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Abstract

Approximate inference in high-dimensional, discrete probabilistic models is a central prob-
lem in computational statistics and machine learning. This paper describes discrete particle
variational inference (DPVI), a new approach that combines key strengths of Monte Carlo,
variational and search-based techniques. DPVI is based on a novel family of particle-based
variational approximations that can be fit using simple, fast, deterministic search tech-
niques. Like Monte Carlo, DPVI can handle multiple modes, and yields exact results in
a well-defined limit. Like unstructured mean-field, DPVI is based on optimizing a lower
bound on the partition function; when this quantity is not of intrinsic interest, it facilitates
convergence assessment and debugging. Like both Monte Carlo and combinatorial search,
DPVI can take advantage of factorization, sequential structure, and custom search opera-
tors. This paper defines DPVI particle-based approximation family and partition function
lower bounds, along with the sequential DPVI and local DPVI algorithm templates for
optimizing them. DPVI is illustrated and evaluated via experiments on lattice Markov
Random Fields, nonparametric Bayesian mixtures and block-models, and parametric as
well as non-parametric hidden Markov models. Results include applications to real-world
spike-sorting and relational modeling problems, and show that DPVI can offer appealing
time/accuracy trade-offs as compared to multiple alternatives.

Keywords: Bayesian inference, variational methods, Dirichlet process mixture model,
Ising model, hidden Markov model, infinite relational model

1. Introduction

Probabilistic models defined over large collections of discrete random variables have arisen
in multiple fields. Examples include hidden Markov models for sequential data; Bayesian
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networks; mixture models for tabular and relational data; and discrete Markov random
field models, which have become popular in fields ranging from computer vision to informa-
tion extraction. These models are typically specified in terms of a probability distribution
P (x) defined over a collection of variables x = {xn} occupying points in an underlying
discrete space X . One key approximate inference problem that arises in many applications
is identifying high-probability configurations of the discrete variables.

Most approximate inference algorithms fall into two classes: Monte Carlo methods and
variational methods. Monte Carlo methods generate samples from approximations to the
posterior distribution that grow more accurate as the technique is given more compute time.
The flexibility and simplicity of Monte Carlo methods have made them the workhorse of
statistical computation (Robert and Casella, 2004). There are two basic approaches to
Monte Carlo inference for discrete probabilistic models. The first, Markov chain Monte
Carlo methods, work by running a Markov chain with transition operator T whose equilib-
rium distribution asymptotically approaches P (x)—that is, T kP0(x) ≈ P (x) for any initial
distribution on states P0(x). The second, sequential Monte Carlo methods, build up a
sample from a distribution that approximates P (x) by sampling from a sequence of more
tractable distributions, typically defined over subspaces of X . However, their accuracy is
difficult to measure, and the amount of computation required for satisfactory accuracy can
be prohibitive in practice.

Variational methods (Wainwright and Jordan, 2008) treat probabilistic inference as an
optimization problem over a set of distributions. This set is typically constrained (e.g., to
factorized conjugate exponential distributions), thereby attaining efficiency at the expense
of bias. In particular, variational methods tend to converge quickly and supply an easily
monitored objective function (unlike Monte Carlo methods). However, for complex discrete
models, the bias induced by variational approximations can sometimes lead to poor predic-
tive performance. For example, consider a discrete probabilistic model where two binary
variables x1 and x2 are constrained to take the same value, i.e. P (x1, x2) = 0 if x1 6= x2.
All the probability mass is on the states x1 = x2 = 0 and x1 = x2 = 1. In “mean-field”
variational inference, this distribution might be approximated as Qθ1(x1)Qθ2(x2), with θ1
and θ2 representing coin weights that used to model x1 and x2 as independent Bernoulli dis-
tributions. This family of variational approximations to P (x1, x2) cannot capture the true
distribution, and in fact cannot qualitatively capture the simple constraint that x1 = x2.
These limitations prompted the development of more sophisticated approximations (e.g.,
Bouchard-Côté and Jordan, 2009; Jaakkola and Jordan, 1998), but these incur additional
computational cost and can be difficult or impossible to apply to a given problem.

This paper introduces a new approximate inference method, called discrete particle
variational inference (DPVI), that aims to combine key strengths of both Monte Carlo and
variational inference. The key insight in DPVI is to use a weighted collection of samples—the
kind of “particle approximation” output by Monte Carlo methods—as the approximating
family for variational inference. Suppose we got to pick where to place the particles in
the hypothesis space; where would we put them? Intuitively, we would want to distribute
them in such a way that they cover high probability regions of the target distribution, but
without the particles all devolving onto the mode of the distribution. This problem can be
formulated precisely within the framework of variational inference. We derive a coordinate
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ascent update for particle approximations that iteratively minimizes the Kullback-Leibler
(KL) divergence between the particle approximation and the target distribution.

In DPVI, the location of the particles become the parameters of the approximating
family. This simple choice has appealing consequences. Like Monte Carlo, DPVI can
handle problems where the posterior has multiple modes, and yields exact results in a
well-defined limit (as the number of particles goes to infinity). Like standard mean-field
variational methods, DPVI is based on optimizing a lower bound on the partition function;
when this quantity is not of intrinsic interest, it facilitates convergence assessment and
debugging. Like both Monte Carlo and combinatorial search, DPVI can take advantage of
factorization, sequential structure, and custom search operators.

The rest of the paper is organized as follows. After introducing our general framework,
we describe how it can be applied to filtering and smoothing problems. We then show
experimentally that variational particle approximations can overcome a number of problems
that are challenging for conventional Monte Carlo methods. In particular, our approach is
able to produce a diverse, high probability set of particles in situations where Monte Carlo
and mean-field variational methods sometimes degenerate.

2. Background

Consider the problem of approximating a probability distribution P (x) over discrete latent
variables x = {x1, . . . , xN}, xn ∈ {1, . . . ,Mn}, where the target distribution is known only
up to a normalizing constant Z: P (x) = f(x)/Z. We will refer to f(x) ≥ 0 as the score of x
and Z as the partition function. We further assume that P (x) is a Markov network defined
on a graph G, so that f(x) factorizes according to:

f(x) =
∏

c

fc(xc), (1)

where c ⊆ {1, . . . , N} indexes the maximal cliques of G.

2.1 Importance sampling and sequential Monte Carlo

A general way to approximate P (x) is with a weighted collection ofK particles, {x1, . . . , xK}:

P (x) ≈ Q(x) =
K∑

k=1

wkδ[x, xk], (2)

where xk = {xk1, . . . , xkN}, xkn ∈ {1, . . . ,Mn} and δ[·, ·] = 1 if its arguments are equal and
0 otherwise. Importance sampling is a Monte Carlo method that stochastically generates
particles from a proposal distribution, xk ∼ φ(·), and computes the weight according to
wk ∝ f(xk)/φ(xk). Importance sampling has the property that the particle approximation
converges to the target distribution as K →∞ (Robert and Casella, 2004).

Sequential Monte Carlo methods such as particle filtering (Doucet et al., 2001) apply im-
portance sampling to stochastic dynamical systems (where n indexes time) by sequentially
sampling the latent variables at each time point using a proposal distribution φ(xn|xn−1).
This procedure can produce conditionally low probability particles; therefore, most algo-
rithms include a resampling step which replicates high probability particles and kills off
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low probability particles. The downside of resampling is that it can produce degeneracy:
the particles become concentrated on a small number of hypotheses, and consequently the
effective number of particles is low.

2.2 Variational Inference

Variational methods (Wainwright and Jordan, 2008) define a parametrized family of prob-
ability distributions Q and then choose Q ∈ Q that maximizes the negative variational free
energy :

L[Q] =
∑

x

Q(x) log
f(x)

Q(x)
. (3)

The negative variational free energy is related to the partition function Z and the KL
divergence through the following identity:

logZ = KL[Q||P ] + L[Q], (4)

where

KL[Q||P ] =
∑

x

Q(x) log
Q(x)

P (x)
. (5)

Since KL[Q||P ] ≥ 0, the negative variational free energy is a lower bound on the log partition
function, achieving equality when the KL divergence is minimized to 0. Maximizing L[Q]
with respect to Q is thus equivalent to minimizing the KL divergence between Q and P .

Unlike the Monte Carlo methods described in the previous section, variational methods
do not in general converge to the target distribution, since typically P is not in Q. The
advantage of variational methods is that they guarantee an improved bound after each
iteration, and convergence is easy to monitor (unlike most Monte Carlo methods). In
practice, variational methods are also often more computationally efficient.

We next consider particle approximations from the perspective of variational inference.
We then turn to the application of particle approximations to inference in stochastic dy-
namical systems.

3. Variational Particle Approximations

Variational inference can be connected to Monte Carlo methods by viewing the particles as
a set of variational parameters parameterizing Q. For the particle approximation defined
in Eq. 2, the negative variational free energy takes the following form:

L[Q] =
K∑

k=1

wk log
f(xk)

wkV k
, (6)

where V k =
∑K

j=1 δ[x
j , xk] is the number of times an identical replica of xk appears in the

particle set. We wish to find the set of K particles and their associated weights that maxi-
mize L[Q], subject to the constraint that

∑K
k=1w

k = 1. This constraint can be implemented
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by defining a new functional with Lagrange multiplier λ:

L̃[Q] = L[Q] + λ

(
K∑

k=1

wk − 1

)
. (7)

Taking the functional derivative of the Lagrangian with respect to wk and equating to zero,
we obtain:

∂L̃[Q]

∂wk
= log f(xk)− logwk − log V k + λ− 1 = 0

=⇒ wk = Z−1Q f(xk)/V k, (8)

where

ZQ = exp(λ− 1)−1 =
K∑

k=1

f(xk)

V k
. (9)

We can plug the above result back into the definition of L[Q]:

L[Q] = Z−1Q

K∑

k=1

f(xk)

V k
log

f(xk)V k

Z−1Q f(xk)V k

= Z−1Q

K∑

k=1

f(xk)

V k
logZQ

= logZQ. (10)

Thus, L[Q] is maximized by choosing the K values of x with the highest score. The following
theorem shows that allowing V k > 1 (i.e., having replica particles) can never improve the
bound.

Theorem 1 Let Q and Q′ denote two particle approximations, where Q consists of unique
particles (V k

Q = 1 for all k) and Q′ is identical to Q except that particle xjQ′ is replicated V j
Q′

times (displacing V j
Q′ other particles with cumulative score F ). For any choice of particles,

L[Q] ≥ L[Q′].

Proof We first apply Jensen’s inequality to obtain an upper bound on L[Q′]:

L[Q′] ≤ log

K∑

k=1

wkQ′ZQ′ = log

K∑

k=1

f(xkQ′)

V k
Q′

. (11)

Since L[Q] = logZQ, we wish to show that ZQ ≥
∑K

k=1

f(xk
Q′ )

V k
Q′

. All the particles in Q and Q′

are identical except for the V j
Q′ particles in Q that were displaced by replicas of xjQ′ in Q′;

thus we only need to establish that f(xjQ′) + F ≥ V j

Q′f(x
j

Q′ )

V j

Q′
= f(xjQ′), where the left hand

side of the inequality is the change in negative variational free energy after the replication
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of particles. Since the score f(x) can never be negative, the cumulative score F can also
never be negative (F ≥ 0) and the inequality holds for any choice of particles.

The variational bound can be optimized by coordinate ascent, as specified in Algorithm
1, which we refer to as discrete particle variational inference (DPVI). This algorithm takes
advantage of the fact that when optimizing the bound with respect to a single variable, only
potentials local to that variable need to be computed. In particular, let x̃k be a replica of xk

with a single-variable modification, x̃kn = m. We can compute the unnormalized probability
of this particle efficiently using the following equation:

f(x̃k) = f(xk)
Fn(x̃k)

Fn(xk)
, (12)

where Fn(x) =
∏
c:n∈c fc(xc). The variational bound for the modified particle can then be

computed using Eq. 10. Particles can be initialized arbitrarily. When repeatedly iterated,
DPVI will converge to a local maximum of the negative variational free energy.1 Note that
in principle more sophisticated methods can be used to find the top K modes (e.g., Flerova
et al., 2012; Yanover and Weiss, 2003); however, we have found that this coordinate ascent
algorithm is fast, easy to implement, and very effective in practice (as our experiments
below demonstrate).

An important aspect of this framework is that it maintains one of the same asymptotic
guarantees as importance sampling: Q converges to P as K →∞, since in this limit DPVI
is equivalent to exact inference. Thus, DPVI combines advantages of variational methods
(monotonically decreasing KL divergence between Q and P ) with the asymptotic correctness
of Monte Carlo methods. It is important to note that asymptotic correctness might be
useless in practice unless something is known about the convergence rate. This issue is
not unique to DPVI; it also applies to Monte Carlo and variational methods. For certain
Markov chain Monte Carlo (MCMC) samplers, it can be shown that the chain converges
to the posterior at a geometric rate (Mengersen et al., 1996; Meyn and Tweedie, 1993). A
small amount of work has investigated convergence properties of variational methods for
specific models (Hall et al., 2011; Wang et al., 2006), but in general the issue of convergence
rate for variational methods is an open question.

The asymptotic complexity of DPVI in the sequential setting is O(SNK) where S is the
maximum support size of the latent variables. For the iterative update of the particles the
complexity is O(TCSK), where T is the maximum number of iterations until convergence
and C is the maximum clique size. In our experiments, we empirically observed that we
only need a small number of iterations and particles in order to outperform our baselines.

1. Naturally, initialization affects performance, since the objective function has local optima. For example,
if the posterior is multimodal and none of the particles are initialized near the dominant mode, then the
particle approximation will likely miss a significant portion of the probability mass. Studying the effects
of initialization is an important practical challenge for the application of DPVI. In our experiments, we
report averages across multiple random initializations.
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Algorithm 1 Discrete particle variational inference

1: /*N is the number of latent variables */
2: /*xk is the set of all latent variables for the kth particle: xk = {xk1, . . . , xkN} */
3: /*Mn is the support of latent variable xn */
4: Input: initial particle approximation Q with K particles, tolerance ε
5: while |L[Q]− L[Q′]| > ε do
6: for n = 1 to N do
7: X = ∅
8: for k = 1 to K do
9: Copy particle k: x̃k ← xk

10: for m = 1 to Mn do
11: Modify particle: x̃kn ← m
12: Score x̃k using Eq. 12
13: X ← X ∪ (x̃k, f(x̃k))
14: end for
15: end for
16: Select K unique particles from X with the largest scores
17: Construct new particle approximation Q′(x) =

∑K
k=1w

kδ[x, xk]
18: Compute variational bound L[Q′] using Eq. 10
19: end for
20: end while
21: return particle approximation Q′

4. Filtering and Smoothing in Hidden Markov Models

We now describe how variational particle approximations can be applied to filtering and
smoothing in hidden Markov models (HMMs). Consider a hidden Markov model with
observations y = {y1, . . . , yN} generated by the following stochastic process:

P (y, x, θ) = P (θ)
∏

n

P (yn|xn, θ)P (xn|xn−1, θ), (13)

where θ is a set of transition and emission parameters. We are particularly interested in
marginalized HMMs where the parameters are integrated out: P (y, x) =

∫
θ P (y, x, θ)dθ.

This induces dependencies between observation n and all previous observations, making
inference challenging.

Filtering is the problem of computing the posterior over the latent variables at time n
given the history y1:n. To construct the variational particle approximation of the filtering
distribution, we need to compute the product of potentials for variable n:

Fn(x) = P (yn|x1:n, y1:n−1)P (xn|x1:n−1). (14)

Recall from the previous section that Fn(x) is the joint probability of the maximal cliques
to which xn belongs. We can then apply the coordinate ascent update described in the
previous section. This update is simplified in the filtering context due to the underlying
Markov structure. Specifically, Eq. 12 is given by:

f(x̃k) =f(xk)P (yn|xkn = m,xk1:n−1, y1:n−1)P (xkn = m|xk1:n−1). (15)

7



Saeedi, Kulkarni, Mansingkha, and Gershman

At each time step, the algorithm selects the K continuations (new variable assignments of
the current particle set) that maximize the negative variational free energy.

Smoothing is the problem of computing the posterior over the latent variables at time n
given data from both the past and the future, y1:N . The product of potentials is given by:

Fn(x) = P (yn|x1:n, y−n)P (xn|x−n), (16)

where x−n refers to all the latent variables except xn (and likewise for y−n). This potential
can be plugged into the updates described in the previous section.

To understand DPVI applied to filtering problems, it is helpful to contemplate three
possible fates for a particle at time n (illustrated in Figure 1):

• Selection: A single continuation of particle k has non-zero weight. This can be seen
as a deterministic version of particle filtering, where the sampling operation is replaced
with a max operation.

• Splitting: Multiple continuations of particle k have non-zero weight. In this case,
the particle is split into multiple particles at the next iteration.

• Deletion: No continuations of particle k have non-zero weight. In this case, the
particle is deleted from the particle set.

Similar to particle filtering with resampling, DPVI deletes and propagates particles based on
their probability. However, as we show later, DPVI is able to escape some of the problems
associated with resampling.

5. Related Work

DPVI is related to several other ideas in the statistics literature:

• DPVI is a special case of a mixture mean-field variational approximation (Jaakkola
and Jordan, 1998; Lawrence, 2000):

Q(x) =

K∑

k=1

Q(k)

N∏

n=1

Q(xn|k). (17)

In DPVI, Q(k) = wk and Q(xn|k) = δ[xn, x
k
n]. From the simple restriction that the

component distributions must be delta functions, we derived a new algorithm that is
simpler and more efficient than mixture mean-field (which requires separate updates
for the mixture weights), while sacrificing some of its expressivity. Another distinct
advantage of DPVI is that the variational updates do not require the additional lower
bound used in general mixture mean-field, due to the intractability of the mean-field
updates.

• When K = 1, DPVI is equivalent to iterated conditional modes (ICM; Besag, 1986),
which iteratively maximizes each latent variable conditional on the rest of the vari-
ables. This algorithm is simple to implement, efficient (relative to variational and
Monte Carlo algorithms), and has been successfully applied to computer vision tasks
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0 

(A) DPVI (B) Particle Filtering

Figure 1: Schematic of DPVI versus particle filtering for filtering problems. Illustration
of different filtering scenarios over 2 time steps in a binary state space with
K = 3 particles. The number in each circle indicates the binary value of the
corresponding variable. Arrows indicate the evolution of the particles. (A) DPVI:
The size of the putative particles represents the score of the particle. The K
continuations with highest score are selected for propagation to the next time
step. The size of the new particle set corresponds to the normalized score. Particle
P1 is split, P2 is deleted and one putative particle from P3 is selected. (B)
Particle filtering: The size of the node represents the weight of the particle for
the resampling step.

such as reconstruction and segmentation of Markov random fields. However, the al-
gorithm is susceptible to local optima without the aid of relaxation techniques like
simulated annealing (Greig et al., 1989).

• DPVI is conceptually similar to nonparametric variational inference (Gershman et al.,
2012), which approximates the posterior over a continuous state space using a set of
particles convolved with a Gaussian kernel (see Miller et al., 2016, for more sophisti-
cated extensions of this idea). This approach was shown to be effective for probabilis-
tic models that lack the conjugate-exponential structure required for exact mean-field
inference. Because nonparametric variational inference approximates continuous den-
sities, it is inapplicable to the discrete problems considered here.

• Frank et al. (2009) used particle approximations within a variational message passing
algorithm. The resulting approximation is “local” in the sense that the particles are
used to approximate messages passed between nodes in a factor graph, in contrast
to the “global” approximation produced by DPVI, which attempts to capture the
distribution over the entire set of variables. It is an interesting question for future
research to understand what classes of probabilistic models are better approximated
using local vs. global approaches.

• Ionides (2008) described a truncated version of importance sampling in which weights
falling below some threshold are set to the threshold value. Ionides (2008) showed
that truncation reduced sensitivity to the proposal distribution and derived optimal
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truncations as a function of the number of samples. This is similar (though not
equivalent) to the DPVI setting where latent variables are sampled exhaustively and
without replacement.

• Schniter et al. (2008) described an approximate inference algorithm, fast Bayesian
matching pursuit, which can be viewed as a special case of DPVI applied to Gaussian
mixture models.

• In Jones et al. (2005), a shotgun stochastic search algorithm is suggested, which pro-
poses local changes to the latent variables with probability proportional to the un-
normalized posterior. While this method of evaluating local changes is similar to our
coordinate algorithm for the DPVI objective, it is important to note that DPVI is not
a stochastic search algorithm (unless K = 1): It maintains a collection of particles in
order to approximate the posterior distribution, which is important for applications
that require a representation of uncertainty.

• Finally, DPVI is closely related to the problem of finding the K most probable latent
variable assignments (Flerova et al., 2012; Yanover and Weiss, 2003). We view this
problem through the lens of particle approximations, connecting it to both Monte
Carlo and variational methods. The techniques developed for finding the K-best
assignments could be fruitfully applied to optimizing the DPVI objective function.

Our experimental strategy is to compare DPVI with popular algorithms that have similar
computational complexity, which is why we focus on particle filtering, Gibbs sampling and
mean-field approximations. Although mixture mean-field will by definition lead to a better
approximation, its computational complexity is considerably greater, which may explain
why it is has never achieved the popularity of standard mean-field approaches. Some of the
approaches listed above are not applicable to the discrete setting (nonparametric variational
inference and fast Bayesian matching pursuit), and some are point estimators instead of true
probabilistic approximations (iterated conditional modes and shotgun stochastic search).

6. Experiments

In this section, we compare the performance of DPVI to several widely used approximate
inference algorithms, including particle filtering, Gibbs sampling and variational methods.
We first present a didactic example to illustrate how DPVI can sometimes succeed where
particle filtering fails. We then apply DPVI to four popular but intractable probabilistic
models: the Dirichlet process mixture model (DPMM; Antoniak, 1974; Escobar and West,
1995), the infinite HMM (iHMM; Beal et al., 2002; Teh et al., 2006), the infinite relational
model (IRM; Kemp et al., 2006) and the Ising model.
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State Seq. 
[            ] 

Weight State Seq. 
[            ] 

Mean-Field 
 Parameters  x0, x1, x2

[0,0,0] 
[0,1,1] 
[1,1,1] 
[1,0,0] 
[1,0,1] 

0.15 
0.03 
0.32 
0.15 
0.35 

[1,0,1] 
[1,1,1] 
[1,1,1] 
[1,1,1] 
[1,0,1] 

DPVI Monte Carlo Mean-Field 

x0, x1, x2

Pr(x0 = 1, x1 = 0, x2 = 1|y) ⇡ 0.32Pr(x0 = 1, x1 = 0, x2 = 1|y) ⇡ 0.35 Pr(x0 = 1, x1 = 0, x2 = 1|y) ⇡ 0.4

x0 x1 x2

y0 y1 y2

Q(x0 = 0) = 0.4

Q(x1 = 0) = 0.63

Q(x2 = 0) = 0.15

Figure 2: Comparison of approximate inference schemes. (A) Approximating families for
DPVI, Monte Carlo and mean-field. (B) Approximating the posterior probability
of a sequence (x0 = 1, x1 = 0, x2 = 1) for the above 3 schemes on a binary HMM.
Given the weights for different sequences in DPVI the posterior probability is
the weight corresponding to that sequence. For Monte Carlo approximation, the
posterior can be approximated from the normalized counts of sampled (x0 =
1, x1 = 0, x2 = 1) sequences. Finally, for the mean-field approximation, we have
Pr(x0 = 1, x1 = 0, x2 = 1|y) = Q(x0 = 1)Q(x1 = 0)Q(x2 = 1).

6.1 Didactic Example: Binary HMM

As a didactic example, we use a simple HMM with binary hidden states (x) and observations
(y):

P (xn+1 = 0|xn = 0) = α0

P (xn+1 = 1|xn = 1) = α1

P (yn = 0|xn = 0) = β0

P (yn = 1|xn = 1) = β1, (18)

with α0, α1, β0, and β1 all less than 0.5. Constraining the parameters to be less than
0.5 makes some sequences more likely; approximating the posterior using a particle filter
(with resampling) may result in capturing only these sequences. We will use this model
to illustrate how DPVI differs from particle filtering. Figure 2 compares several inference
schemes for this model.
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Figure 3: HMM with binary hidden states and observations. Total marginal error computed
for a sequence of length 200. For particle filtering the total error for every ESS
value is averaged over 5 sequences generated from the HMM; in addition, for
each sequence we reran the particle filter 5 times (thus 25 runs total). Note the
logarithmic scale of the x-axis. Error bars and the thin black lines correspond to
standard error of the mean.

For illustration, we use the following parameters: α0 = 0.2, α1 = 0.1, β0 = 0.3, and
β1 = 0.2. Suppose you observe a sequence generated from this model. For a sufficiently
long sequence, a particle filter with resampling will eventually delete most conditionally
unlikely particles, due to the fact that there is some probability on each step that any given
unlikely particle will be deleted. The particle filter will thus suffer from degeneracy for long
sequences. On the other hand, without resampling the approximation will degrade over
time because conditionally unlikely particles are never replaced by better particles. For
this reason, it is sometimes suggested that resampling only be performed when the effective
sample size (ESS) falls below some threshold.

The ESS is calculated as ESS = 1∑K
k=1(w

k)2
. A low ESS means that most of the weight is

being placed on a small number of particles, and hence the approximation may be degenerate
(although in some cases this may mean that the target distribution is peaky). We evaluated
particle filtering with multinomial resampling on synthetic data generated from the HMM
described above. Approximation accuracy was measured by using the forward-backward
algorithm to compute the hidden state posterior marginals exactly and then comparing
these marginals to the particle approximation. Figure 3 shows performance as a function
of ESS threshold, demonstrating that there is a fairly narrow range of thresholds for which
performance is good. Thus in practice, successful applications of particle filtering may
require computationally expensive tuning of this threshold.

In contrast, DPVI achieves performance comparable to the optimal particle filter, but
without a tunable threshold. This occurs because DPVI uses an implicit threshold that

12



Variational Particle Approximations

is automatically tuned to the problem. Instead of resampling particles, DPVI deletes or
propagates particles deterministically based on their relative contribution to the variational
bound. We can always incrementally add particles, unlike tuning the threshold. So although
K can be viewed as a tuning parameter, we can adapt it with relatively little expense,
monotonically increasing the approximation quality in a way that can be easily quantified.

6.2 Dirichlet Process Mixture Model

A DPMM generates data from the following process (Antoniak, 1974; Escobar and West,
1995):

G ∼ DP(α,G0), θn|G ∼ G, yn|θn ∼ F (θn),

where α ≥ 0 is a concentration parameter and G0 is a base distribution over the parameter
θn of the observation distribution F (yn|θn). Since the Dirichlet process induces clustering
of the parameters θ into K distinct values, we can equivalently express this model in terms
of a distribution over cluster assignments, xn ∈ {1, . . . , C}. The distribution over x is given
by the Chinese restaurant process (Aldous, 1985):

P (xn = c|x1:n−1) ∝
{
tc if k ≤ C+

α if c = C+ + 1,
(19)

where tc is the number of data points prior to n assigned to cluster c and C+ is the number
of clusters for which tc > 0.

6.2.1 Synthetic Data

We first demonstrate our approach on synthetic data sets drawn from various mixtures
of bivariate Gaussians (see Table 1). The model parameters for each simulated data set
were chosen to create a spectrum of increasingly overlapping clusters. In particular, we
constructed models out of the following building blocks:

µ1 =
(
0.0, 0.0

)
, µ2 =

(
0.5, 0.5

)

Σ1 =
( 0.25, 0.0

0.0, 0.25

)
, Σ2 =

( 0.5, 0.0
0.0, 0.5

)
.

For the DPMM, we used a Normal likelihood with a Normal-Inverse-Gamma prior on the
component parameters:

ynd|xn = k ∼ N (mkd, σ
2
kd), mkd ∼ N (0, σ2kd/τ), σ2kd ∼ IG(a, b), (20)

where d ∈ {1, 2} indexes observation dimensions and IG(a, b) denotes the Inverse Gamma
distribution with shape a and scale b. We used the following hyperparameter values: τ =
25, a = 1, b = 1, α = 0.5.

Clustering accuracy was measured quantitatively using V-measure (Rosenberg and Hirschberg,
2007). V-measure is an entropy-based measure which explicitly measures how successfully
the criteria of homogeneity and completeness have been satisfied. Figure 4 graphically
demonstrates the discovery of latent clusters for both DPVI as well as particle filtering. As
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Data set PF (K = 20) MF DPVI (K = 1) DPVI (K = 20)

D1: [µ1, 4µ2, 8µ2],Σ1 0.97±0.03 0.80±0.10 0.93±0.05 0.99±0.02
D2: [µ1, 4µ2, 8µ2],Σ2 0.89±0.05 0.63±0.02 0.86±0.07 0.90±0.03
D3: [µ1, 2µ2, 4µ2],Σ1 0.58±0.12 0.53±0.05 0.51±0.03 0.74±0.16
D4: [µ1, 2µ2, 4µ2],Σ2 0.50±0.06 0.29±0.05 0.46±0.05 0.55±0.07
D5: [µ1, µ2, 2µ2],Σ1 0.05±0.05 0.28±0.12 0.014±0.02 0.14±0.10
D6: [µ1, µ2, 2µ2],Σ2 0.15±0.08 0.12±0.03 0.11±0.06 0.19±0.07

Table 1: Clustering accuracy (V-Measure) for DPMM. Each data set consisted of 200 points
drawn from a mixture of 3 Gaussians. For each data set, we repeated the experi-
ment 150 times by iterating through random seeds, reporting mean and standard
error. The left column shows the ground truth mean for each cluster and the
covariance matrix (shared across clusters). PF denotes particle filtering and MF
denotes mean-field.

Number of particles DPVI Particle Filtering

K = 10 15.20s 14.71s
K = 50 153.75s 184.17s
K = 100 567.84s 699.43s

Table 2: Run time comparison for DPMM with synthetic data using data set from Table
1. The run time of DPVI is slightly better than particle filtering for a single pass
through the data set.

shown in Table 1, we observe only marginal improvements when the means are farthest from
each other and variances are small, as these parameters leads to well-separated clusters in
the training set. However, the relative accuracy of DPVI increases considerably when the
clusters are overlapping, either due to the fact that the means are close to each other or the
variances are high. One factor contributing to greater performance of DPVI might be the
diversity term in the variational formulation.

An interesting special case is when K = 1. In this case, DPVI is equivalent to the greedy
algorithm proposed by Daume (2007) and later extended by Wang and Dunson (2011).
In fact, this algorithm was independently proposed in cognitive psychology by Anderson
(1991). As shown in Table 1, DPVI with 20 particles outperforms the greedy algorithm, as
well as particle filtering with 20 particles. We also demonstrate the run-time performance
of DPVI compared to particle filtering in Table 2. It can be seen in our experiments that
DPVI tends to be comparable to particle filtering or sometimes more efficient in terms of
run-time for the same task, although the theoretical complexity is the same.

6.2.2 Spike Sorting

Spike sorting is an important problem in experimental neuroscience settings where re-
searchers collect large amounts of electrophysiological data from multi-channel tetrodes.
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Ground Truth Particle Filter DPVI

(D1)

(D2)

(D3)

(D4)

(D5)

(D6)

Figure 4: DPMM clustering of synthetic data sets. We treat DPMM as a filtering problem,
analyzing one randomly chosen data point at a time. Colors indicate cluster
assignments. Each row corresponds to one synthetic data set; refer to Table 1 for
corresponding quantitative results. Column 1: Ground truth; Column 2: particle
filtering; Column 3: DPVI. The DPVI filter scales similarly to the particle filter
but does not underfit as severely. 15
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The goal is to extract from noisy spike recordings attributes such as the number of neurons,
and cluster spikes belonging to the same neuron. This problem naturally motivates the use
of DPMM, since the number of neurons recorded by a single tetrode is unknown. Previ-
ously, Wood and Black (2008) applied the DPMM to spike sorting using particle filtering
and Gibbs sampling. Here we show that DPVI can outperform particle filtering, achieving
high accuracy even with a small number of particles.

We used data collected from a multiunit recording from a human epileptic patient
(Quiroga et al., 2004). The raw spike recordings were preprocessed following the proce-
dure proposed by Quiroga et al. (2004), though we note that our inference algorithm is
agnostic to the choice of preprocessing. The original data consist of an input vector with
D = 10 dimensions and 9196 data points. Following Wood and Black (2008), we used a
Normal likelihood with a Normal-Inverse-Wishart prior on the component parameters:

yn|xn = k ∼ N (mk,Λk), mk ∼ N (0,Λk/τ), Λk ∼ IW(Λ0, ν), (21)

where IW(Λ0, ν) denotes the Inverse Wishart distribution with degrees of freedom ν and
scale matrix Λ0. We used the following hyperparameter values: ν = D + 1,Λ0 = I, τ =
0.01, α = 0.1.

We compared our algorithm to the current best particle filtering baseline, which uses
stratified resampling (Wood and Black, 2008; Fearnhead, 2004). The same model param-
eters were used for all comparisons. Qualitative results, shown in Figure 5B, demonstrate
that DPVI is better able to separate the spike waveforms into distinct clusters, despite
running DPVI with 10 particles and particle filtering with 100 particles. We also provide
quantitative results by calculating the held-out log-likelihood on an independent test set
of spike waveforms. The quantitative results (summarized in Table 5C) demonstrate that
even with only 10 particles DPVI can outperform particle filtering with 1000 particles.

6.3 Infinite HMM

An iHMM generates data from the following process (Teh et al., 2006):

G0 ∼ DP(γ,H), Gk|G0 ∼ DP(α,G0),

xn|xn−1 ∼ Gxn−1 , θk ∼ H, yn|xn ∼ F (θxn).

Like the DPMM, the iHMM induces a sequence of cluster assignments. The distribution
over cluster assignments is given by the Chinese restaurant franchise (Teh et al., 2006).
Letting tjc denote the number of times cluster j transitioned to cluster c, xn is assigned
to cluster c with probability proportional to txn−1c, or to a cluster never visited from xn−1
(txn−1c = 0) with probability proportional to α. If an unvisited cluster is selected, xn is
assigned to cluster c with probability proportional to

∑
j tjc, or to a new cluster (i.e., one

never visited from any state,
∑

j tjc = 0) with probability proportional to γ.

6.3.1 Synthetic Data

We generated 50 sequences with length 500 from 50 different HMMs, each with 10 hidden
and 5 observed states. For the rows of the transition and initial probability matrices of the
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(A)

(B)

Method Predictive LL

DPVI (K = 10) -3.2474×105 (Ĉ = 3)

DPVI (K = 100) -1.3888×105 (Ĉ = 3)

PF (K = 10) -1.4771±0.21× 106 (Ĉ = 37)

PF (K = 100) -5.6757±1.14× 105 (Ĉ = 13)

PF (K = 1000) -3.2965×105 (Ĉ = 5)

(C)

Method Run time

DPVI (K = 10) 36.20s
DPVI (K = 50) 144.6s
DPVI (K = 100) 313.8s
PF (K = 10) 124s
PF (K = 50) 334.2s
PF (K = 100) 454.2s

(D)

Figure 5: Spike sorting using the DPMM. Each line is an individual spike waveform, colored
according to the inferred cluster. (A) Result using particle filtering with 100
particles and stratified resampling as reported in Wood and Black (2008). (B)
Result using DPVI. The same model parameters were used for both particle
filtering and DPVI. (C) Spike sorting predictive log-likelihood scores for 200 test
points. The best performance is achieved by DPVI with 100 particles. Shown in
parentheses is the maximum a posteriori number of clusters, Ĉ. (D) Run time
comparison for DPMM obtained by using the spike sorting data set. The run
time of DPVI is slightly better than particle filtering.
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Method Runtime (sec)

DPVI (K = 1) 1.28
DPVI (K = 10) 3.56
DPVI (K = 100) 204.42
PF (K = 1) 1.14
PF (K = 10) 1.92
PF (K = 100) 31.99

(B)

Figure 6: Infinite HMM on the synthetic data set. (A) Results on 500 synthetic data
points generated from an HMM with 10 hidden states. Error is the Hamming
distance between the true hidden sequence and the sampled sequence, averaged
over 50 data sets. M: multinomial resampling; S: stratified resampling. Lower
bound is the expected Hamming distance between data-generating distribution
and ground truth. Upper bound is the expected Hamming distance between
uniform distribution and ground truth. (B) Run time comparison for the synthetic
iHMM data set. We denote particle filtering method by PF.
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HMMs we used a symmetric Dirichlet prior with concentration parameter 0.1; for the emis-
sion probability matrix, we used a symmetric Dirichlet prior with concentration parameter
10.

Figure 6A illustrates the performance of DPVI and particle filtering (with multinomial
and stratified resampling) for varying numbers of particles (K = 1, 10, 100). Performance
error was quantified by computing the Hamming distance between the true hidden sequence
and the sampled sequence. The Munkres algorithm was used to maximize the overlap
between the two sequences. The results show that DPVI outperforms particle filtering in
all three cases.

When the data consist of long sequences, resampling at every step will produce degen-
eracy in particle filtering; this tends to result in a smaller number of clusters relative to
DPVI. The superior accuracy of DPVI suggests that a larger number of clusters is necessary
to capture the latent structure of the data. Not surprisingly, this leads to longer run times
(Figurets 6B), but it is important to note that particle filtering and DPVI have comparable
per-cluster time complexity.
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(A)

Method Runtime (sec)

DPVI (K = 1) 4.73
DPVI (K = 10) 41.62
DPVI (K = 100) 1685
PF (K = 1) 1.64
PF (K = 10) 28.08
PF (K = 100) 211.66
Beam sampler 260

(B)

Figure 7: Infinite HMM for the text analysis task. (A) Predictive log-likelihood for the
Alice in Wonderland data set. (B) Results using the “Alice in Wonderland” data
set. The maximum number of inferred clusters is Ĉ = 147 for DPVI (K = 100)
and Ĉ = 21 for particle filter (K = 100). As expected, the per cluster runtime of
the two methods are comparable.

6.3.2 Text Analysis

We next analyzed a real-world data set, text taken from the beginning of “Alice in Wonder-
land”, with 31 observation symbols (letters). We used the first 1000 characters for training,
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and the subsequent 4000 characters for test. Performance was measured by calculating the
predictive log-likelihood. We fixed the hyperparameters α and γ to 1 for both DPVI and
the particle filtering.

We ran one pass of DPVI (filtering) and particle filtering over the training sequence.
We then sampled 50 data sets from the distribution over the sequences. We truncated the
number of states and used the learned transition and emission matrices to compute the
predictive log-likelihood of the test sequence. To handle the unobserved emissions in the
test sequence we used “add-δ” smoothing with δ = 1. Finally, we averaged over all the 50
data sets.

We also compared DPVI to the beam sampler (Van Gael et al., 2008), a combination
of dynamic programming and slice sampling, which was previously applied to this data
set. For the beam sampler, we followed the setting of Van Gael et al. (2008). We run
the sampler for 10000 iterations and collect a sample of hidden state sequence every 200
iterations. Figure 6B shows the predictive log-likelihood for varying numbers of particles.
Even with a small number of particles, DPVI can outperform both particle filtering and the
beam sampler.

6.3.3 User Behavior Analysis

We analyzed a data set of user behavior in a photo editing software application. The data
set contains sequences of edits applied by users to different photos. An iHMM can be
utilized for better understanding the high-level tasks of the users. That is, a sequence of
multiple edits may be required to perform a high-level task such as cropping or masking a
photo. Our data set contains 30000 edits from which we use 1000 data points as a held-out
set. There are 23 possible observations (edits) in the data set. We compare DPVI with 1,
5 and 10 particles with particle filtering, Gibbs sampling and mean field inference schemes.
For all the inference schemes, we set the hyperparameters α and γ to 1. In every iteration of
DPVI and particle filtering, we do a forward filtering-backward smoothing pass over all the
sequences of the data set. Our results, shown in Figure 8(B), demonstrate that DPVI with
5 and 10 particles can converge in fewer iterations compared to other reasonable baselines.
We illustrate the lower bound (Eq. 10) convergence in Figure 9. The results are computed
over 20 runs and for 1, 5 and 10 particles.

It is important to note here that we do not expect DPVI to outperform Gibbs sampling
in all scenarios; when computation time is not strongly limited, we expect DPVI and Gibbs
to perform similarly. This point applies here as well as to the experiments reported in the
sections below. We see DPVI as a useful alternative to Gibbs when the computational
budget is low and the required fidelity of the approximation can be satisfied by capturing
a few of the posterior modes.

6.4 Infinite Relational Model (IRM)

The IRM (Kemp et al., 2006) is a nonparametric model of relational systems. The model
simultaneously discovers the clusters of entities and the relationships between the clusters.
A key assumption of the model is that each entity belongs to exactly one cluster.
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Method Predictive LL

DPVI (K = 1) −2983.24± 93.77
DPVI (K = 5) −2018.02± 9.23
DPVI (K = 10) −2058.75± 33.62
PF (K = 1) −2743.60± 28.49
PF (K = 5) −2503.95± 40.46
PF (K = 10) −2424.01± 72.72
Mean field −3158.69± 52.67
Gibbs −2030.50± 56.55

(B)

Figure 8: Infinite HMM results for the user behavior analysis task. (A) Predictive log-
likelihood vs iteration for the user behavior data set. The error bars correspond
to the standard error and are computed over 20 runs. In every iteration of DPVI
and particle filtering, we do a forward filtering-backward smoothing pass over all
the sequences of the data set. (B) Predictive log-likelihood after 3000 iterations
of DPVI, Gibbs, particle filter and mean field for the user behavior data set (with
1000 data points as held-out). The best performance is achieved by DPVI with
5-10 particles and also the Gibbs sampler. Run time for each epoch is as follows:
0.726 sec for mean field, 0.593 sec for Gibbs, 4.52 sec for particle filter with 10
particles, and 4.74 sec for DPVI with 10 particles.
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Figure 9: Infinite HMM results for the user behavior analysis task. Lower bound vs iteration
for the user behavior data set. The error bars correspond to the standard error
and are computed over 20 runs. In every iteration of DPVI, we do a forward
filtering-backward smoothing pass over all the sequences of the data set.

Given a relation R involving J types of entities, the goal is to infer a vector of cluster
assignments xj for all the entities of each type j = 1, . . . , J .2 Assuming the cluster as-
signments for each type are independent, the joint density of the relation and the cluster
assignment vectors can be written as:

P (R, x1, . . . , xJ) = P (R|x1, . . . , xJ)

J∏

j=1

P (xj). (22)

The cluster assignment vectors are drawn from a CRP(α) prior. Given the cluster assign-
ment vectors, the relations are drawn from a Bernoulli distribution with a parameter η
that depends on the clusters involved in that relation. For instance, in a single two-place
relation, η(a, b) is the probability of having a link between any given pair (i, j) where i is
in cluster a and j is in cluster b.

More formally, let us define an M dimensional relation R : T d1 × . . . T dM 7→ {0, 1}, over
J different types. Each relational value is generated according to:

R(i1, . . . , iM )|x1, . . . , xJ ∼ Bernoulli(η(xd1i1 , . . . , x
dM
iM

)), (23)

where dm denotes the label of the type (i.e., dm ∈ {1, · · · , J}) and im is the entity occupying
position m in the relation. Each entry of parameter matrix η is drawn from a Beta(β, β)
distribution. By using a conjugate Beta-Bernoulli model, we can analytically marginalize
the parameters η (see Kemp et al., 2006), allowing us to directly compute the likelihood of
the relational matrix given the cluster assignments, P (R|x1, . . . , xJ).

We compared the performance of DPVI with Gibbs sampling, using predictive log-
likelihood on held-out data as a performance metric. The “animals” data set analyzed in

2. The IRM model can be defined for multiple relations but for simplicity we only describe the single
relation case.
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Sample animal clusters:
A1: Hippopotamus, Elephant, Rhinoceros
A2: Seal, Walrus, Dolphins, Blue Whale,

Killer Whale, Humpback Whale
A3: Beaver, Otter, Polar Bear

Sample feature clusters:
F1: Hooves, Long neck, Horns
F2: Inactive, Slow, Bulbous Body, Tough Skin
F3: Lives in Fields, Lives in Plains, Grazer
F4: Walks, Quadrupedal, Ground
F5: Fast, Agility, Active, Tail

Figure 10: Co-clustering of animals (rows) and features (columns) after 50 iterations of
DPVI with 10 particles in the infinite relational model.

Kemp et al. (2006), was used for this task. This data set (Osherson et al., 1991) is a two
type data set R : T1 × T2 → {0, 1} with animals and features as it types; it contains 50
animals and 85 features.

We removed 20% of the relations from the data set and computed the predictive log-
likelihood for the held-out data. We ran DPVI with 1, 10 and 20 particles for 1000 iterations.
Given the weights of the particles, we computed the weighted log-likelihood. We also ran
20 independent runs of the Gibbs sampler and DPVI for 1000 iterations and computed
the average predictive log-likelihood. Every iteration scans all the data points in all the
types sequentially. We set the hyperparameters α and β to 1. Figure 10 illustrates the co-
clustering discovered by DPVI for the data set, demonstrating intuitively reasonable animal
and feature clusters.

The results after 1000 iterations are presented in Table 11B. The best performance is
achieved by DPVI with 20 particles. Figure 11A shows the predictive log-likelihood for
every iteration of DPVI and Gibbs sampling. DPVI with 10 and 20 particles converge in 11
and 18 iterations, respectively. In terms of computation time per iteration of DPVI versus
Gibbs, the only difference for DPVI with one particle and Gibbs is the sorting cost. Hence,
for the multiple particle versus multiple runs of Gibbs sampling, the only additional cost is
the sorting cost for multiple particles (e.g. 10 or 20). However, this insignificant additional
cost is compensated for by a faster convergence rate in our experiments.

6.5 Ising Model

So far, we have been studying inference in directed graphical models, but DPVI can also be
applied to undirected graphical models. We illustrate this using the Ising model for binary
vectors x ∈ {−1,+1}N :

f(x) = exp

{
1

2
xWx> + θx>

}
, (24)

23



Saeedi, Kulkarni, Mansingkha, and Gershman

0 200 400 600 800 1000
Iteration

−480

−460

−440

−420

−400

−380

−360
P

re
di

ct
iv

e
lo

g-
lik

el
ih

oo
d

DPVI 1 DPVI 10 DPVI 20 Gibbs

(A)

Method Predictive LL

DPVI (K = 1) −418.49± 4.24
DPVI (K = 10) −382.46± 7.34
DPVI (K = 20) −370.67± 6.23
Gibbs (avg. of 20 runs) −371.74± 5.07
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Figure 11: Infinite relational model results for the animals data set. (A) Predictive log-
likelihood vs iteration for the animals data set. The error bars correspond to
the standard error and for both methods are computed over 20 runs. (B) Pre-
dictive log-likelihood after 1000 iterations of DPVI and Gibbs (with 50 burnin
iterations) for the animals data set (with 20 % held-out). DPVI with 20 particles
performs in par with the Gibbs sampler.

where W ∈ RN×N and θ ∈ RN are fixed parameters. In particular, we study a square
lattice ferromagnet, where Wij = β for neighboring nodes (0 otherwise) and θi = 0 for all
nodes. We refer to β as the coupling strength. This model has two global modes: when
all the nodes are set to 1, and when all the nodes are set to 0. As the coupling strength
increases, the probability mass becomes increasingly concentrated at the two modes.

We applied DPVI to this model, varying the number of particles and the coupling
strength. At each iteration, we evaluated the change in log probability that would result
from setting x̃kn = 1:

akn =
∑

n′∈cn

Wn,n′x
k
n′ + θn, (25)

and likewise the change for setting x̃kn = 1 can be computing by simply flipping the sign of
akn. Ordering these changes, we then took the top K to determine the new particle set.

To quantify performance, we computed the DPVI variational lower bound on the par-
tition function and compared this to the lower bound furnished by the mean-field approx-
imation (see Wainwright and Jordan, 2008). Figure 12A shows the results of this analysis
for low coupling strength (β = 0.01) and high coupling strength (β = 100). DPVI con-
sistently achieves a better lower bound than mean-field, even with a single particle, and
this advantage is especially conspicuous for high coupling strength. Adding more particles
improves the results, but more than 3 particles does not appear to confer any additional
improvement for high coupling strength. These results illustrate how DPVI is able to cap-
ture multimodal target distributions, where mean-field approximations break down (since
they cannot effectively handle multimodality).
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Figure 12: Ising model results. Difference between DPVI and mean-field lower bounds on
the partition function. Positive values indicates superior DPVI performance.
(A) Low coupling strength; (B) high coupling strength.

To illustrate the performance of DPVI further, we compared several posterior approxi-
mations for the Ising model in Figure 13. In addition to the mean-field approximation, we
also compared DPVI with two other standard approximations: the Swendsen-Wang Monte
Carlo sampler (Swendsen and Wang, 1987) and loopy belief propagation (Murphy et al.,
1999). The sampler tended to produce noisy results, whereas mean-field and BP both failed
to capture the multimodal structure of the posterior. In contrast, DPVI with two particles
perfectly captured the two modes.

7. Conclusions

This paper introduced a particle-based variational method that applies to a broad class of
inference problems in discrete models. We described a practical algorithm for optimizing
the particle approximation, and showed empirically that it can outperform widely-used
Monte Carlo and variational algorithms. The key to the success of this approach is an
intentional selection of particles: rather than generating them randomly (as in Monte Carlo
algorithms), we deterministically choose a set of unique particles that optimizes the KL
divergence between the approximation and the target distribution.

This approach leads to an interesting view on the problem of resampling in sequential
Monte Carlo. Resampling is necessary to remove conditionally unlikely particles, but the
resulting loss of particle diversity can lead to degeneracy. As we showed in our experiments,
tuning an ESS threshold for resampling can improve performance, but requires finding a
relatively narrow sweet spot for the threshold. DPVI achieves comparable performance to
the best particle filter by using a deterministic strategy for deleting and replacing particles
and does not require tuning thresholds. Each particle is guaranteed to be unique and have
high probability among all states discovered so far.

DPVI also suggests new hybrids of ideas from Monte Carlo and variational inference.
Consider models where all particle extensions cannot be enumerated. In this setting, one
could randomly choose particle extensions. To use these particles in a Monte Carlo scheme
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Samples Samples

DPVI DPVI

Mean field BP

Figure 13: Ising model simulations. Examples of posteriors for the ferromagnetic lattice
at low coupling strength. (Top) Two configurations from a Swendsen-Wang
sampler. (Middle) Two DPVI particles. (Bottom left) Mean-field expected
value. (Bottom right) Loopy belief propagation expected value.

we may need to know the output probability density of the particle extension mechanism.
However, if we use the results in DPVI, we just need to be able to score the results under
the joint probability distribution. No proposal distribution is needed. This could make it
possible to use proposal mechanisms that can be seen to work well empirically but that are
difficult to analyze a priori.

Although our empirical results are promising, much more empirical and theoretical
work is needed to understand the fundamental tradeoffs between variational and Monte
Carlo inference. However, the results for DPVI on several problems are promising, and the
approach to defining variational approximations may be more broadly applicable. We hope
this work encourages others to develop different hybrids of Monte Carlo and variational
inference that overcome the limitations of each approach when used in isolation.
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