the past hidden states (green or orange) or alternatively to a novel hidden state (purple). We can compare

any two of these alternatives with the state evidence ratio. See Equation 11 in the Materials and methods section

for more details.
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observation where the first and last features have a value of 1 and the other features have a value of

0 (cues 1 and 4 changed). For both of these, the model produces an evidence ratio near 0, register-

ing a high level of uncertainty about the hidden state (i.e., partial remapping). The fourth probe is an

observation where all four features have a value of 1 (all cues changed), for which the model prefers

assigning the probe observation to a new hidden state, corresponding to global remapping. These

simulations demonstrate how the model is sensitive to the configuration of cues; no one cue

completely controls remapping, consistent with the experimental data reviewed above.

Another aspect of these simulations worth highlighting is the fact that they are probabilistic. The

representation of uncertainty in hidden state identity corresponds in an important way with the result

that hippocampal maps during two experiences are almost never entirely overlapping nor entirely

independent. From the perspective of our model, this ‘partial remapping’ reflects the inherent

uncertainty about whether different observations are drawn from the same distribution.

Experience-dependent remapping
The previous section addressed the study of how sensory cues control place field remapping.

Another line of research has studied how more diffuse contextual cues control remapping, but the

answer was invariably that it depended on prior experience (Knierim et al., 1995; Sharp et al.,

1990; O’Keefe and Speakman, 1987; Breese et al., 1989; Knierim et al., 1998; Bostock et al.,

Figure 2. Hidden state inference is informed by cue constellations. Observations are generated from a distribution with four features, each drawn from

a Gaussian with mean 0 and standard deviation of 0.2.We train the model with 20 observations drawn from that distribution. We then compare the

posterior probability of assigning a probe observation to the same hidden state as the previous observations vs. assigning it to a novel hidden state

(Equation 11 for same c vs. novel c). The first probe is an observation where each feature has a value of 0 (no cues changed). The model prefers

assigning this probe observation to the same hidden state as the previous observations, corresponding to no remapping. The second probe is an

observation where the first feature has a value of 1 and the other features have values of 0 (cue one changed). The third probe is an observation where

the first and last features have a value of 1 and the other features have values of 0 (cues 1 and 4 changed). For both of these, the model assigns a state

evidence ratio near 0, representing relatively high uncertainty about hidden state assignment, which corresponds to partial remapping. The grey

background has saturation proportional to a Gaussian centered at 0 with a standard deviation of 5; values with a grey background can be heuristically

thought of as partial remapping, whereas values with a white background can be thought of as either complete remapping or lack of remapping

depending on whether two states are more likely (negative values) or one state is more likely (positive values). The fourth probe is an observation where

all four features have values of 1 (all cues changed), for which the model prefers assigning the probe observation to a new hidden state, corresponding

to global remapping.
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1991; Shapiro et al., 1997). One prime example of this is the role of environmental geometry (the

shape of the recording arena). Initially, it was thought that different geometries necessarily corre-

sponded to different maps (Muller and Kubie, 1987; Quirk et al., 1992) , but recordings had always

been done in familiar environments. The first group to record throughout the course of learning

found that there was no consistent relationship between environment shape and inferred hidden

state (Lever et al., 2002). In this experiment, place cells were recorded in rats who were alternately

placed in square and circle boxes occupying the same location in the recording room day after day.

Early in learning, there was limited remapping. Only after extensive experience in the two boxes did

the animals remap between the two boxes (Figure 3A). This indicates that the sensitivity to context

changes changes with experience. Analogous results have been found for the effects of experience

on remapping in response to other manipulations (Bostock et al., 1991; Shapiro et al., 1997).

These effects are hard to explain in terms of fixed contextual boundaries governing remapping. It is

naturally explained by the hidden state inference perspective, which posits that uncertainty about

hidden states evolves as more data are observed. In particular, distinctions between hidden states

are acquired gradually, such that substantial remapping should only be observed after sufficient

experience to counteract the ‘‘simplicity bias’’ favoring a small number of hidden states.

We simulate these experiments qualitatively in the following way. We take observations to be 1D

for simplicity, where the single dimension is the feature along which the distinction is learned. For

example, in the circle-square experiment (Lever et al., 2002), the dimension would be the shape of

the enclosure. We generate observations from two Gaussians (corresponding to the circle and

square contexts) with �1 ¼ �1; �2 ¼ 1;s1 ¼ s2 ¼ 0:3 (Figure 3B). We alternate drawing observations

from each distribution. After each pair of draws, we compute the partition evidence ratio (in this

case, the relative probability of the hypothesis that all observations up to that point were drawn

from a single hidden state against the hypothesis that all observations up to that point had been

drawn from two alternating hidden states).

Early in training, there is uncertainty about how many hidden states there are (Figure 3C); the evi-

dence provided by the observations is not yet sufficiently strong to overwhelm the simplicity bias of

the prior. As more data are observed, the two-state hypothesis is eventually favored over the one-

state hypothesis. The hidden state inference perspective thus explains why context-dependent

remapping only emerges gradually with experience.

Stabilization of maps over time
Maps take time to stabilize: repetition of a novel environment induces less map similarity than repeti-

tions of a familiar environment (Frank et al., 2004; Leutgeb et al., 2004; Law et al., 2016). In par-

ticular, Law et al., 2016 alternated presentation of two environments. They found that intra-

environment map similarity went up as a function of experience (Figure 4A). These results are diffi-

cult to explain under the assumption that remapping is induced by the discrepancy between expect-

ations and current cues exceeding a fixed threshold (Jeffery, 2003). Long-term potentiation (LTP)

had been tied to map stabilization (Kentros et al., 1998; Cobar et al., 2017), but the speed with

which LTP can create place fields (single trials; Bittner et al., 2017) is inconsistent with the slowness

of map stabilization. The hidden state inference perspective offers a different interpretation of map

stabilization: as an animal gains more experience with a particular state, it sharpens its representa-

tion of that state (i.e., its uncertainty about the distributional statistics decreases), and consequently

it becomes more confident in recognizing repetitions of that state.

We can model the dynamics of stabilization by considering observations which are generated

from a single distribution with mean 0. We can consider the same hypotheses as were considered in

Figure 3, namely, that there are either 1 or two hidden states. We consider the same hypotheses

but the actual generative process has the opposite structure as Figure 3. Through the course of

learning, the partition evidence ratio accumulates evidence in favor of the one-state hypothesis, cor-

responding to the emergence of a ‘‘stable’’ map. Indeed, early in learning, the animal does not

know whether it is receiving observations from the simulation of Figure 3 or the simulation of Fig-

ure 4, as they are indistinguishable. Only after extensive experience is the animal able to identify

which generative process is generating its observations.
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Figure 3. Learning to distinguish. (A) Adapted from Lever et al., 2002, who compared place cell representations

between alternating presentations of square and circle boxes. Field Divergence is expressed in percent and

represents the fraction of place fields that remap between the two enclosures. The representations of the

enclosures are initially similar, but diverge with learning. (B) Simulated observations (black dots) are generated

from Gaussians centered at �1, 1. The model compares the posterior probability of the observations coming from

one inferred hidden state (red) or two inferred hidden states (blue). (C) The relative probability assigned to the

observations coming from two hidden states vs. one hidden state (Equation 7) is shown as a function of amount

of experience. Early on, there is uncertainty about how many hidden states there are, whereas later two hidden

states is more probable, similar to the empirical observations. As in Figure 2, values with a grey background can

be thought of as partial remapping whereas values with a white background can be thought of as either complete

remapping or lack of remapping depending on whether two states are more likely or one state is more likely.

Note that the axis here has been flipped relative to Figure 2 in order to match the axis of the empirical results

shown in panel A.

Ó 2002 Springer Nature. All rights reserved. Panel A is adapted from Lever et al., 2002 with permission (originally

published as Supplementary Information Sheet 5). It is not covered by the CC-BY 4.0 licence and further reproduc-

tion of this panel would need permission from the copyright holder.
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Remapping due to non-sensory changes
Remapping is not solely driven by sensory aspects of experience. For example, place fields can

remap depending on internal variables such as movement direction or task (Smith and Mizumori,

2006b; Sanders et al., 2019; Wood et al., 2000; Muller et al., 1994). In general, it is known that

place fields can remap depending on which direction the animal is running on a linear track

(Markus et al., 1995; Battaglia et al., 2004). However, place fields tend not to remap based on run-

ning direction in an open field. This is most clearly shown in Markus et al., 1995. They compared

two conditions, both of which occurred in an open field: one in which the animal was randomly for-

aging, and one in which the animal was running between four specific locations in one of two direc-

tions. They found that the extent of remapping in response to movement direction was larger in the

directed foraging condition than in the random foraging condition (Figure 5A) despite having the

same sensory cues in the two conditions.

From the perspective of hidden state inference, we can draw an analogy with the remapping

observed after training in the circle and square boxes (Figure 3), replacing the sensory features of

the environment with the non-sensory information about self-motion. In the directed foraging case,

observations are clearly separated into two states (clockwise movement and counterclockwise move-

ment), whereas in the random foraging case, there is no consistent partition that could support the

inference of multiple states.

We model this experiment in the following way. Again, we take observations to be 1-dimensional

for simplicity, where the single feature is the animal’s movement direction. This feature is repre-

sented as a circular (angular) variable, as movement direction is circular. We model the random for-

aging condition as observations drawn from a uniform distribution over the circle (red dots in

Figure 5B). We model the directed foraging as observations drawn from a Von Mises distribution

with � ¼ 0; k ¼ 10 alternating with a Von Mises distribution with � ¼ p; k ¼ 10 (blue dots in

Figure 5B). For each condition, we separate the observations into two groups with a line for which

the distance from any observations is maximum (red and blue lines in Figure 5B). After 10 observa-

tions, we ask the model what the relative probability is that the observations were drawn from a sin-

gle hidden state or drawn from two hidden states split by the line of maximum separation. The

model assigns greater probability to the two-state hypothesis for directed foraging. In contrast, it

assigns greater probability to the one-state hypothesis for random foraging (Figure 5C). This corre-

sponds to the empirical finding that place fields were more likely to remap under the directed forag-

ing condition compared to the random foraging condition.

Cue rotation experiments
One series of experiments used rotation of cues with respect to the recording arena to ask how the

place cell representation responds to such changes. The most simple version of these experiments

had a circular arena with a cue card on one side of the arena. The cue card could be rotated to any

position in the arena, reported as an angle with respect to the original cue card orientation in the

room reference frame (Rotenberg and Muller, 1997; Knierim et al., 1998; Hargreaves et al.,

2007). Experiments reported two types of changes in place field behavior in response to a given

manipulation. One is extent of remapping, as we have been discussing in this paper. The other is

which rotational angle the map is oriented towards. This added question is due to the inherent ambi-

guity in circular variables. Even if a place field moves to a different location in a given reference

frame, it is still possible that remapping did not occur if the relative locations of place fields are pre-

served. Therefore, one must check whether the place field had the same location subject to a rota-

tional offset. This rotational offset frequently corresponds to the rotational offset observed in head

direction cells simultaneously recorded from a variety of brain regions (Knierim et al., 1995;

Hargreaves et al., 2007). Experimental papers thus report 1) whether place fields remap and 2) if

not, whether there is a rotational offset in their locations (Figure 6A).

We model these experiments as follows. Similar to other simulations in this paper, each observa-

tion is a feature vector. However, instead of each entry in the vector containing the value of that fea-

ture on some sensory axis, the entry contains the angle between a given cue and an uncued

direction in the room reference frame. Feature vectors with different values can potentially be identi-

cal if there is an offset that can be subtracted from each entry in one vector to give the other vector,

corresponding to usage of a different uncued direction as the reference. Therefore, before

Sanders et al. eLife 2020;9:e51140. DOI: https://doi.org/10.7554/eLife.51140 9 of 31

Review Article Neuroscience

https://doi.org/10.7554/eLife.51140


A

B

C

2
 S

ta
te

s

m
o

re
 l
ik

e
ly

1
 S

ta
te

m
o

re
 l
ik

e
ly

From Law, et al. (2016)

Figure 4. Map stabilization requires certainty about distributional statistics. (A) Data from Law et al., 2016,

showing the spatial correlation of the hippocampal map in repeated presentations of the same environment over

multiple training days. Initially, the correlation is low, indicating extensive remapping between observations, but

over the course of training the extent of remapping between observations decreases. (B) Observations (black dots)

are generated from two Gaussians, both of which are centered at 0. The model compares the posterior probability

of the observations coming from one inferred hidden state (red) or two inferred hidden states (blue). (C) The

relative probability assigned to the observations coming from one hidden state vs. two hidden states (Equation 7)

is shown as a function of amount of experience. Early in training, the two hypotheses have similar probabilities,

whereas later one hidden state is overwhelmingly more probable. This corresponds to an increase in certainty over

training, which would translate into a decreased tendency to remap, similar to the empirical observations. Note

that the axis here has been flipped relative to Figure 3C in order to match the axis of the empirical results shown

in panel A.

Ó 2016 Wiley Periodicals, Inc. All rights reserved. Panel A is reproduced from Law et al., 2016 with permission

(originally published as Figure 2A). It is not covered by the CC-BY 4.0 licence and further reproduction of this panel

would need permission from the copyright holder.
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performing hidden state inference, the animal must decide what reference direction to use in com-

paring the current observation to past observations from each hidden state. We model reference

direction inference in the following way. Given the past observations previously assigned to a given

hidden state, we can calculate the offset f to apply to the current observation that gives the maxi-

mum value of the posterior predictive distribution (Equation 9) argmaxfPðytþ1 � fjYck Þ. Say for

example that a certain cue had always been +30˚ from the reference direction, but this time the cue

location is provided as +120˚. An offset of �90˚ would give the maximum probability of generating

this observation from the same hidden state. This offset is calculated independently for each hidden

state, and the state evidence ratio is calculated using the best offset for each hidden state. The off-

set of the most likely hidden state would correspond to the rotational offset in the place field

locations.

We capture several empirical findings.

The animal is trained with a cue card consistently at 0˚ with respect to the minimally-cued room

reference frame. The animal is removed from the maze, which is cleaned and the cue card is rotated

180˚, before returning the animal. The finding is that place fields retain their positions relative to

each other (no remapping) and relative to the card, so they rotate 180˚ with respect to the room ref-

erence frame (offset of 180˚) (Rotenberg and Muller, 1997; Knierim et al., 1995). We model this by

providing 10 single-dimensional training observations, each drawn from a wrapped normal with

� ¼ 0
�;s ¼ 18

�, representing the position of the cue card. Then we test with an observation with

value 180˚. The best offset for the current observation is �175˚ for the same hidden state as the pre-

vious observations (Figure 6C, red). With that offset, the state evidence ratio is in favor of assigning

to the same hidden state (Figure 6B, red). Assigning to the same hidden state and 175˚ offset in the

model correspond to the empirical finding of limited remapping and ~180˚ rotation of place fields.
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Figure 5. Place field directionality depends on statistics of behavior. (A) Data from Markus et al., 1995, showing

that place field remapping depends on the animal’s direction more when the animal is running in a stereotyped

path than when the animal is running in random directions. (B) The model receives circular observations

corresponding to the animal’s running direction. The model either receives observations drawn from a uniform

distribution (red dots) or alternating from two Von Mises distributions with means of 0 and 180 degrees, and

k ¼ 10 (blue dots). These observations are separated into two groups with a line that is the farthest from any

observations (red and blue lines). (C) The partition evidence ratio between the hypothesis that all observations

have been drawn from two hidden states separated by the lines in panel B vs. the hypothesis that all observations

have been drawn from a single hidden state (Equation 7) after 10 observations. The model is more likely to put

probability on the hypothesis that there are two hidden states when given the directional observations as opposed

to the uniform observations. This is similar to the empirical results, where place fields are more likely to remap

(more likely to infer two hidden states) when the animal is running in a directed fashion.

Ó 1995 Society for Neuroscience. All rights reserved. Panel A is reproduced from Markus et al., 1995 with permis-

sion (originally published as Figure 6A). It is not covered by the CC-BY 4.0 licence and further reproduction of this

panel would need permission from the copyright holder.
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A similar experiment was performed where

the cue card is rotated 180˚ without removing the

animal or cleaning the maze. The finding is that

the place fields did not remap or rotate in

response to this manipulation (Rotenberg and

Muller, 1997). We model this with an expanded

feature vector because the animal has access to

additional cues, albeit cues that are less reliable

than the cue card: namely, a preserved internal

orientation from path integration and odor cues

that the animal has left on the maze. The first

entry in the feature vector is the same as in the

previous simulation, that is the cue card position

drawn from a wrapped normal with

� ¼ 0
�;s ¼ 18

�. Five additional entries are

included in the feature vector with uniformly dis-

tributed means and s ¼ 18
� � 3 ¼ 54

�. The larger

standard deviations on the positions of these

cues correspond to their lower fidelity

(Save et al., 2000; Hardcastle et al., 2015). The

test observation has a value of 180˚ for the first

entry (cue card) and values of the cue means for

the other entries. Our model finds that the best

offset is �2˚ (Figure 6C, blue) and the state evi-

dence ratio is in favor of assigning to the same

hidden state (Figure 6B, blue). However, the evi-

dence ratio is much closer to 0, which would pre-

dict a larger degree of heterogeneity in place

field behavior than the earlier experiment, which

is a comparison for which there was not sufficient

empirical power (Rotenberg and Muller, 1997).

See also Hargreaves et al., 2007, Lee et al.,

2004, and Shapiro et al., 1997 for other reports

of heterogeneity during cue conflict rotation

experiments.

What if the cue card was only moderately

rotated in the animal’s presence? Rotenberg and

Muller, 1997 rotated the cue card by 45˚ in the

animal’s presence without cleaning the maze.

They found that the place fields did not remap

and rotated by 45˚. We model this experiment

the same way as the last experiment except that

the test observation has 45˚ as its first entry. Our

model finds that the best offset is 22˚ (Figure 6C,

purple) and the state evidence ratio is in favor of

assigning to the same hidden state (Figure 6B,

purple). The difference between the results of

this and the last experiment is due to the fact

that the other cues have large enough variance

to accommodate a 45˚ rotation without requiring

a new hidden state.

To summarize this section, rotation experi-

ments share a framework with other cue manipu-

lation experiments with the added complication

of estimation of the appropriate rotational refer-

ence direction. It is therefore possible for place

A

B

C

Figure 6. Response to cue rotation depends on experimental protocol. (A) Data from

Rotenberg and Muller, 1997. The black curve represents the location of the cue card. The

heat map represents the firing rate of a given place cell. On rotation of the cue card by 180˚,

the place field is maintained, but rotated 180˚ with respect to the room reference frame. (B–

C) Results of simulation of several experimental manipulations: In ‘180˚, clean’, the cue card

is rotated 180˚ while the animal is absent and the maze is cleaned before returning the

Figure 6 continued on next page
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fields to retain their relative arrangement while

also rotating with respect to some reference

frame, which we consider to be a lack of

remapping (assignment to the same hidden

state). If the posterior probability of an obser-

vation is sufficiently low even after picking the

best rotational reference, then a new hidden

state would be inferred and place fields would

lose their relative arrangement.

Morph experiments
A persistent puzzle in the field is the inconsis-

tent results from ‘morph’ environments that

interpolate between different geometries (e.g.,

square and circle). Different labs have found different results with experimental setups that are not

directly comparable (Wills et al., 2005; Leutgeb et al., 2005b; Colgin et al., 2010). We summarize

the past results here and suggest an interpretation that leads to a novel prediction.

In 2005, two groups each performed an experiment to answer the question, ‘How does the hip-

pocampus represent a novel environment that is intermediate between two familiar environments?’

Both groups familiarized rats in square and circle environments, and then tested them in intermedi-

ate environments (polygons with a variable number of sides). The two papers had different results

(Figure 7A), characterized at the time in terms of whether the similarity curve had a discrete switch

or a gradual switch. However, this difference is extremely hard to robustly characterize, considering

that the variation in similarity between repetitions of the same environment was half as large as the

entire range of similarity variations for the entire morph sequence (compare first and last points in

Leutgeb et al., 2005b, their Figure 6E). The other difference that was discussed at the time was

whether the population response was coherent or heterogeneous. While both studies showed het-

erogeneous population responses, they did show different levels of heterogeneity, and we discuss

this in the next Results section (Population heterogeneity and rate remapping).

A much more striking point of comparison was the difference in the extent of remapping between

the extreme square and circle environments. Complete remapping was observed between the

square and circle in Wills et al., 2005, whereas partial remapping was observed in Leutgeb et al.,

2005b. We believe that the findings of partial vs. complete remapping is the major difference in the

findings of these papers, and is the one we focus on explaining.

What differences in protocols led to these differences in results? In addition to all the idiosyncra-

sies of individual lab protocols, there were two major explicitly described differences between their

protocols. One is that they used different training protocols. Wills et al., 2005 used a training proto-

col designed for inducing complete remapping between square and circle in 6 days, and excluded

animals that did not meet that criterion. Leutgeb et al., 2005b used a similar training as

Lever et al., 2002, see Figure 3) for three weeks. The second difference was that Wills et al., 2005

presented the intermediate shapes in a scrambled order on the test day, whereas Leutgeb et al.,

2005b presented the intermediate shapes sequentially based on number of sides on the test day.

The second difference (scrambled test order) was the focus of several theoretical explanations

(Blumenfeld et al., 2006; Gershman et al., 2014), but a replication of Wills et al., 2005 using

scrambled presentation resulted in limited remapping (Colgin et al., 2010), demonstrating that a

scrambled presentation was not sufficient to force the hippocampus to use complete coherent

remapping. Differences in the training protocol remain as a possible explanation. However, the

problem remains that Colgin et al., 2010 attempted an exact replication of Wills et al., 2005, but

got the opposite result. These differences can be seen in Figure 7A.

These results fit into a broader pattern of inconsistent results across two labs. Two experiments

that led to complete remapping in the O’Keefe lab ended up leading to partial (and/or rate) remap-

ping in the Moser lab. Training in alternating square and circle environments led to partial remap-

ping initially and to complete remapping after 18 days in the O’Keefe lab (Lever et al., 2002), but

led to partial remapping after 18 days of comparable training in the Moser lab (Leutgeb et al.,

2005b). A 6 day white/morph circle-square training protocol led to complete remapping in the

O’Keefe lab (Wills et al., 2005), but led to partial remapping in the Moser lab (Colgin et al., 2010).

Figure 6 continued

animal. In ‘180˚, dirty’, the cue card is rotated 180˚ while the animal is present and odor cues

left by the animal are not removed. In ‘45˚, dirty’, the cue card is rotated 45˚ while the animal

is present and odor cues left by the animal are not removed. (B) The state evidence ratio is

in favor of assigning to the same hidden state in all three manipulations. However, there is

more uncertainty under the ‘180˚, dirty’ manipulation. (C) The highest probability reference

direction is depicted for each manipulation.

Ó 1997 The Royal Society (UK). All rights reserved. Panel A is reproduced from

Rotenberg and Muller, 1997 with permission (originally published as parts of Figure 2A). It

is not covered by the CC-BY 4.0 licence and further reproduction of this panel would need

permission from the copyright holder.
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We do not believe either lab’s training to be inherently superior, but we do wish to point out that

there are likely unreported idiosyncrasies of training that cause animals to consistently progress

through partial remapping to global remapping more slowly in the Moser lab than in the O’Keefe

lab (at least during the years 2000–2010). The main implication of this is that remapping behavior

does not have a one-to-one mapping to the experimenter-defined conditions; rather, remapping

behavior responds to a huge array of experiential factors, and the experimenter is only aware of a

subset of these factors. Practically, this means that attempts to compare remapping behavior must
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Figure 7. Morph experiments. (A) Different experimental protocols give different results for the morph

experiment. The results in the fourth column show the similarities in population representation of the intermediate

morph shapes compared to the square shape. The results in the fourth column are adapted from the

corresponding paper cited in the first column. All values are shown on a scale ranging from 0 to 1, where one is

complete concordance of population representations and 0 is random concordance. We classify the results into

two qualitative classes: the first and third rows have results where all levels of morph result in partial remapping,

whereas the second and fourth rows switch between no remapping and complete remapping as morph level

increases. Scrambling during testing does not seem to be related to this effect. Moreover, the same experimental

protocol can have qualitatively different results in different labs (compare second and third rows). (B) We provide

observations from two alternating Gaussians with means �1 and +1, just as in Figure 3. We test after 5 (red) or 25

(blue) training observations by providing intermediate values and measuring the relative probability of being

assigned to the same hidden state as the �1 mean observations. We thus predict that both qualitative results can

be achieved in the same lab simply by performing the morph testing at different points of training.
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be done between comparable controlled setups

(as performed in the internal comparisons of

Colgin et al., 2010), and comparisons should

ideally not be made across labs.

To summarize, various experimental protocols

for measuring remapping behavior in response

to intermediate ‘morph’ environments give

divergent results, which can be split into two cat-

egories: heterogeneous responses when there is

only partial remapping between the extremes,

and population-wide coherent responses when

there is complete remapping between the

extremes (Figure 7A). As we explored above

(Figure 3), partial remapping and complete

remapping can be observed in a single experi-

mental protocol early and late in training,

respectively. We therefore predict that both sets

of results can be observed in the same lab, with

the same experimental protocol, simply by pre-

senting the intermediate ‘‘morph’’ environments

early or late in training.

We show simulations of this prediction in

Figure 7B. Specifically, we compute the proba-

bility that the training observations came from a

single hidden state Pðc1Þ and the probability

they came from two hidden states Pðc2Þ accord-

ing to Equation 6. We then calculate the proba-

bility that the morph test is assigned to the same

hidden state as the square assuming that the

training observations came from two hidden

states Pðcprobe ¼ csquarejc2Þ (Equation 8). The

hypotheses that correspond to the morph being

assigned the same hidden state as the square

are S1) that there is a single hidden state for the

training and the morph is from the same state

and S2) that there are two hidden states for the

training and the morph is from the same state as

the square. The hypotheses that correspond to

the morph being assigned a different hidden

state than the square are D1) that there is a sin-

gle hidden state for the training and the morph

is from a novel state and D2) that there are two

hidden states for the training and the morph is

from the same state as the circle and D3) that

there are two hidden states for the training and

the morph is from a novel state. We take the log

posterior ratio between the S hypotheses and

the D hypotheses and plot that in Figure 7B for

varying number of training observations. The

probability of assigning intermediate ‘‘morph’’

environments to the same hidden state as one of

the extreme environments increases with the

amount of training.

Thus, we suggest that a key distinction

between classes of past morph results is whether

there is complete or partial remapping between

A

B

C

Figure 8. Relationship between Rate Remapping and

Partial Remapping. (A) The Beta distribution is used to

illustrate the distribution in remapping responses over

the place field population. Examples of the Beta

distribution for parameter values a ¼ 1; b ¼ 7 (red) and

a ¼ 1:5; b ¼ 1 (blue). We can draw a correspondence

between the difference between these parameters and

the evidence ratio. We can also characterize remapping

behavior by saying that place fields with rate

modulation less than the left-hand black dotted line do

not remap, place fields between the black dotted lines

rate remap, and place fields with rate modulation

greater than the right-hand dotted black line

completely remap. The extent of partial remapping

would then be the fraction of cells that completely

remap (fall to the right of the right-hand dotted black

line). (B) The average extent of rate remapping has a

positive relationship with the extent of partial

remapping for a range of evidence ratios. Error bars

are the standard deviation of the Beta distribution for

those parameter values. (C) The amount of

heterogeneity in rate remapping extents across the

population of place fields has a positive relationship

with the amount of uncertainty that the animal has over

a range of evidence ratios.
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the extreme environments, and that complete or partial remapping can be achieved by a wide range

of training protocols (as described throughout the paper) including amount of experience (as

described in Figure 3).

Population heterogeneity and rate remapping
So far, we have drawn the correspondence between evidence ratios and ‘extent of remapping’.

There are a variety of ways to empirically quantify extent of remapping over the population, includ-

ing average population vector correlations, average firing rate map correlations, and average

change in location of place fields (Leutgeb et al., 2005a). One important question to ask is how the

extent of remapping is distributed across the population. One option is that some fraction of the

place fields are perfectly retained and some fraction disappear or appear. This would be called par-

tial remapping. Another possibility is that each place field modulates its peak firing rate. This would

be called rate remapping. As mentioned in the Empirical Background section of the Introduction,

both types coexist. We can qualitatively model this in the following way. For a given experimental

manipulation, there is some distribution across the population of how much the firing rate is modu-

lated. We can quantify for a given place field the extent of firing rate modulation using a measure

such as 1-(lower firing rate)/(higher firing rate), ranging from 0 (identical firing in both conditions, i.

e., no remapping) to 1 (place field exists in one condition but not in other condition, i.e., remap-

ping). Intermediate values between 0 and 1 correspond to the extent of rate remapping. A common

distribution with support on the interval [0,1] is the Beta distribution, which we will use for illustra-

tion. The Beta distribution has two parameters a and b, which correspond to relative probability

mass on 1 and 0 respectively. We can map our evidence ratio loosely onto these parameters for illus-

tration by saying that the value of the parameter corresponding to the preferred hypothesis is the

magnitude of the evidence ratio + 1 and the value of the other parameter is 1. In this manner, the

evidence ratio equals b� a. For example an evidence ratio of +6 would have a ¼ 1; b ¼ 7 because a

positive evidence ratio prefers no remapping, that is more probability mass on 0 (red line in

Figure 8A). This evidence ratio is at the border of our range of partial remapping. If we put thresh-

olds at 0.15 and 0.85 (dotted lines) for indistinguishable from no remapping and complete remap-

ping respectively, we see that 0% of place fields completely remap, 31% rate remap, and 69% do

not remap, which is consistent to what we would expect for that magnitude of evidence ratio. Con-

versely, an evidence ratio of �0.5 would correspond to parameter values of a ¼ 1:5; b ¼ 1 (blue line

in Figure 8A). This evidence ratio is near the center of our range of partial remapping, and we see

that 22% of place fields completely remap, 72% rate remap, and 6% do not remap.

This framework can organize some empirical observations into patterns that we would predict

would generalize. One is that the fraction of place fields that completely remap seems to be corre-

lated with the magnitude of rate remapping that is observed across different protocols. For exam-

ple, the paper that coined the term ‘rate remapping’ (Leutgeb et al., 2005a) explores several

different experimental manipulations. Rank ordering of their manipulations according to their meas-

ures of rate remapping (firing rate changes and population vector correlations) matches well with

the rank ordering according to their measures of complete remapping (place field correlation and

center of mass change). Similar patterns of partial remapping occurring in concert with rate remap-

ping can be observed in many other reports (Wood et al., 2000, their Figure 5, Anderson and Jeff-

ery, 2003, their Figure 2, Lu et al., 2013, their Figure 3, Sanders et al., 2019, their Figure 1). The

framework of a distribution of remapping behaviors over the place field population captures this

phenomenon. If we look at parameter values ranging from a ¼ 10; b ¼ 1 to a ¼ 1; b ¼ 10, we see a

positive relationship between the extent of rate remapping and the extent of partial remapping

(Figure 8B). The only report we are aware of in which rate remapping is observed in the absence of

partial remapping is that of Allen et al., 2012. It is notable that they observe much weaker rate

changes than the conditions studied in other papers: visual inspection of their Figure 6B1 (top)

shows an average rate modulation of ~(17-14)/17 = 17%. This would roughly correspond to the dis-

tribution shown as the red line in Figure 8A which does indeed show a population of place fields

that rate remap but a negligible fraction of place fields that completely remap. Overall, a compre-

hensive literature review suggests that extent of rate remapping is correlated with the extent of par-

tial remapping, as would be expected if there is a distribution over the population in sensitivity to

manipulations. Future experiments are needed to verify this hypothesis directly.
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Another pattern that seems to occur in the literature is that increased uncertainty seems to corre-

late with heterogeneity in remapping behavior across the population of place fields. One example of

this pattern is the difference in heterogeneity observed between the protocol of Leutgeb et al.,

2005b compared to that of Wills et al., 2005. More heterogeneity was observed in the experiment

of Leutgeb et al., 2005b, who were in the partial remapping regime (red line in our Figure 7B),

compared to the relatively coherent response observed across the population in the experiment of

Wills et al., 2005, who were in the global remapping regime (blue line in our Figure 7B). Other

examples of population heterogeneity occurring with uncertainty include findings by Lee et al.,

2004; Chen et al., 2013; Gothard et al., 1996. The framework of a distribution of remapping

behaviors over the place field population captures this phenomenon. If we look at parameter values

ranging from a ¼ 10; b ¼ 1 to a ¼ 1; b ¼ 10, we see a positive relationship between heterogeneity in

response (as measured by the standard deviation of rate remapping extents across the population)

and level of uncertainty (as measured by inverse exponentiated absolute value of evidence ratio).

Future experiments are needed to test this hypothesis directly. Ideally, behavioral measures of

uncertainty would be compared to neural measures of population heterogeneity.

Animal-to-animal variability
One challenge in the study of hippocampal remapping is that different animals respond differently

to the same environments. Indeed, many of the previously discussed studies reported significant het-

erogeneity across animals in remapping behavior. Studies of the development of remapping over

the course of learning frequently report that different animals learn at differing rates (Bostock et al.,

1991; Lever et al., 2002). In fact, the variability across animals is frequently a nuisance in running

experiments. The pre-training for one of the morph experiments described above (Wills et al.,

2005) had three different ways that the observations could be partitioned. Out of the six animals

they trained, four animals partitioned the observations in the way the experimenters expected, and

the other two animals partitioned the observations in the other two possible ways (and therefore

were excluded from the rest of the study).

The hidden state inference model offers one way to capture this heterogeneity across animals.

The concentration parameter a (see Materials and methods) controls the tendency to infer new hid-

den states when unexpected data are observed. Variation in this parameter was previously used to

model age-dependent (Gershman et al., 2010; Gershman et al., 2017b) and individual

(Gershman and Hartley, 2015a) variability in learning. While partitioning large amounts of cleanly

separated data is insensitive to changes of a over several orders of magnitude, a can have effects

on partitioning of ambiguous or insufficient data. For example, if we take the learning of remapping

explored in Figure 3, changes in the value of a can alter the speed at which the model switches

from preferring a one-state hypothesis to a two-state hypothesis (Figure 9A). Moreover, if we take

evidence ratios around 0 as indicative of partial remapping, different a values can lead to different

lengths of time spent in the partial remapping regime, even for the exact same set of experiences.

To explore a second manifestation of animal variability, we ran a simulation resembling the train-

ing of Wills et al., 2005. We characterize observations with two features: shape and color of the

enclosure. The white circle is characterized by a 2D Gaussian with means [1, 1], the morph circle is

characterized by means [1, -1], and the morph square is characterized by means [�1,–1]; all standard

deviations are 0.1. We provided the model with observations from these generative distributions

according to the schedule used by Wills et al., 2005 (Figure 9B). We then asked the model to

assign an unnormalized posterior probability to the following hypotheses:

1. Each of the environments were drawn from separate hidden states (Figure 9C, red bars), cor-
responding to ‘did not show wooden circle to morph-circle pattern transfer.’

2. The circles were the same and were different from the square (Figure 9C, blue bars), corre-
sponding to the selection criterion adopted by Wills et al., 2005.

3. All the observations were drawn from a single hidden state (Figure 9C, purple bars), corre-
sponding to ‘failed to show rapid remapping in the morph-square and the wooden circle’.

Different values of a lead to variation in relative preferences for these hypotheses.

These results invite the interpretation that animal variability may be understood in terms of indi-

vidual differences in the a parameter (though of course other parametric variations might produce

some of the same effects).
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Figure 9. Animal-to-animal variability may be the result of animal-specific parameter settings. (A) Simulations from

Figure 3C with different values of a. Larger values of alpha lead to a greater tendency to infer a larger number of

hidden states, and therefore a faster transition from preferring the single-state model to the two-state model. (B)

The training protocol from Supporting Figure 1C of Wills et al., 2005. (C) In red is the probability assigned to the

hypothesis that the white circle, morph circle, and morph square are all generated by separate hidden states. In

blue is the probability assigned to the hypothesis that the white circle and morph circle are generated by the

same hidden state and the morph square is generated by a separate hidden state, which is the hypothesis that the

authors expected. In purple is the probability assigned to the hypothesis that all of the enclosures are generated

by the same hidden state (Equation 6). Different settings of a result in different preferred assignments of

Figure 9 continued on next page
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The effect of cue variability
In this section, we explore an experimental prediction of the model that highlights one of its key

insights: remapping critically depends on past experience. Consider an environment that is charac-

terized by two features. We can separate animals into two training groups: one in which feature one

is highly variable and one in which feature two is highly variable (cyan and magenta dots in

Figure 10A). We then probe with an observation that has a novel value in feature 1 (red x in

Figure 10A). The model predicts that an animal trained with higher variability in feature one will be

more likely to assign the novel observation to the same state as the previous observations (i.e., not

to remap; Figure 10B). Intuitively, high variability will make the place fields more ‘‘tolerant’’ of devi-

ations from the central tendency of the distribution. After initial submission of this paper, a similar

result was posted as a preprint (Plitt and Giocomo, 2019).

By analogy, imagine a building with many similar conference rooms. One conference room always

has its chairs arranged in a particular configuration (a low variability context), whereas another con-

ference room frequently has different configurations (a high variability context). Intuitively, a change

in the expected configuration in the low variability context will prompt the inference that you must

be in a different room (and hence the place cells in your hippocampus will remap), whereas a change

in the expected configuration in the high variability context will not. In the high variability context,

you expect the unexpected (cf. the concept of ‘expected uncertainty’ in Yu and Dayan, 2005).

Discussion
We have proposed that hippocampal remapping provides a window into the process of hidden state

inference. According to our framework, animals receive a stream of observations (data points), which

they attempt to partition according to the hypothetical hidden states that generated them. Bayesian

inference offers a natural solution to this problem. The specific form of Bayesian nonparametric

model that we employed here has been previously invoked to explain a number of other hippocam-

pal-dependent behavioral phenomena (Gershman et al., 2010; Gershman et al., 2017a;

Gershman et al., 2014). In this paper, we showed that this model recapitulates a broad range of

remapping phenomena.

Central to our account is the idea that remapping reflects inferences about the hidden state, and

in particular that partial remapping corresponds to high levels of uncertainty. Manipulations of sen-

sory cues, environmental geometry, and training can all be understood in terms of their effects on

state uncertainty. While this account has the potential to unify many phenomena under a common

theoretical umbrella, there are still many limitations, loose ends and open questions, which we dis-

cuss below.

What is the feature space?
Our model takes feature vectors as its inputs, but what are these features? In our simulations, we

allowed them to be highly abstract idealizations. Ultimately, a biologically grounded theory must

specify these features in terms of the inputs to the hippocampus. Furthermore, it will be necessary

to more explicitly specify what timescale the model is operating on, since different features are rele-

vant at different timescales. Although we have focused on the timescale of hours to days, map

switches can occur on the subsecond timescale (Olypher et al., 2002; Jezek et al., 2011;

Kelemen and Fenton, 2016).

One general hypothesis about the feature space encoded by the hippocampus is the successor

representation theory (Stachenfeld et al., 2017), which posits that place cells encode a predictive

map of the state space. On this view, the feature inputs to the hippocampus correspond to state

Figure 9 continued

observations to hidden states, corresponding to the finding that different animals had different remapping

behaviors.

Ó 2005 AAAS. All rights reserved. Panel B is reproduced from Wills et al., 2005 with permission (originally pub-

lished as Supporting Figure 1C). It is not covered by the CC-BY 4.0 licence and further reproduction of this panel

would need permission from the copyright holder.
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features. This raises the intriguing possibility that remapping should be sensitive to predictive rela-

tionships between states. Many studies have observed that place cells are modulated by prospective

information like the animal’s future trajectory (e.g., Battaglia et al., 2004; Ferbinteanu and Shapiro,

2003). It is less clear whether there is any evidence for global remapping as a function of changes in

prospective information.

What is an observation?
In this paper, we characterize ‘observations’ as feature vectors. A question is what qualifies as a sin-

gle observation? For the experiments we highlight in the Results section, we define a single observa-

tion as an entire session, as temporal continuity constrains within-session variability in a way that

between-session variability is not constrained. However, a session is not the only time scale over

which an animal may perform hidden state inference. Different definitions of a single observation

can highlight phenomena occurring on different time scales, such as the map switches that can occur

on a timescale of 100 ms-1s (Olypher et al., 2002; Kelemen and Fenton, 2016).

One limitation is that an observation must be sufficiently long for sampling of all features of an

environment. Indeed, it takes some time for the representation of an environment to settle down as

the animal samples the environment (Leutgeb et al., 2004). The process of sampling the environ-

ment is a research question in its own right and the nature of that process will have important effects

on the hidden state inference process we describe here.

A related question is how often hidden state beliefs are recalculated. One possibility is that it is

recalculated every theta cycle. Another is that change detection or event segmentation may be used

(Franklin et al., 2019).

Approximate inference
As discussed in the first section of the Results, exact inference over assignments of observations to

hidden states is intractable, because the number of possible partitions is too large. As a result of this

intractability, for most of the paper, we have limited ourselves to comparisons between a small num-

ber of hypotheses (selected based on the fact that most of the posterior probability will be concen-

trated on these hypotheses). This should be understood as an analytical heuristic rather than as an

algorithmic theory of how the brain approximates probabilistic inference. It may be that the hippo-

campus does explicitly compare a small number of hypotheses. The key step in that algorithm would
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Figure 10. Cue variability should affect remapping behavior. (A) Two training protocols (cyan and magenta) give

(B) qualitatively different hidden state inferences when presented with the same novel observation (red dot in

A). The cyan training is drawn from a Gaussian with mean [�5,0] and standard deviations [2, 0.1], whereas the

magenta training is drawn from a Gaussian with mean [0,0] and standard deviations [0.1, 2]. The probe is

presented after 20 training observations. The state evidence ratio here is the comparison between the assignment

of the probe to the same hidden state as the training samples vs. a novel hidden state (Equation 11).
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be generating appropriate proposals. A complete algorithmic theory must explain how the brain

deals with arbitrarily large hypothesis spaces.

One idea is to model the hippocampus as stochastically sampling the hypothesis space (Fox and

Prescott, 2010; Savin et al., 2014). According to this view, a sampling approximation approach

would discretely represent each hypothesis with a frequency proportional to its probability. This fits

nicely with the empirical finding that multiple maps can alternate rapidly (Kelemen and Fenton,

2016; Kelemen and Fenton, 2010; Jackson and Redish, 2007; Kay et al., 2019; Jezek et al.,

2011). Some of these findings suggest an oscillatory implementation, whereby each theta cycle plays

the role of a single sample from the distribution of possible hidden states, and the extent of map

switching corresponds to the degree of uncertainty about hidden state assignment. Indeed, map

switching increases at points of uncertainty (Jezek et al., 2011). We would additionally predict that

measures of map switching such as overdispersion would decrease over the course of experience in

protocols such as that of Lever et al., 2002 as one hypothesis dominates (i.e., as the evidence ratio

between alternative hypotheses gets farther from 0 in Figure 3C).

Priors
We have focused on examples where specification of the appropriate generative distribution has

been relatively straightforward: Gaussians (or the analogous Von Mises for circular variables) have fit

nicely. Not every problem corresponds to these generative distributions, however, and the animal

may have to perform inference and/or meta-learning over which generative distributions are appro-

priate for each cue class.

Another type of prior that we use is the Chinese Restaurant Process (CRP) prior over partitions of

observations into hidden states, as discussed in the Materials and methods. We explore the utility of

the CRP’s a parameter in capturing animal-to-animal variability in remapping response to similar

experimental protocols. The a parameter also has the potential to itself be learned. For example,

animals trained with a larger number of hidden states (e.g., enriched environment) may grow to

employ a larger magnitude a than animals trained with a smaller number of hidden states. As a

defines the animal’s relative preference for a larger number of hidden states, modulation of the

value of a in response to the complexity of past experience would be adaptive.

Hierarchical inference
Throughout this paper, we have assumed that hidden states are independent, but in reality, hidden

states can share some structure while continuing to be distinct. Hierarchical inference can be useful

to solve these problems (Gershman and Niv, 2015b). Our model does not directly address the

question of hierarchical inference in the hippocampus. One possibility is that hidden state inference

is explicitly hierarchical even within a co-localized population. McKenzie et al., 2014 found a hierar-

chy of representational similarities in dorsal hippocampus. This could correspond to a single popula-

tion of place cells performing hidden state inference simultaneously at different levels of a hierarchy.

For example, although we have focused on hidden states corresponding to ‘context’, similar infer-

ence could be applied to identifying ‘position’ or ‘item’ categories used by McKenzie et al., 2014.

Another way that the model could be extended is based on the organization of place fields by size

along the dorso-ventral axis of the hippocampus. An analogy between place field sizes and hidden

state inference on the level of context raises an interesting possibility. The range of locations that

are categorized as the same in terms of being included in the same place field increases along the

dorso-ventral axis (Maurer et al., 2005), so too the range of observations that would be categorized

as the same in terms of context-level hidden state inference may increase along the dorso-ventral

axis. This gradient could be implemented if the same hidden state inference process would occur

independently at different distances along that axis with different values of a, leading to different

proclivities for opening new hidden states. In that way, it would be possible for two observations to

be assigned to the same hidden state at one location along the axis and assigned to different hidden

states at another location along the axis, leading to a partial sharing of learning between the two

observations. A test of this suggestion would be that remapping behavior should be different at dif-

ferent locations along the dorsoventral axis. More research is needed to determine how hierarchical

inference is performed in the hippocampus.
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Long-term instability of place fields
Early reports of place field stability demonstrated the existence of place fields that maintained spa-

tial preference over the period of a month (Thompson and Best, 1990). However, recent work with

sufficient statistical power have painted a different picture. Large scale recordings of hundreds of

place cells over the course of a month have shown that place field instability is the norm over long

time periods (Ziv et al., 2013; Rubin et al., 2015). It is possible that these reports of place field

instability are the result of misattribution of place cell identity when comparing across sessions, but

much effort has been put into avoiding such methodological issues (Sheintuch et al., 2017). One

possible way to incorporate this finding within the hidden state inference framework is to appeal to

computational work that allows for maintained fidelity of representation even with changing neuro-

nal substrate (Raman et al., 2019; Rule et al., 2019; Druckmann and Chklovskii, 2012). On the

other hand, changes in neural representation may reflect the cognitive finding that memory content

can actually be modified over time through processes such as memory reconsolidation (Lee et al.,

2017). Another approach is to assert that drift over time in place cell activity reflects an interest in

maintaining different hidden states for the same observation occurring at different points in time.

The extension of our framework with a generative model that explicitly accounts for time would be

fruitful (see for example Gershman et al., 2017a).

Behavioral relevance of remapping
An interesting fact about the remapping literature is that there has been relatively little work done

relating remapping to behavior. The widespread assumption in the field is that hippocampal remap-

ping is the neurophysiological substrate for context-dependent learning (Colgin et al., 2008), and

that is an assumption that we have followed here. There is some correlational evidence of a connec-

tion (Kentros et al., 2004; Kennedy and Shapiro, 2009). However, to our knowledge, there has not

been a demonstration of a causal connection (Kubie et al., 2019). In fact, Jeffery et al., 2003 show

task performance transfer between two conditions that show near-global remapping.

We suggest an experiment that emphasizes the role of the hippocampus in ‘latent learning’ (Tol-

man, 1948), and relies on our prediction that different training would give rise to different remap-

ping behavior (Figure 10). Train two groups of animals to either remap or not remap to a given

manipulation. For example, train one group of animals in a morph box where the configuration of

the walls changes every day, which we would expect to lead to a lack of remapping between circle

and square configurations. Train the other group with the same morph box but only presenting the

square or circle configurations, similar to the training protocol of Lever et al., 2002, which we would

expect to eventually lead to remapping between the circle and square configurations. Once the

expected remapping behavior is neurophysiologically verified, the animals would undergo fear con-

ditioning in one configuration (square or circle). The prediction would be that generalization of the

fear memory to the other configuration would depend on which training the animal had received

and correspondingly, which remapping behavior the animal had exhibited. An experiment such as

that would be a first step towards ascertaining the behavioral relevance of hippocampal remapping.

Rotation experiments
There are several classes of empirical results that are related to the results explained in this paper,

but not directly explained by our model. For example, in rotation experiments, the experimenters

manipulated cues associated with the environment itself (‘proximal cues’ or ‘maze cues’) and/or

manipulated cues associated with the room that the recording environment was placed in (‘distal

cues’ or ‘room cues’). They asked questions such as whether the place cells followed the rotation of

the maze cues or the room cues (Shapiro et al., 1997), and whether the place cells followed the ani-

mal’s own motion or the motion of the cues (Knierim et al., 1998). The answers to these questions

were generally inconclusive, as they were sensitive to slight differences in protocol across labs. How-

ever, a consistent finding was that the results changed over the course of experience. For example,

when a cue was repeatedly moved relative to other cues in an unstructured way, the cue lost control

over the rotational alignment of the place fields (Knierim et al., 1995). While we do not explicitly

model spatial relationships in our simulations, Knierim’s finding is similar to the training variance

effect described in Figure 10: when the model is trained with observations for which a cue has high

variance, further variation in that cue is less likely to cause a new hidden state to be inferred.
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Conversely, in Shapiro et al., 1997, the maze cues and room cues were each rotated 90 degrees

in opposite directions. Initially, the place cell representation split, some following room cues and

some following maze cues. However, after a few repetitions, the place cell representation remapped

between the two conditions. This is reminiscent of the simulations in Figure 3, where a particular

cue manipulation (square-circle) initially does not cause remapping, but after sufficient repetition,

the place cells remap between the conditions; more evidence has been gathered to support the

hypothesis that two distinct hidden states exist.

Types of remapping
An influential interpretation of the literature has been that there are two main types of remapping:

‘global remapping’ and ‘rate remapping’. In particular, it has been argued that global remapping

corresponds to changes in physical location whereas rate remapping corresponds to changes in con-

dition that occur at those locations (Leutgeb et al., 2005a; Colgin et al., 2010; Alme et al., 2014;

Lisman et al., 2017). As discussed in the Introduction, the lines between global remapping and rate

remapping are not so sharp. Global remapping can occur between conditions at the same physical

location (Wills et al., 2005), and rate remapping can occur between different physical locations

(Spiers et al., 2015). Moreover, the same manipulation can cause global remapping or rate remap-

ping at different points in training (Lever et al., 2002). Our work provides an explanation for why

there are not clear delineations of which manipulations cause which types of remapping. The animal

must infer hidden states from its observations. Alternative hypotheses must be considered as long

as ambiguity exists about the appropriate assignment of observations to hidden states. This uncer-

tainty about hidden state assignment can manifest as ‘partial’ or ‘rate’ remapping. The statistics of

these hidden states can be learned over the course of experience, leading to increased certainty

about hidden state assignments. This increased certainty can be observed as more definitive ‘global’

remapping or conversely, lack of remapping. One of our key points is that these categories are bet-

ter thought of as existing along a continuum defined by state uncertainty.

Relationship to other theories
How does this proposal relate to other theoretical perspectives on hippocampal remapping? We

can contrast our model with a basic similarity threshold model, according to which each state is asso-

ciated with a fixed set of features, and new observations would be classified as the same or different

based on whether they exceed some threshold of change detection. This model does not capture

some of the key phenomena associated with remapping; in particular, it cannot account for any of

the ways in which learning affects remapping.

One major model of remapping is the attractor network. Based on early work by Hopfield, 1982,

the idea is that activity patterns associated with particular observations are learned by the network

so as to be able to recover those activity patterns when degraded versions are presented. One

attractor network implementation that has been specifically used to model remapping results was

proposed by Blumenfeld et al., 2006. They sought to explain the difference in results between

Wills et al., 2005 and Leutgeb et al., 2005b by focusing on the scrambled order of the morph

sequence. Their model was a conventional Hopfield network augmented with a ‘weight’ term to

change the pattern strength based on the novelty of that pattern. This led to attractors that were

lumped together when the morph experiences were presented in sequential order instead of in a

scrambled order. However, later work Colgin et al., 2010 demonstrated that the order of presenta-

tion of the morph experiences was not the decisive factor in the qualitative results of the morph

experiments (as described in more detail in the ‘Morph Experiments’ section of the Results).

The attractor network perspective can be connected to our hidden state inference model by

examining the probabilistic version of the Hopfield network, known as the Boltzmann machine

(Ackley et al., 1985). The basins of attraction can be understood heuristically as feature configura-

tions for distinct hidden states. One can make this heuristic connection more precise by defining an

explicitly state-dependent energy function combined with a distribution over states, which would

correspond to a mixture of Boltzmann machines (Nair and Hinton, 2009; Salakhutdinov et al.,

2013).

In computational neuroscience, attractor networks are usually used as mechanistic descriptions of

neuronal dynamics, unlike our hidden state inference model that operates at a higher level of
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abstraction. Thus, comparison of the two approaches is not entirely straightforward. It is possible

that an attractor network could be used as an implementation of parts of the hidden state inference

model. For example, inference about new states vs. old states is conceptually similar to the distinc-

tion between ‘‘pattern separation’’ in the dentate gyrus and ‘‘pattern completion’’ in CA3

(Knierim and Neunuebel, 2016; Rolls and Kesner, 2006). The attractor network describes how pat-

tern separation and completion work. The hidden state inference model describes why pattern sepa-

ration and completion work the way they do.

Our hidden state inference model is similar in spirit to the probabilistic model of remapping

developed by Fuhs and Touretzky, 2007. In that model, each context is represented by a Hidden

Markov Model. Remapping is then formalized as a model comparison problem. Like our model, their

calculation weighs both simplicity of a hypothetical partition and its fit with the observed data. They

use their model to explain gradual remapping (Lever et al., 2002), failure to generalize

(Hayman et al., 2003), and some aspects of reversal learning and sequence learning. The technical

differences between our models are subtle and do not change the general conclusions, which we

share. Our work can be thought of as an update to the work of Fuhs and Touretzky, 2007. The

main addition of this work is to stress the role of uncertainty and its relationship to partial remap-

ping, rate remapping, and population heterogeneity, relationships that are highlighted in Figures 2,

4, 7 and 8, for example.

The Temporal Context Model (TCM, Howard and Kahana, 2002) was originally motivated by

human episodic memory, but has also been applied to hippocampal/entorhinal recordings

(Howard et al., 2005). TCM defines a temporal context, which is a filtered version of the observa-

tions preceding the current observation. Later observations can be used to recall the temporal con-

text of earlier observations. This model is particularly well suited to capturing hippocampal response

to temporally modulated observations, such as those we explore in Figure 5 (Markus et al., 1995).

Analogies can be drawn between TCM and our account (see Gershman et al., 2017a, for discussion)

by drawing a correspondence between temporal context and hidden state. The process of retrieving

a past temporal context on presentation of a novel observation would be analogous to assigning

that novel observation to the same hidden state as the previous observations with the same tempo-

ral context. One difference is that recall of temporal context is strictly similarity-based whereas hid-

den state inference explicitly models the generative distribution and therefore would have different

predictions in cases that depend on training variance such as Figure 10.

There has been discussion about the role that context plays in context-dependent learning

(Kubie et al., 2019). One approach is to consider context to be a cue that can acquire associations

and competes with other cues (Rescorla and Wagner, 1972; Grau and Rescorla, 1984). Another is

that context modifies the associations that are learned with other cues (Bouton, 1993; Nadel and

Willner, 1980; Hirsh, 1974). We have previously proposed a model in which the animal performs

inference over the alternative causal structures of the environment (Gershman, 2017). Context can

play each of the previously mentioned roles depending on the previous training that the animal

received. We would postulate that the hidden state calculated through the process outlined in this

paper would be used as an input to the inference described by Gershman et al., 2017b.

Conclusion
Place field remapping has long been one of the most puzzling aspects of hippocampal physiology,

yet still lacks a comprehensive theoretical account. In this paper, we have taken steps towards such

an account, starting with a normative formulation of the problem that we believe remapping is solv-

ing, namely hidden state inference. The algorithmic and biological underpinnings of this theory

remain incomplete, setting a clear agenda for future theoretical work.

Materials and methods

Generative model
We model the animal’s sensory inputs (observations) as a vector y ¼ ½y1; . . . ; yD� consisting of D fea-

tures. The specific representation of these features varies across experimental paradigms. The ani-

mal assumes that observations are generated by discrete hidden states. At each time point, a state

is stochastically selected according to prior PðcÞ, and the observation features are sampled from the
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observation distribution associated with that state, Pðyjc; �cÞ, where �c represents the parameters of

the observation distribution for state c. For notational simplicity we will omit the time index t when-

ever it is unnecessary for the exposition.

We place a prior Pð�cÞ over the parameters and then marginalize to obtain the likelihood that a

set of m observations Yc ¼ ½y1; . . . ; yt; . . . ; ym� came from a single state c

PðYcjcÞ ¼

Z

�c

Y

m

t¼1

Pðyt jc; �cÞPð�cÞ

" #

d�c (2)

which we can extend to obtain the likelihood that a set of observations Y came from a set of K hid-

den states c

PðYjcÞ ¼
Y

K

k¼1

PðYck jckÞ (3)

We model real-valued features with a multivariate normal observation distribution. The parameter

vector is given by �c ¼ ð�c;LcÞ, where �c is the mean vector, and Lc is the covariance matrix. We

place a conjugate normal-Wishart distribution over these parameters (see Murphy, 2007 for more

details), with hyperparameter values �0 ¼ 0 (prior mean), k0 ¼ 0:001 (scale parameter), n0 ¼ 0:02

(degrees of freedom), and T0 ¼ 0:02 � I (scale matrix), where I is the D-dimensional identity matrix.

We model circular variables with a Von Mises observation distribution and a normal-gamma prior

over the parameters. The hyperparamters of the prior are given by: �0 ¼ 0 (prior mean), k0 ¼ 0:001

(scale parameter), a0 ¼ 0:01 (shape parameter), and b0 ¼ 0:01 (rate parameter). Because in this case

we cannot marginalize over parameters analytically, we used numerical integration.

To motivate our prior over hidden states, we start with a few basic desiderata: (i) the prior should

be defined over an unbounded state space, allowing new states to be continually created; and (ii)

the prior should prefer a small number of states, to facilitate generalization across observations (a

form of Occam’s razor). These assumptions are satisfied by a simple nonparametric distribution

known as the Chinese restaurant process (CRP; Aldous, 1985; Gershman and Blei, 2012a), which

samples states according to the following sequential process:

Pðct ¼ kjc1:t�1Þ ¼
mk

t�1þa
if k�K

a
t�1þa

if k¼Kþ 1

(

(4)

where mk is the number of previous observations assigned to state k, K is the total number of states

created prior to time point t, and a� 0 is a concentration parameter that controls the propensity to

create new states. When a¼ 0, all observations will be generated by the same state. As a

approaches infinity, each observations will be generated by a unique state. More generally, the

expected number of states after N observations is a logN. Another way of using the CRP prior is to

analytically calculate an unnormalized log probability for a list of hidden state assignments c:

logPðcÞ ¼K � logðaÞþ
X

K

k¼1

log G mkð Þð Þþ log G að Þð Þ� log G T það Þð Þ (5)

We set a¼ 0:1 for all figures except Figure 9, in which we explicitly explore the effects of varia-

tion in a. We emphasize that using this prior does not mean that the world actually generates hidden

states through this process; it simply means that we are imputing this to the animal as its internal

model of the world.

Inference
To compute the posterior over hidden states, the likelihood is combined with a prior over state

assignments, PðcÞ, according to Bayes’ rule (Equation 1). Because we are typically dealing with a set

of observations, and hence a combinatorial space of state partitions (i.e., all possible assignments of

observations to states), exact inference is intractable. However, because we are generally only inter-

ested in a small number of ‘plausible’ partitions, we can simplify the problem by only assessing the

relative probability of those states. The probability of each of those partitions c given a set of obser-

vations Y
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PðcjYÞ / PðYjcÞPðcÞ (6)

In particular, most of our simulations concern the question of whether two or three sets of obser-

vations are assigned to the same or different states. If we assume that all other partitions have prob-

ability close to 0, then we can ignore them without too much loss in accuracy. We use Equation 6 in

Figure 9C.

The partition evidence ratio reported in the main text is the log odds ratio between the posterior

probabilities of two hypotheses (partitions c and c0):

partition evidence ratio¼ log
PðYjcÞPðcÞ

PðYjc0ÞPðc0Þ
(7)

where Y denotes the set of observations, PðYjcÞ is given by Equation 3 and PðcÞ is given by Equa-

tion 5. We use Equation 7 in Figures 3C, 4D, 5C and 9A.

In some cases, we are interested in computing the posterior probability that a new observation

ytþ1 is assigned to a particular state conditional on a hypothetical assignment of all past

observations:

Pðctþ1jytþ1;Y1:t;c1:tÞ / Pðytþ1jctþ1;Y1:t;c1:tÞPðctþ1jc1:tÞ (8)

where Pðctþ1jc1:tÞ is from Equation 4 and

Pðytþ1jctþ1;Y1:t;c1:tÞ ¼ Pðytþ1jYck Þ (9)

is the posterior predictive distribution characterizing the probability of observing a value of ytþ1 gen-

erated by a given hidden state ck given all previous observations Yck with that hidden state assign-

ment. For a Multivariate Normal likelihood function with a normal-Wishart prior, this is given by:

Pðytþ1jYck Þ ¼ gentvmk�dþ1 �mk
;

Tmk ðkmkþ1Þ

kmk ðvmk�dþ1Þ

� �

(10)

where gent is the generalized Student-t distribution with hyperparameters nmk
¼ n0 þmk,

�mk
¼

k0�0þmk
�Yck

k0þmk
, Tmk

¼ T0 þmkcovðYck Þþ
k0mk

k0þmk
ð�0� �Yck Þð�0 � �Yck Þ

T , kmk
¼ k0þmk as discussed in Section

8.3 of Murphy, 2007.

The state evidence ratio reported in the main text is the log odds ratio between the posterior

probabilities of two state assignments c and c0 for a given observation ytþ1 given past state assign-

ments c1:t for past observations Y1:t

state evidence ratio¼ log
Pðytþ1jc;Y1:t;c1:tÞPðcjc1:tÞ

Pðytþ1jc0;Y1:t;c1:tÞPðc0jc1:tÞ
(11)

We use Equation 11 in Figures 1B–C, 2, 4B and 10B.

Code
All code necessary to generate all figures can be found at https://github.com/HoniSanders/Sanders-

et-al-2020-Elife (copy archived at https://github.com/elifesciences-publications/Sanders-et-al-2020-

Elife; Sanders, 2020).
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