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Abstract
Dopamine release in the nucleus accumbens has been hypothesized to signal the differ-
ence between observed and predicted reward, known as reward prediction error, sug-
gesting a biological implementation for reinforcement learning. Rigorous tests of this
hypothesis require assumptions about how the brain maps sensory signals to reward
predictions, yet this mapping is still poorly understood. In particular, the mapping is non-
trivial when sensory signals provide ambiguous information about the hidden state of the
environment. Previous work using classical conditioning tasks has suggested that reward
predictions are generated conditional on probabilistic beliefs about the hidden state, such
that dopamine implicitly reflects these beliefs. Here we test this hypothesis in the context
of an instrumental task (a two-armed bandit), where the hidden state switches stochas-
tically. We measured choice behavior and recorded dLight signals that reflect dopamine
release in the nucleus accumbens core. Model comparison among a wide set of cogni-
tive models based on the behavioral data favored models that used Bayesian updating of
probabilistic beliefs. These same models also quantitatively matched mesolimbic dLight
measurements better than non-Bayesian alternatives. We conclude that probabilistic
belief computation contributes to instrumental task performance in mice and is reflected
in mesolimbic dopamine signaling.
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Author summary
We investigated how mice adapt to changes in the hidden reward structure in an instru-
mental task. We found evidence that models using Bayesian inference provided a better
account of both behavioral data and dopamine signals in the Nucleus Accumbens for
mice compared to standard Reinforcement Learning (RL) models, even those with
sophisticated features such as counterfactuals, forgetting, and dynamic learning rate
update. Moreover, we discovered that it is biologically plausible that mice employed a
hybrid computational process that combined RL and Bayesian inference. Under this
hypothesis, Bayesian inference is used to compute beliefs across hidden states, each of
which contains its own action value map. Dopamine signals reward prediction errors
that update these action values conditioned on these belief states. This work establishes
a role for Bayesian inference in neural computation and behavior in a value-based deci-
sion making task, and helps to confirm a new understanding of the role of dopamine in
learning.
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Reinforcement learning (RL) algorithms hypothesize that, in value-based decision making
tasks, animals maintain an action value map and update it using reward prediction errors
(RPE), the difference between the observed and predicted reward associated with the chosen
action [1]. The growing family of RL models proved to be remarkably successful in explain-
ing trial-by-trial changes in behavior [2–4] and the responses of midbrain dopamine neu-
rons in rodents and primates [5–7]. However, these standard RL (SRL) models may not ade-
quately account for behavioral and neural data when immediate sensory observations alone
are insufficient to guide optimal behavior, for example, when the underlying reward distri-
bution changes over time due to the existence of a hidden state [8–10]. To solve such tasks,
evidence suggests that the brain may represent a “belief state” (a probability distribution over
hidden states), updated by Bayesian inference [10–15], or possibly learned implicitly in an
end-to-end fashion [16]. Additionally, updates to these belief state-dependent action values
may be encoded by dopamine neurons [11–15].

The significance of Bayesian inference becomes apparent when studying behavior in a
two-armed bandit task (2ABT, Fig 1A), a serial reversal learning task where rewards for cor-
rect choices are delivered on a probabilistic schedule, and the correct port switches between
two available options across blocks of trials within a single session. The fact that rewards are
delivered on a probabilistic schedule generates ambiguity as to which port is currently the
rewarded port following an unrewarded trial. Both mice and human subjects trained in this
task are capable of maintaining stable behavior within a block, and then rapidly adapting to
reward contingency changes following a block switch [17–19].

The simplest versions of standard RL models do not capture choice stability within a block
and rapid switching when the rewarded port changes [18,19]. Bayesian inference may offer
better models of behavior and neural computation in tasks like the 2ABT due to their abil-
ity to capture stable within-block choice and rapid between-block switching [14]. A series
of studies suggested that dopamine signaling may be better explained by models accounting
for belief states [9,11–13,15]. However, the additional explanatory power of Bayesian mod-
els with respect to RL models is currently ambiguous, given that a growing family of com-
plex RL models, geared with more parameters and nuanced functions, are capable of gener-
ating adaptive behaviors [19,20]. A 2022 study of human behavior in the 2ABT found that a
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Fig 1. Mice adapt rapidly to block switches in a probabilistic reversal task. (A) Illustration of the two-armed bandit task, divided into initiation, execution, and out-
come phases, similar to [17,31]. In the illustrated trial, the right port is rewarded with 0.75 probability and the left port is unrewarded. After 7-23 rewarded trials, the
correct port switches. (B) Training protocol. The recording phase took place in the “Full Task” phase. In the pretraining phases, the structure of the task was the same
as the in the full task phase, except the reward contingencies and block lengths were different. Each contingency is labeled by numbers indicating the proportion of
correct and incorrect choices that were rewarded. For example, “90-0” in the first pretraining phase indicates that 90% of correct choices were rewarded. The block
length in each phase is indicated by its mean and range. For example, “sw 35± 8” in the first pretraining phase indicates that switches occurred after the animal earned
between 27 and 43 rewards. During the 14 sessions of mouse behavior data collection, we recorded dLight signals using a “left hemisphere (L), right hemisphere (R),
no neural recording pure behavior (NRec)” sequence. (C) Raw behavioral trajectory taken from the first half of a sample session. Black line indicates correct reward
port locations while dashed gray line indicates actual mouse behavior. Green dots and red dots mark rewarded and unrewarded trials, respectively. (D) Probability
of making a correct choice (i.e., choosing the high probability port) as a function of the number of trials around a block switch. The vertical dashed line shows trials
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at which rewarded block changes. Each colored dashed line plot shows behavioral performance for individual animals. (E) Probability of staying (repeating the last
choice) after experiencing different outcome histories in the same port. RR: two consecutive rewards; UR: unrewarded outcome followed by rewarded; RU: rewarded
outcome followed by unrewarded; UU: two consecutive unrewarded outcomes. (F) Performance across 14 sessions. Dashed lines show individual animal trajectories.
Error bars show 95% bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pcbi.1013226.g001

Bayesian model and an RL model variant equipped with counterfactual value updates both
provided complementary explanations of behavior, but neither was decisively superior [18].
A 2022 study of mouse behavior in the 2ABT suggested a purely Bayesian account of reversal
learning can overestimate mouse switch probability and fail to account for choice stickiness
[19].

In 2024 two further studies were published in mice that compared Bayesian and RL mod-
els ability to explain both behavioral and dLight dopamine release data from the nucleus
accumbens [10,21]. Both found that behavior and imaging data were consistent with Bayesian
inference. However, in both studies actions and outcomes were spread out over multiple
task steps or multiple seconds, time spans that engage areas such as hippocampus and PFC
[10,21,22].

There is evidence that when actions and reinforcements follow each other in more fast
paced tasks, that the role of striatum is enhanced [17,23]. So, we cannot assume that com-
putation in a fast paced 2ABT is comparable to a slower paced 2ABT even when both have
latent block structure [21]. Therefore, this study provides an additional test of the robustness
of Bayesian models in a faster-paced (therefore possibly more striatal based) assay of decision
making.

Another limitation of the existing literature is that many studies compared only a few
model variants in isolation, without including a larger growing set of models. Recently,
Blanco-pozo et al. compared Bayesian models against model-free, model-based, and hybrid
RL models in a two-step task [10]. Here we included a broader set of complex RL models
commonly used in cognitive modeling to further elucidate how specific mechanisms, like
asymmetric learning rate, counterfactual learning, dynamic learning rate, forgetting, and
Bayesian inference, each differentially contribute to explaining mouse behavior and dopamine
release dynamics in the nucleus accumbens in a simpler operant 2ABT task. In addition
to comparing “pure” Bayesian and RL models, we can also examine hybrid models where
Bayesian and RL processes are combined [11,24,25]. In these belief state RL hybrid mod-
els (BRL), Bayesian inference can be used to compute belief states, over which RL processes
operate to learn policies appropriate for the current belief state.

Given these ambiguities in the past literature, our goal was to examine if Bayesian mod-
els or Bayesian-RL hybrid models could outperform sophisticated variants of RL models to
explain behavior and outcome-related dopamine signals in our simple fast-paced 2ABT task
with a hidden state. Mesolimbic dopamine neurons have been widely associated with RPE
predictions. As one of their major projection destinations, the nucleus accumbens (NAc) is
thought to play a critical role in credit assignment [26–29]. Therefore, dopamine release in
NAc is of particular scientific interest. To this end, we trained mice in a value-based 2ABT
task while recording dLight signals in the NAc using fiber photometry to measure dopamine
transients [30]. These data allowed us to test the hypotheses regarding the cognitive process
that mice employ in the 2ABT at the behavioral level and to test whether these computations
are reflected by mesolimbic dopamine dynamics in the NAc.
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Results
Mice rapidly adapt to block switches in the 2ABT
To study the flexible updating of goal-directed behaviors under probabilistic conditions, we
trained mice on a 2ABT task with block switches. Two weeks prior to training, mice were
injected bilaterally with AAV dLight in the NAc core and implanted with an optic fiber and
ferrule above the injection site.

In the 2ABT, mice encountered three ports equipped with infrared sensors. Animals were
water restricted and trained to nose-poke into the central port to initiate a trial and then move
to a left or a right port to obtain a water reward. Water rewards were available on either the
left or right side, depending on the block. The correct choice was rewarded with water 75%
of the time whereas no rewards were available at the other port. After they received a random
number of rewards (uniformly sampled from 7 to 23 for the “Full Task” condition, Fig 1A–
1B), the correct port switched without any discriminative cue. In order to achieve consis-
tent water rewards across the whole session, mice needed to readily update their choice using
outcome feedback.

As soon as the full task started (see Methods for details), we recorded unilaterally from the
NAc in mice performing the 2ABT for a total of 14 daily sessions, alternating the hemisphere
and allowing one non-recording session every third day (Fig 1B). Just after pre-training, mice
chose the high reward probability port 72.9% (95% CI: [0.669, 0.767]) of the time on aver-
age. Over the course of 14 training sessions, performance steadily increased (Fig 1F, linear
regression slope coefficient 0.0026, t statistic: 2.743, p = 0.008, CI: [0.001, 0.005]). In the first
7 sessions, mice took 2.49 trials on average (95% CI: [2.39, 2.59]) to switch to the correct port
after a block switch. In the 8-14th session this reduced to 2.36 trials on average (95% CI: [2.28,
2.45]). Mice switched and committed to the correct port for 3 or more trials (average 3.12 tri-
als, 95% CI: [3.00, 3.26], S4 Fig) following the first 7 sessions. These data were comparable to
mice performing the task without a fiber implant or cable [17].

To identify what task features the mice might consider before switching ports, we analyzed
the stay/switch behaviors after two trials of outcome history. To simplify the comparison, we
specifically chose the trials after the mice consecutively stayed in the same port for two trials
or more. We encoded the outcome history at t-2, t-1 as RR, RU, UR, RU, (23607, 5719, 9428,
8520 trials each) with R representing rewarded trials and U representing unrewarded trials.
For instance, a trial with “RU” stay history means that a mouse encountered a reward at trial
t-2 and then was unrewarded at trial t-1, all at the same port. We found a significant reduc-
tion in the probability of repeating the previous choice after one unrewarded outcome (RR vs.
RU, Fisher’s exact test: 6.47, p ≤ 1e-4, Cohen’s d: 0.6242, 95% CI: [0.6, 0.65]). Moreover, mice
reduced their stay rate at the chosen port after two consecutive unrewarded outcomes com-
pared to one unrewarded outcome (RU vs. UU, Fisher’s exact test: 3.98, p ≤ 1e-4, Cohen’s d:
0.6715, 95% CI: [0.64, 0.7]; Fig 1E).

More formally, we conducted comprehensive logistic regression analyses to describe how
outcome histories influenced behaviors across individual mice, with a particular focus on cap-
turing the decaying impact of historical reward and choice information. By implementing two
distinct regression approaches (S6 Fig, [19,32]), we were able to examine how mice integrate
recent (1 trial back) and more distant trial histories into their decision-making process. The
first model explored the general decay of choice outcome weights across trial histories, reveal-
ing consistent patterns of how past experiences progressively influence current choices. The
second model specifically evaluated whether recent rewards can “block” or reduce the effect of
more distant outcome histories. This nuanced analysis allows us to parse the complex cogni-
tive mechanisms underlying mouse behavioral decision-making, providing insight into how
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mice integrate sequential information to guide their choices. By fitting these models to indi-
vidual animal data, we can characterize the subtle variations in decision-making strategies
across different subjects with higher precision, thus offering a more robust and mechanistic
understanding of the experimental results.

Cognitive model fitting confirms that mouse behavior data favors Bayesian
models or complex RL models compared to simple RL models
To investigate the nature of computations that mice use to rapidly adapt their choices fol-
lowing block switches, we compared a purely Bayesian model (BIfp, see methods) adopted
from [18], a hybrid BRL model (BRLfwr, see methods) inspired by [11], and several RL
models (Fig 2A): a model with asymmetric learning rates for positive and negative RPEs
(RL4p, dubbed the simple standard RL model), a model that additionally used counterfac-
tual updates for unchosen option values (RLCF), the recursively formulated logistic regression
(RFLR) model developed by [19], an RL model that simulates forgetting via decaying the Q
value of unchosen options (RLFQ3p), a foundational dynamic learning model developed by
Pearce and Hall that adapts learning rate with outcome uncertainties [33], and another recent
dynamic learning variant that adjusts negative learning rate adaptively based on expected
and unexpected uncertainty (RL_meta) [20]. The model space under selection consists of a
rich set of cognitive mechanisms that have been shown in previous work to perform well in
explaining mouse and human behaviors in the 2ABT [18,19,33], including Bayesian inference,
dynamic learning, forgetting, counterfactual, stickiness, and asymmetrical learning (Table 1).
We carefully chose this model space in order to identify which cognitive mechanism alone
can best explain mouse behavior and dopamine release in NAc. Due to the intricate connec-
tion between these cognitive models, as well as their mathematical equivalence under cer-
tain restricted conditions [19], a definitive classification or grouping can be rather difficult.
However, for the convenience and scope of this paper, we focused on evaluating the effective-
ness of Bayesian inference in explaining empirical data against other more complex RL mod-
els, and opted to illustrate this with the conceptual diagram in Fig 2A. For instance, though
one can show its connection to Hidden Markov Models (HMM) under restricted conditions,
the RFLR model was grouped with other RL models due to its mathematical equivalence to
the forgetting Q-learning model [19,34]. Modeling details can be found in the Methods and
descriptions shown in Table 1.

All models listed compute choice values (or implicit values via reward probabilities in
the case of BIfp), map these to choice probabilities, and then update their values (and beliefs
in the case of the Bayesian models) after receiving reward feedback. For models that do not
explicitly utilize RPE for model updating, like BIfp, we can calculate “pseudo-RPEs” by taking
the difference between the observed and expected reward. Critically, the BRL and RL mod-
els differ in how they perform value computation. The RL models update choice values stored
in a look-up table, while the BRL models computed values as a sum of choice values in each
belief state weighted by posterior belief probabilities. The updating process is schematized in
Fig 2D–2E.

The RL4p model and its variants have been extensively used in previous studies (e.g.,
[36–40]), which have provided evidence that asymmetric learning rates and choice persever-
ation (“stickiness”) are often helpful in capturing animal behaviors. RL4p serves as a base-
line against which all more complex models should be compared. Despite its past empirical
success, a critical limitation of the RL4p model is that it fails to capture the observation that
animals appear to update values for unchosen options (counterfactual updating; [18,41–43]).
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Fig 2. Bayesian and reinforcement learning models. (A) Relationships between cognitive models (see Methods for more details). (B) Confusion matrix outlines
results for model identification analysis. Each entry i, j represents the percentage of time that the column j fitting model best explained data generated by row i sim-
ulating model. The row orders are sorted via dendrogram based on model similarity (see Methods). (C) Model comparison using relative AIC compared to RL4p:
ΔAIC = AIC(model) –AIC(RL4p), with lower values indicating better fit. (D) Illustration of value computation for BRL model family, which updates beliefs via Bayes’
rule and then uses these beliefs to compute values. (E) Illustration using a four-trial sequence (similar to [31]) to show the differences between RL4p and BRL. Top:
purple and cyan bars show the choice values conditioned on the belief state; Bottom: pie charts show the belief state for BRL; the animal’s policy is selected as a function
of the value within their belief states. (F) Behavior of different models compared to mouse data (black line). Trial 0 is when the program has switched the rewarded side
in a block switch. (G) Example behavioral trajectory (probability of choosing the rightward port) predicted by different models. Mouse data are marked by a dashed line
and block structure is marked by a solid line. Rewarded trials are marked as green dots and unrewarded trials are marked as red dots. Error bars show 95% bootstrapped
confidence intervals.

https://doi.org/10.1371/journal.pcbi.1013226.g002
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Table 1. Overview of different cognitive models.
Model name Description Parameters Distinct mechanisms
RL4p Q learning 𝛼+, 𝛼–, 𝛽, 𝜙 (stickiness) asymmetric learning,

perseverance
RLCF Q learning with counterfactual

updates [18]
𝛼+, 𝛼–, 𝛽, 𝜙 counterfactual, asymmetric

learning, perseverance
RFLR Recursive Formulation Logistic

Regression [19]
𝛼, 𝜙, 𝜏 (decay rate) perseverance, forgetting,

connections to HMM [19]
BRLfwr Belief state RL model with reward

weight updates and fixed initial
weight

𝛽, 𝜙, q (latent switch rate), 𝛼 perseverance, Bayesian
inference

BIfp Bayesian Inference Model [35] 𝛽, 𝜙, q perseverance, Bayesian
inference

RLFQ3p Reinforcement Learning with
Forgetting 𝜁 (3 parameter)

𝛽, 𝛼+, 𝛼– (𝜁 = 1 – 𝛼++𝛼–
2 ) asymmetric learning,

forgetting
RL_meta RL with meta learning [20] 𝛼+, 𝛼–, 𝛽, 𝜙, 𝜁, 𝛼𝜈, 𝜓 dynamic learning, asym-

metric learning, forgetting,
perseverance

PearceHall Pearce-Hall dynamic learning
model [33]

𝛼+, 𝛼–, 𝜙, 𝛼𝜈, 𝜁 perseverance, asymmet-
ric learning, forgetting,
perseverance

https://doi.org/10.1371/journal.pcbi.1013226.t001

For example, in reversal learning tasks like the 2ABT, observing an unexpected reward omis-
sion dramatically increases the likelihood of a switch, accompanied by neural responses that
anticipate the new reward contingencies [9,44]. Counterfactual updating is usually formalized
by updating values for unchosen actions in the opposite direction from the values of chosen
actions. This qualitatively mimics the behavior of Bayesian models [35].

We fitted all models to the choice data of all 14 sessions for 5 mice (Fig 1F) in the 2ABT
using maximum likelihood estimation. To qualitatively analyze similarities among this rich
set of cognitive models, we simulated behaviors using parameter ranges fit to the mouse
behavioral data. Then we fitted each of the 8 main model variants to each of the simulated
behavioral data sets and tested for model identifiability based on the frequency with which
the ground-truth model was chosen by the model selection criterion, the Akaike Informa-
tion Criterion (AIC). This revealed relatively poor identifiability between the Bayesian model
and the hybril BRL, as well as poor identifiability between the complex RL models (RL_meta,
RLFQ3p, RFLR). These results indicate that the 2ABT cannot be used to discriminate within
each family of model on the basis of behavioral data, but can discriminate across families.
Furthermore, the 2ABT is adequate for rejecting the standard RL model (RL4p, Fig 2B, 2C).

With RL4p as a baseline, we found that both BRLfwr and BIfp significantly improved the
AIC measure compared to the RL4p model (BIfp: ΔAIC = –536.57± 59.48, BRLfwr: ΔAIC =
–530.59± 61.86). The RLCF also explained the mouse behavior better than the RL4p model
(RLCF: ΔAIC = –361.92± 70.52), with a higher relative AIC on average than the BIfp model
(ΔAIC = 174.64 ± 47.83) (Fig 2C). Additionally, other complex RL models also outperformed
the RL4p model (ΔAIC = –652.53± 49.26, –677.84 ± 65.69, –656.44± 62.16, –646.45± 53.62
for RFLR, RL_meta, PearceHall, and RLFQ3p respectively, Fig 2C). When we evaluated the
qualitative difference for model fitting across subjects, we noted that due to the limitation of
sample size, the lowest attainable uncorrected p-value against a one-sided alternative using
non-parametric pairwise tests (like permutation test) is 0.03125, which can readily lose power
when multiple test corrections are used. Furthermore, it is reasonable to assume that relative
AIC values across subjects follow a symmetric and normal-adjacent distribution. Therefore,
we used parametric t-test and controlled family-wise error rate (FWER) via Holm’s method
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with Bonferroni adjustment. We found that both Bayesian models like BRLfwr (p corrected:
0.018) and BIfp (p corrected: 0.015), and complex RL models (p corrected for relative AIC for
RFLR: 0.004, RLFQ3p: 0.006, for RL_meta: 0.009, PearceHall: 0.009) provided better accounts
of mouse behavior in the 2ABT than the standard RL model. However, there was not suffi-
cient discriminative power to identify whether Bayesian models or any member of the com-
plex RL models was superior based on the simple quantitative account of all behavioral data
as a whole (corrected p value for BRLfwr vs RL_meta: 0.39, BRLfwr vs PearceHall: 0.679,
BRLfwr vs RFLR: 0.679, BRLfwr vs RLFQ3p: 0.679, though BRLfwr performs significantly
better than RLCF: p corrected: 0.020).

Bayesian models and complex RL models qualitatively recover mouse
behaviors around trials feature volatile outcome changes
To further understand the mechanism by which the Bayesian model, hybrid BRL, or the
complex RL models explained mouse behavior, we compared qualitative signatures of the
BIfp, BRLfwr, and RL models with those of mouse data. One hallmark behavioral signature
of mouse adaptation to block switches is improved choice accuracy as the number of tri-
als after a block switch increases (Fig 1D). Due to the model similarities found in the previ-
ous model identification analysis, (Fig 2B, 2C), we focused on a restricted subset of model
space: BRLfwr, RLCF, RL4p, RFLR and PearceHall. We omitted BIfp, RLFQ3p, and RL_meta
from the analysis due to their qualitative similarity to BRLfwr, RFLR, and PearceHall respec-
tively. Accordingly, we first compared the rate at which choice accuracy improved after block
switches for simulated model behaviors against mouse data. Consistent with our hypothe-
sis, we observed that BRLfwr and RLCF predicted faster adaptation to block switches com-
pared to RL4p, resembling the adaptation rate of mouse switching behavior (Fig 2F). When
we focused on single-trial choice-outcome trajectories, we qualitatively observed that the
Bayesian model and complex RL models updated their switch probability differently (or faster
in most cases) from the RL4p model after unrewarded observations or near block switches
(Fig 2G). From this, one further hypothesis naturally arises: the Bayesian models and com-
plex RL models outperform the RL4p model because of their ability to detect choice-outcome
sequences that are suggestive of a block switch or volatile choice-outcome contingencies.

To test this hypothesis, it is imperative to obtain a more granular understanding of how
different trial outcome histories drive a mouse to switch ports, and to determine if BRLfwr
can successfully predict switch probabilities under different outcome histories, especially
around block switches. Following [19], we categorized all trials based on their three past trial
outcome histories, using capital A/B to denote rewarded outcomes and lower-case a/b for
unrewarded outcomes. Due to the symmetrical task structure, we denoted the trial at t-3 as
A/a regardless of its spatial location, and trials at t-2 or t-1 as A/a if the mouse chose the same
port, or B/b if the mouse chose a different port, in reference to trial t-3 (Fig 3A). For instance,
if a mouse was unrewarded at port 1 at t-3, rewarded at port 2 at t-2, unrewarded again at port
2 at t-1, we would describe the trial outcome history as aBb. We then calculated the switch
probability as the probability to choose a different port at trial t compared to trial t-1.

We then compared the average mouse switch probability after each outcome history
against the mean predictions of the three different cognitive models (Fig 3B; sum of squared
errors (SSE): BRLfwr: 0.1796, RL4p: 0.8270, RLCF: 0.2748, RFLR: 0.1537, RL_meta: 0.0787,
PearceHall: 0.1084). Notably, we observed that the RL4p model overestimated the switch
probability for outcome history contexts where mice encountered rewards in both ports
within the past 3 trials (e.g., ABb, AaB, etc., Fig 3A). Since these outcome contexts occurred
only around block switches, mice usually stayed at the newly rewarded ports (mean switch
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Fig 3. BRL and complex RL models outperform standard RL by better explaining mouse behaviors around block
switches. (A) Switch probability by different trial outcome histories described by action-outcome pairs three trials
back. Gray bars showed mouse average probability of switching for each outcome history, deep blue dots represent
individual mice. From top to bottom: mouse data overlaid with BRLfwr, RL4p, RLCF, RFLR, PearceHall model
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predictions of switch rate, respectively. (B) Switch probability predicted by different models scales with probability
of mice switching port selections in different outcome contexts described. Colors represent different models, sharing
the same legend as C (orange: BRLfwr, wine red: BIfp, dark green: RLCF, brown: RFLR, blue: RL4p, light cyan:
PearceHall, dark yellow: RL_meta) (C) Relative AIC with respect to RL4p (dashed line at ΔAIC = 0) showing model
fit to mouse data around block switch. Error bars show 95% bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pcbi.1013226.g003

rate: 0.2143). BRLfwr showed a similarly low switch rate after these contexts (0.1801), whereas
RL4p model predicted a high average switch rate of 0.4328 (RLCF: 0.2248, RFLR: 0.2778).

For instance, after the outcome context of ABb, the RL4p model overestimated the prob-
ability of the mice switching back to port A (Fig 3B), because it was only able to increment
the action value for port B, instead of capturing the underlying reward distribution change.
A mouse using a learning mechanism like RL4p would mistakenly think that selecting port
A was still as valuable as it was prior to this outcome sequence, given that no reward omis-
sions were recently experienced at that port, leading to regressive errors back to port A. Inter-
estingly, the RL_meta model was able to explain adaptive behaviors with even higher accu-
racy than BRLfwr due to its adaptive power via learning rate tuning when reward context
changes rapidly. We furthered our model comparison using AIC (ΔAIC) relative to the RL4p
standard RL model to examine mouse behaviors around block switch (defined as the first 5
trials after block switch). We found similar ΔAIC results for BRLfwr and dynamic RL mod-
els (BRLfwr: –163.6763, RL_meta: –163.9207, PearceHall: –158.9066) (Fig 3C). However,
RL_meta was also the most complex model with 7 parameters, with poor parameter identi-
fiability (S2 Fig). One might therefore argue that that the Bayesian model BRLfwr was better
because it exhibited good parameter recovery and was more parsimonious.

Predictions from BRLfwr and BIfp capture nucleus accumbens core dLight
dynamics better than RL models
Next, we investigated whether Bayesian models or RL models provide qualitatively and quan-
titatively accurate predictions of dopamine release in the NAc triggered by action outcome
feedback. Importantly, as noted above, BIfp does not inherently calculate an RPE term, since
it uses Bayesian inference for model updates. Therefore, to allow the comparison between
model predictions of BIfp and the dopamine signals, we calculated a pseudo-RPE for BIfp, the
difference between observed and expected reward.

Our experimental mice were implanted with optical fibers bilaterally in NAc core to enable
recording of dLight signals. Histology images were visually inspected after the experiment
to verify the implant tip location and viral expression (Fig 4A). We analyzed the dopamine
responses in NAc by aligning dopamine signals to the “outcome” event, the time point when
water rewards were either delivered to the mice or were omitted. After mice received a water
reward, we observed a dLight dopamine signal (Z(DA)) increase on average (estimate: 1.6345,
CI: [1.613, 1.656], p ≤ 1e-5) in ports both contralateral and ipsilateral to the recording hemi-
sphere, consistent with previous literature [7,45,46]. When reward was omitted at the periph-
eral port, we observed a reduction (OLS estimate: –1.5840, CI: [–1.604, –1.564], p ≤ 1e-5) in
the dLight signal in NAc (Fig 4B–4C).

To test the effect of animal choice switching, choice laterality (with respect to dopamine
recording hemisphere), and reward or reward omissions on dopamine responses at outcome
phase, we fitted a simple OLS model with all four factors. We observed a significant Z(DA)
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Fig 4. NAc dLight dopamine dynamics consistent with RPE predictions by models with Bayesian inference. (A)
Implant fiber locations indicated on mouse brain atlas with red crosses, similar to [31]. (B-C) Trial average of NAc
dLight signals (z-scored, as described in Methods) aligned to outcome events. Shaded area indicates the one second
where the peak or trough is taken for neural regression. (B) shows switch trials and (C) shows stay trials. Rewarded
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trials are in blue and unrewarded trials are in red. Trials where mice picked the port contralateral to the recording hemi-
sphere are plotted with solid lines; trials in which mice picked the ipsilateral port are plotted with dashed lines. (D-E)
Example session single trial dLight responses plotted in heatmaps, trials sorted by the time mice spent in the reward port
(see Methods for further details). (D) shows a heatmap for unrewarded trials, and (E) shows rewarded trials. Increase in
dLight signal is indicated by brighter shades of red and decreases from baseline are indicated by darker shades of black.
Dots are used to mark “center out” (yellow), “outcome” (green), “first side out” (purple), “center in” (gray) events, respec-
tively. (F) Result of neural regression using model RPE values to explain dopamine variability. Fit is measured as cross
validated log-likelihood (llk_CV) relative to the RL4p model, with higher values indicating a better fit. Gray dashed line
indicates the baseline of RL4p RPE fitted to dopamine measurements. (G) Dopamine response on rewarded trials binned
by past history, sorted in increasing order of number and recency of rewards (note in all cases mice stayed with the same
port ‘a/A’ for all three trials). (H) RPE predictions from different models plotted against dopamine peak values (in black).
(I) Left: Relative change in dopamine as R_chosen (past rewards observed at the selected port) and R_unchosen (past
rewards observed at the opposing port) change, calculated via LMER regression weights for dopamine observed in trials
where the animals switched their port choices (animal switch trials). Right: Relative change in model RPE as R_chosen
and R_unchosen change, calculated via regressions using model RPE predictions. (J) Similar to I, but for trials where
the animal maintained their previous port selections (animal stay trials). Error bars show 95% bootstrapped confidence
intervals.

https://doi.org/10.1371/journal.pcbi.1013226.g004

difference (OLS coefficient estimate for switch: 0.5030, CI: [0.454, 0.552], p ≤ 1e-5) in trial-
averaged dLight responses to the “outcome” event between switch trials and stay trials. Sig-
nals triggered by reward were larger on average on trials where mice switched to a new port,
compared to when they stayed with their past choice (Fig 4B, 4C). Negative signals observed
after reward omissions in trials where mice stayed were larger when compared to when they
had just switched (Fig 4B, 4C). Our data were consistent with expectations that rewards are
followed by increases in dopamine release in NAc (estimate: –1.6345, CI: [1.613, 1.656], p ≤
1e-5) and unrewarded outcomes with a decrease (estimate: –1.5840, CI: [–1.604, –1.564], p ≤
1e-5). There was no significant effect of hemisphere (laterality, contra or ipsi relative to reward
port) on NAc dopamine release (p = 0.523) (Fig 4B, 4C).

When we visualized single trial dopamine traces around “outcome” events, we found that
the temporal span of the dopamine response qualitatively aligned with the amount of time
mice stayed at the peripheral reward port (Fig 4E). Similarly, after unrewarded outcomes,
we found that the duration of the decrease in dLight response qualitatively aligned with the
time mice stayed in the peripheral reward port, reaching signal trough typically just after
mice left the port. These results together suggest that when modeling dopamine responses,
the time duration that mice stayed in the peripheral reward port after an “outcome” event
(dubbed “port duration”) needs to be taken into consideration (Fig 4D–4E). For this reason,
we included port duration as a covariate in our regression analyses.

We reasoned that if the internal reward prediction updates of the mice are represented by
dopamine in the NAc and resemble that of BRLfwr or BIfp, then BRLfwr or BIfp RPE calcu-
lations should explain a larger amount of variance in the dopamine responses in NAc at the
time of “outcome” events than RL models. To simplify the testing procedure, we obtained
dopamine summary statistics by taking the peak (as the maximum value) of dopamine tran-
sients for rewarded trials and troughs (as the minimum value) for unrewarded trials (dubbed
DA-PT) during the one second window after the outcome, marked in gray in Fig 4B. To con-
trol for behavioral confounding variables, we included session number, port duration, ego-
centric action, movement time, and center port poke duration as covariates in addition to pre-
dicted RPE values from BIfp, BRLfwr, RL4p, and RLCF (note that we omitted RFLR model
since it does not have a straightforward RPE formulation), each in a disjoint regression covari-
ate set. Using maximum likelihood estimation with featurized covariates (see Methods) on
the five different RPE covariate sets, we found that both BIfp and BRLfwr models yielded
larger relative log-likelihood (Δllk CV) than the RL4p baseline, evaluated on cross validation
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sets (70-30) for each animal (Fig 4F, Δllk CV: BRLfwr: 80.58, 95% CI: [60.84, 102.79], BIfp:
118.64, 95% CI: [65.71, 217.50]). Both Bayesian models also outperformed other complex
RL models on this measure (Δllk CV: RLCF: -19.23, 95% CI: [-47.03, 4.64], RLFQ3p: 18.85,
95% CI: [4.98, 33.31], RL_meta: 22.54, 95% CI: [7.96, 33.90], PearceHall: 19.50, 95% CI: [6.04,
32.83]).

To illustrate the quantitative differences between model predictions, and to identify the
aspects of the data that the BRL and BIfp models captured but the RL models did not, we
investigated conditions where different models gave qualitatively different predictions. First,
we looked at the changes in dLight responses to rewards as mice experienced a series of out-
comes in consecutive stay trials from aaa to AAA (lowercase “a” indicates unrewarded and
uppercase “A” indicates rewarded). As mice encountered more rewards in their recent his-
tory, dLight dopamine responses to reward gradually decreased (consistent with decreased
RPE) but did not completely flatten to no response (Fig 4G), partially explaining the quanti-
tatively worse fit (Fig 4F). This pattern observed in our dLight data from the NAc core (’data’
indicated by a black line) was not well captured by the RL models in later trials but was cap-
tured by the Bayesian model and the hybrid BRL model. To quantify, we trained a sepa-
rate OLS model for each cognitive model to predict dopamine response using only simu-
lated RPEs. We compared the model fitness across different cognitive models with cross val-
idated log-likelihood (BRLfwr: –985.89, RL4p: –991.80, RLCF: –992.87, PearceHall: –993.81,
RLFQ3p: –994.74, RL_meta: –995.02) (Fig 4H). Indeed, BRLfwr RPE predictions achieved the
highest model fitness to dopamine data. The RL models updated action values on each trial as
mice encountered consecutive rewards, estimating a recent average of choice outcomes. This
feature may make RL models overly sensitive to recent outcome histories and liable to overes-
timating the action values, particularly around block switches. In our dataset, the best fitting
RL4p model had an average 𝛼+ of 0.85 (95% CI: [0.77, 0.94]), and average 𝛼– of 0.73 (95% CI:
[0.71, 0.75]). The large 𝛼 (learning rate) values likely enabled RL4p to maintain the flexibility
to adapt to block switches, but they also posed issues regarding biological feasibility. RL_meta
and PearceHall model were able to mitigate this issue with a dynamic learning rate that adapts
to outcome uncertainty. However, due to its iterative nature, as the amount of reward in the
recent outcome history increased, it steadily decreased the RPE towards zero, which did not
match what we observed in the dopamine signal.

Both BIfp and BRLfwr were able to explain the adaptation of dopamine transients after
increasing consecutive rewards better than the RL models. These models accounted for pos-
sible block switches and maintained values of both a high reward context and a low reward
context that are not associated with any given port (Fig 4H). Instead, these values were
assigned to specific ports in proportion to the model’s belief state on any given trial. We spec-
ulate that this information about task structure provided robustness in response to probabilis-
tic reward omissions after selecting the more rewarding port. This also allowed the best fitting
BRLfwr and BIfp model to predict a small but non-negative RPE response on rewarded stay
trials (Fig 4H), suggesting a degree of uncertainty as to whether the block had switched and
capturing a pattern observed in the NAc dLight signals in later consecutive trials (right side
of Fig 4H). Furthermore, we observed that among trials after an immediate past trial reward,
the dopamine response was highly consistent, independent of more distant outcome histories.
Only BRLfwr captured this phenomenon qualitatively, in striking contrast to other complex
RL models.

The Bayesian model and the hybrid BRL model were able to modulate expectations about
both choices using inference based on one single choice outcome. This led to the prediction
that at the outcome phase of each choice, an increasing number of rewards gathered at the

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013226 July 2, 2025 14/ 31

https://doi.org/10.1371/journal.pcbi.1013226


ID: pcbi.1013226 — 2025/7/4 — page 15 — #15

PLOS COMPUTATIONAL BIOLOGY Nucleus accumbens dopamine release reflects Bayesian inference during learning

opposing port in past trials will reduce the RPE signal reflected in dopamine, especially tri-
als where animals switched to a different port from the previous trial (animal switch trial).
To investigate if this prediction was upheld in the dopamine data, we fitted both the mouse
data and the model simulated data with linear mixed effects models (LMER, see Methods).
Specifically, we modeled the dopamine values, or the predicted RPEs for simulated data, as
a linear weighted sum of current reward (Reward), rewards observed at the currently cho-
sen port (trial t) over the past 4 trials (R_chosen) and past rewards observed at the opposite
port over the past 4 trials (R_unchosen), conditioned on whether animal switched trials or
animal stayed with their prior choice t-1 on the current trial t. On animal switch trials, both
BIfp, BRLfwr, and RLCF predicted a positive effect of R_unchosen, but other RL models pre-
dicted little to no effect due to a forgetting effect or asymmetrical value updates. LMER fitting
revealed a significantly negative effect of R_chosen on dopamine at outcome phase during
animal switch trials (slope estimate: –0.128, 95% CI [–0.195, –0.062], p = 0.02), and a signif-
icantly positive effect of R_unchosen on dopamine during animal switch trials (slope esti-
mate: 0.126, 95% CI [0.035, 0.217], p = 0.03, Fig 4I). On animal stay trials, the result was more
complicated. All models predicted a negative relationship between R_chosen and RPE sig-
nal, matching the dopamine observation (slope estimate: –0.09, 95% CI: [–0.11, –0.07], p =
0.01). However, low sample size of high R_unchosen value trials resulted in a noisy nega-
tive estimate of effect of R_unchosen, which none of the models generated consistent predic-
tions (Fig 4J). This elevated level estimation errors for R_unchosen made it a bad target for
model arbitration, while the other three measures may be a more credible source of evidence.
To sum up, the relationship between past reward history and dopamine values qualitatively
matched the prediction of the BRLfwr model for switch trials and the predictions of BIfp or
RLCF model for stay trials. Taken together with the functional similarity of BIfp and BRLfwr
(Fig 2B), we conclude that the dopamine data matched the RPE predictions of Bayesian mod-
els quantitatively and qualitatively, but we could not further discriminate between BIfp or
BRLfwr.

Discussion
Our results showed that mice were capable of rapidly adapting to block switches in an instru-
mental task with probabilistic and volatile contingencies, without sacrificing the robust-
ness of their choice policy when encountering stochastic unrewarded outcomes after cor-
rect choices. Both the pure Bayesian inference model and the belief state RL model were able
to capture this balance and outperformed standard RL models in explaining mouse behav-
ior (Fig 2C, Fig 3C). While behavioral data alone was not sufficient for us to arbitrate among
Bayesian models, hybrid BRL, and complex RL models, models using Bayesian inferences
(both BIfp and BRLfwr) for state estimation were able to provide a more accurate account of
the dopamine release events in the NAc core following choice outcomes (Fig 4G–4J). Crit-
ically, both Bayesian and hybrid model had explicit belief state representations of different
block identities (Fig 2D, 2E), which provided a mechanism for encoding the rapidly changing
reward contingencies in the 2ABT task. This mechanism successfully explained the ability to
efficiently switch after consecutive unrewarded outcomes while also disregarding occasional
reward omissions within a block. The RL component in the BRL models allowed the model to
use RPEs to update its mapping from choices to values conditioned on belief states. However,
we did not find decisive evidence that BRL models explained the mouse data better than pure
Bayesian models. The principal conceptual advantage of BRL models is that they make direct
use of RPE signals, whereas pure Bayesian models do not. This highlights the importance of
neural data in adjudicating between these models.
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Building on the behavioral modeling, we showed that the Bayesian and hybrid models do a
good job predicting NAc dopamine activity at the time of outcomes (reward or reward omis-
sion). In particular, RPEs generated by the BRL model and pseudo-RPEs derived from the
BI models qualitatively and quantitatively match the history-dependent pattern of dopamine
activity (Fig 4F–4J). This finding supports a growing literature showing that dopamine signal-
ing of RPEs depends on a belief state (or some approximation of a belief state; see [16]) in par-
tially observable tasks [11–15]. Furthermore, our results show that in the context of a proba-
bilistic instrumental task, dopamine release in NAc compute RPE-like signals not just based
on observable input, but also internally generated state information. This confirms an expand-
ing literature showing that “model-free” RL computations in the midbrain and striatum take
in higher-level inputs such as beliefs about latent state [9,11,21,25], as well as information
about reward outcomes and reward expectations [47–50].

The BRL model is closely related to structure learning models that learn multiple context-
dependent policies. Such models often assume some form of Bayesian inference at the more
abstract level, with RL supporting learning of specific policies [24,51,52]. Theoretical work,
supported by experimental findings, has also shown that dynamic adaptation at the more
abstract level of belief states/latent contexts/rules may also be supported by RL-like computa-
tions [35,53,54]. The current work cannot dissociate these possibilities.

There are several limitations to our work that can be addressed in future investigations.
Here we adopted a 75-0 reward probability design from the legacy of prior lab literature. In
this design, in any given block, an inferior port always yielded no reward. Consequently,
mice rarely switched to a new port and got rewarded after observing rewards in the previ-
ously chosen port. Previous work has noted that inference-based cognitive models are capa-
ble of decreasing the expectations about alternative options after observing a reward for a
selected option [9,21,44]. Therefore, mice using inference would exhibit a higher RPE fol-
lowing a reward in a new port after also observing a reward in the old port, a reward-switch-
reward sequence. Yet in our dataset, there are only 94 trials initiating such sequences out of
30,707 trials in total, across multiple animal sessions, giving us limited power to address this
prediction.

In our task design, mice can initiate new trials at their discretion after the outcome, with
no instructed delays. Especially after unrewarded outcomes, mice left the peripheral port
shortly after, approaching the center port for a new trial. As a result, in trials when mice left
the peripheral port too soon, dopamine responses coincided temporally with the dopamine
ramp associated with approaching center ports [55,56]. To mitigate this, we only analyzed
trials with specific port durations (see Methods), which limited our statistical power. More
generally, the scaling effect of port duration on dopamine could reflect a multiplexed role
of dopamine in vigor, action initiation, or other functional diversity of dopamine neurons
[57–65]. Also, our work does not directly address the possibility of other alternative compu-
tational hypotheses about dopamine, like directly setting the adaptive learning rate [66] or
signaling retrospective inferences about causal targets [67].

Another caveat of our experimental design was that it incorporated a multi-stage pre-
training protocol before we started recording dopamine data in the “full task” condition. Mice
started with blocks with 100% reward probability, which was brought down in stages to 90%,
80% and then 78%, before the “full task” at 75%. Since this pre-training took approximately
10 days on average, it may have been enough for mice to develop Bayesian inference strate-
gies before dopamine recordings started. When we fit models to single session behavioral data
during the “full task” phase, we did not observe any changes consistent with transitions from
one cognitive strategy to another across days in the full task (S7 Fig). As a result, our cur-
rent dataset cannot address the question of whether, in the earliest days of pretraining, mice
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transitioned from initial reinforcement learning to a more sophisticated belief-state inference
approach.

A final limitation of our study is the fact that the RPE that correlated with dopamine sig-
naling only played a minimal role in predicting behavior, as evidenced by the fact that BRL
models did not outperform pure Bayesian models with no RL component. We believe that
better discrimination between these models can come from theory-guided experimental
design, possibly using a more complex task that places a greater demand on learning policies
within each belief state [68,69]. Moreover, in future work, more careful examinations of dis-
tinct cognitive mechanisms may also allow us to develop new models to further illuminate the
questions raised in our study.

Conclusion
In natural environments, animals and humans often experience ambiguous outcome feedback
about the hidden reward structure of the environment. We emulated this in a two-armed ban-
dit task with switching reward blocks, and showed that mice are capable of adapting rapidly
to changes in hidden reward structures after observing specific outcome feedback sequences.
Computational model fitting to behavioral data suggested that models performing Bayesian
updating of beliefs better explained mouse behavioral data than standard RL models. These
Bayesian models also quantitatively and qualitatively matched the dopamine release in the
nucleus accumbens core better than the non-Bayesian alternatives. Together, we conclude
that probabilistic belief updates are critical to behavioral adaptation and RPE signaling in
the mesolimbic dopaminergic system during instrumental learning in a partially observable
environment.

Materials and methods
Ethics statement
We conducted all animal procedures following the principles outlined by the NIH Guide for
the Care and Use of Laboratory Animals. We had approval from the Institutional Animal Care
and Use Committee (IACUC) at UC Berkeley and the protocol number is AUP-2015-11-8145.

Animal protocol
Mice (all C57 Bl/6 male, bred in-house aged 104-167 days) were housed on a 12 h reversed
light-dark cycle (lights on at 22:00) with nesting material. Prior to surgery they were group
housed with access to food and water ad libitum. We conducted all animal procedures, which
follow the principles outlined by the NIH Guide for the Care and Use of Laboratory Animals,
according to the protocol (AUP-2015-11-8145-3) approved by the University of California,
Berkeley Institutional Animal Care and Use Committee (IACUC) and Office of Laboratory
Animal Care (OLAC).

Surgery protocol
Mice were anesthetized with isoflurane gas for stereotaxic surgery. Meloxicam was given on
the day of surgery and daily for 48h after. Coordinates for the Nucleus Accumbens Core were
bregma coordinate: 1.20mm anterior, ± 1.2mmmedial-lateral, -4.1mm ventral. AAV-CAG-
dLight1.3b or AAV9-syn-dLight1.2b were injected using a Nanojet II (Drummond scientific).
Neurophotometrics NA 0.37 or 0.48 400𝜇m optic fibers were placed approximately 100𝜇m
above the injection site. Dental cement was used to secure the implant to the skull. During a
recovery period of 7-14 days, mice were singly-housed and fed ad libitum.
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Histology and imaging
Following behavior, animals were transcardially perfused with 4% paraformaldehyde (PFA) in
an 0.1M phosphate buffer (PB) solution (pH = 7.4). Brains were collected and fixed overnight,
followed by a transfer to 0.1M PB. To visualize striatal photometry fibers, perfused brains
were sliced coronally at 50𝜇m using a vibratome (VT1000S Leica Biosystems; Buffalo Grove,
IL). Immunohistochemistry was performed to amplify the GFP signal (1:1000 chicken anti-
GFP, Aves Labs, Inc.; GFP-1020 followed by 1:1000 goat anti-chicken AlexaFluor 488, Invitro-
gen byThermo Fisher Scientific; A11039). Slides were mounted on slides with Fluoromount-
G (Southern Biotech). Slices anterior and posterior to the fiber tract were imaged at 10X on
an AxioScan Z.1 fluorescent microscope (CRL Molecular Imaging Center, UC Berkeley) to
confirm targeting. Detailed resources are fully described in Table.

Probabilistic switching 2ABT task
We trained 5 male mice on a 2ABT behavioral task in which the location of the water reward
was periodically switched between the two potential rewarded ports at random intervals.
Trials were initiated by a nose poke in the center port and concluded after the mouse subse-
quently chose one of two reward ports, located on either side of the center port. Nose pokes
were detected by a infrared photodiode. Once the initiating poke was sensed, lights that
encompass the reward ports were triggered to cue the animals to the viability of a poten-
tial water reward. The mouse receives a 2 𝜇l water reward or no reward depending on their
correct or incorrect, respectively, port choice for each trial.

Only one peripheral port was rewarded at a time. The setting for the number and fre-
quency of water rewards was altered during each phase of the task. Teaching animals the task,
we started them in the “operant” phase, where water rewards were offered in the peripheral
ports, and then moved to the “pokeseq” phase, where mice learned to poke the middle port
before going to retrieve a peripheral port water reward. Successful learning during this phase
was measured as the mouse getting more than 700 rewards in less than five hours. Some food
pellets were placed into the arena while the mice were learning the task to motivate them. We
omitted mice from the experiment if they didn’t perform successfully on “pokeseq” after five
days.

Once the mice learned to poke the center port to initiate the peripheral port water rewards,
we no longer put food into the arenas and advance the mice onto the “learning switch” phase.
During the three subphases of the learning switch, we teach the mice that only one port is
rewarded at a frequency of 90%, 80%, and 78% for each subphase respectively. Addition-
ally, we taught the mice that the rewarded port switches after obtaining a random number
of cumulative rewards set within the ranges of 27-43, 17-33, and 12-28 for each subphase
respectively. Water rewards became less predictable and more variable with each subsequent
phase.

Successful learning for the three learning switch phases were set at a score higher than
69.5% on both the left and right port within four, three, and two hours for each subphase
respectively. If the mice seemed unmotivated, we placed some food into the arena. Once they
completed the task with food, we removed the food and had them reach criterion for their
appropriate subphase.

Fibers were first introduced to the mice after they complete the last learning switch sub-
phase and are utilized for neural recording only after the mice successfully reach the learn-
ing switch criteria once again. During the “full task”, used for fiber photometry recording,
mice received a water reward with a 75% chance if they picked the correct port, but received
nothing if they picked the wrong port for each trial. Once mice obtained a random number of
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cumulative rewards, sampled from 7 to 23 uniformly, from one port, the reward was switched
to the other port. This structure minimized the possibility for the mice to predict the timing
of the switch.

When participating in this task, the mice were water restricted but maintained ad libitum
access to food. They were supplemented with additional water if they earned less than 500
𝜇l water from the task. Mice were weighed daily, before and after the task, and were given
additional water if needed, at least 30 minutes after training sessions, to ensure that they
maintained around 85% of their original weight.

Fiber Photometry (FP)
We recorded from all 5 mice with fiber implants in nucleus accumbens core (NAc) using Neu-
rophotometrics FP3001 system at 20 Hz. dLight signals are measured in 470 nm channel,
while isosbestic control signal is measured in 415 nm channel for artifact removal. During
the learning switch phase, we start plugging in fiber implants without recording to get mice
accustomed to moving and behaving with fibers. Starting from the first “full task” session, we
alternate between a left hemisphere recording, right hemisphere recording, and no recording
schedule. The no recording day was implemented to avoid signal bleaching. All FP recordings
are synchronized to behavioral and video data via custom TTL systems and bonsai programs
and saved for further processing. Recorded signals are preprocessed using custom python
program to control for motion artifacts using 415 nm reference channels [70]. Specifically,
we first subtracted the channel-specific trends by approximating a smooth fit using airPLS
algorithm across both channels. Then we perform a robust linear regression from reference
channel to signal channel, and subtract the fitted 415 nm artifact signal from 470 nm chan-
nel recordings and obtain the processed dLight signals. All dLight signals are subsequently
z-scored to account for extraneous variations between sessions.

Task behavior analysis
All final behavioral analysis was conducted with custom implemented python packages.
Behavioral data were first collected using a custom implemented 2ABT control module in
matlab, and then preprocessed into behavioral data frames with each row representing a sep-
arate trial with various columns containing information regarding task meta data, mice choice
data, and task relevant variables. For trials that mice failed to initiate and make a choice, we
included the data but noted the relevant variables as NaNs/null. For most behavioral analysis,
outcome histories as well as covariates with null entries were dropped. All model plotting are
generated via seaborn packages, and test statistics and various measures are generated using
statsmodels, pingouin and sklearn.

We divided the tasks into initiation phase, execution phase, outcome phase and inter
trial interval (ITI) phase. The initiation phase includes both “center in” and “center out”
events when mice poke their nose into and out of the center port to initiate a trial. To exe-
cute a choice, mice leave the center port and then enter one of two peripheral ports to
make a selection. When the outcome of their choice is revealed to the mice, they linger
at the port for water reward or time-out until they leave the port during the “side out
event”.

We defined the following critical events:

• Center in (CI): when mice first poke into the center port to start a new trial.
• Center out (CO): when mice leave the center port to select ports.
• Side in (SI): when mice poke peripheral port.
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• Outcome (O): when outcome is revealed, typically immediately after side in (latency on
the order of system latency).

• Zeroth side out (SO0): first time when mice move the nose poke out of the port trigger
IR beam break.

• First side out (SO1): last time of a consecutive set of beam breaks at the same side
peripheral port. Zeroth side out and first side out can often be the same when the ani-
mal leaves the port only after drinking all the water.

• Last side out (SOf): last side out beam breaks before next center port poke to initiate a
new trial.

We define the following critical timing measures:

• Movement time (MVMT) : CI - SOf (t-1), interval between final side port departure and
new trial initiation.

• Inter-trial interval (ITI): CI - SO1(t-1), interval between the initial side port depar-
ture and new trial initiation. This quantity is often the same as MVMT above, as mice
typically do not reenter side port before a new trial after leaving side port.

• Center duration (center_dur): CO-CI, duration that mice lingered at center port
after their trial initiation.

• Port duration (port_dur): SO1-O, intervals between outcome and side port depar-
ture.

• Side out bout latency (SO_lat): SO1-SO0, which represents the gap between two nose
poke bouts at side ports. They are typically close to 0, as mice generally proceeded to
the next trial after finishing drinking at the side port. Since tnose pokes are measured
with infrared beam breaks, critically this is also used to control for atypical trials with
excessive beam breaks.

Computational modeling
We formalize the decision problem facing animals as follows. At time t, the animal makes a
choice ct ∈ {–1, 1} and then observes a reward rt ∈ {0, 1}. By convention, we take ct = –1 to
denote the left port, and ct = 1 to denote the right port. The reward probability depends on the
chosen action and the hidden state zt ∈ {–1, 1}:

P(rt = 1|ct, zt) =
⎧⎪⎪⎨⎪⎪⎩

𝜌1 if ct = zt
𝜌2 if ct ≠ zt

(1)

where 𝜌1 is the probability of reward for a correct choice, which equals 0.75 during the full
task, and 𝜌2 is the probability of reward for an incorrect choice, which is technically 0 but
which we set to 0.0001 by default to allow for model misspecification. The hidden state
changes on each trial with probability q = P(zt ≠ zt–1).

We assume a common functional form for the choice policy across models:

P(ct = 1) = 𝜎(𝛽Dt + 𝜙ct–1) (2)

where 𝜎(x) = 1/(1 + e–x), Dt =Qt(1) – Qt(–1) is the value difference, 𝛽 ≥ 0 is an inverse tem-
perature parameter, 𝜙 ≥ 0 is a stickiness (choice perseveration) parameter, and Qt(c) is the
value assigned to choice c at time t. The stickiness component captures the tendency to repeat
choices independent of the reward history.
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Themodels make different assumptions about how the values are updated based on
experience:

• RL4p is a standard RL model that updates Q-values according to a delta rule, with
separate learning rates for positive (𝛼+) and negative (𝛼–) reward prediction error
(RPE):

ΔQt(ct) = 𝛼t𝛿t (3)

𝛼t =
⎧⎪⎪⎨⎪⎪⎩

𝛼+ if 𝛿t ≥ 0
𝛼– if 𝛿t < 0

(4)

where 𝛿t = rt –Qt(ct) is the RPE.
• RLCF is an elaboration of the RL4p model that uses “counterfactual” updates [18].
Whereas RL4p only updates the chosen action value, RLCF additionally updates the
unchosen action value in the opposite direction:

ΔQt(–ct) = 𝛼t ̃𝛿t (5)

where –ct is the unchosen action and ̃𝛿t = 1 – rt –Qt(–ct) is the counterfactual RPE.
• BRL (belief state reinforcement learning) is an RL algorithm that computes the values
as a linear function of the belief state bt(z) = P(zt = z|c1∶t–1, r1∶t–1), the posterior proba-
bility over the hidden state given the choice and reward history (the belief state update
will be described further below):

Qt(ct) =w1bt(ct) +w2bt(–ct), (6)

where w1 and w2 are learnable weights. Intuitively, the action value Qt for a given action
ct is composed of two terms: the first term captures the reward weighted by probability
when the animal is correct (zt = ct), and the second term captures the reward weighted
by probability when the animal is incorrect (zt = –ct). If the animal has perfectly learned
the task, the weights should be dictated by the ground truth reward probabilities, w1 =
𝜌1 and w2 = 𝜌2. We formalize a model of learning based on gradient descent, which
allows the animal to approximate task rewards without knowing ground truth:

Δw1 = 𝛼𝛿tbt(ct) (7)
Δw2 = 𝛼𝛿tbt(–ct), (8)

where 𝛼 is a learning rate. We considered two versions of the model. The weights were
initialized to w1 = 𝜌1 and w2 = 𝜌2 (note that choosing other initial conditions had rela-
tively little effect on model fits). Note that the weights can be interpreted as represent-
ing the Q-values of correct actions conditioned on the belief, with their update rule
a confidence-weighted RL update (see e.g., [71]), hence the name BRL. We also con-
sidered a restricted version of the model (BRLfwr) where we fix w2 = 𝜌2, which we
found to perform just as well as the unrestricted version (S8 Fig), so we focused on the
restricted version in the main results. Belief state updating followed Bayes’ rule, with
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P(z| ̃z) denoting the transition probability of the hidden state from ̃z to z:

bt+1(z)∝ ∑
̃z∈{–1,1}

P(z| ̃z)bt( ̃z)P(rt|ct, ̃z) (9)

We assume that the belief state is initialized to b1(z) = 0.5. Also we parameterize q =
P(z ≠ ̃z| ̃z) as the transition probability parameter of the model.

• BIfp (Bayesian inference with fixed parameters) makes use of the same belief state
as the BRL models, but where there is no updating of the weights. Essentially, Dt =
2b(1) –1. This is equivalent to w1 = 𝜌1 and w2 = 𝜌2 for BRL. Interestingly, the best fit-
ted parameter for 𝛼 in the unrestricted BRL version (BRLfw) above was zero for most
subjects, establishing an equivalence, under this 2ABT task, between BIfp and and
BRLfw.

• RFLR (recursively formulated logistic regression [19]) is a form of RL that is mathe-
matically equivalent to a form of logistic regression. RFLR updates the value difference
variable according to:

Dt+1 = e–
1
𝜏Dt + 𝛼rtct, (10)

where 𝜏 is a timescale parameter governing the exponential decay rate of the values.
Notably, we removed the non-negativity constraint on 𝜙 and fixed 𝛽 = 1 in Eq 2 for
RFLR specifically, as it is consistent with the definition in [19] and yields slightly better
performance.

• RLFQ3p (reinforcement learning model with forgetting, totaling 3 parameters) is a
popular RL-based framework to model the forgetting, or Q value decay, of the non-
chosen options. The formulation is similar to standard reinforcement learning model.
However, Q value of the unchosen option decays as Qt(–ct) = 𝜁Qt–1(–ct). For model
simplicity, we take 𝜁 = 𝛼++𝛼–

2 . Interestingly, the forgetting parameter 𝜁 captures stick-
iness effect of past chosen options, as one could show their mathematical equivalence.
Consequently, the RLFQ3p model we used here has low model complexity with only 3
parameters 𝛽, 𝛼+, 𝛼–.

• RL_meta (reinforcement learning model with “meta learning” [20] adopts a similar
general framework as RL model with forgetting (𝜁 is the forgetting parameter), but
adapts the learning rate parameter by unexpected uncertainty 𝜈 (the rate of this adap-
tion is controlled via 𝜓). In other words, 𝛼– varies, subjected to non-negativity, as a
function of how surprising recent outcomes were:

𝛼–
t =
⎧⎪⎪⎨⎪⎪⎩

𝛼–
t–1 if 𝛿t ≥ 0
𝜓(𝜈(t) + 𝛼–

0) + (1 – 𝜓)(𝛼–
t–1) otherwise

(11)

𝜈t = |𝛿t| – 𝜔t–1 (12)
𝜔t =𝜔t–1 + 𝛼𝜈𝜈t (13)

Moreover, expected uncertainty variable 𝜔, initialized from 0, further mediates the
update of Q values as following, on top of learning rate adaptations:

Qt+1(ct) =
⎧⎪⎪⎨⎪⎪⎩

Qt(ct) + 𝛼+𝛿t if 𝛿t ≥ 0
Qt(ct) + 𝛼–

t 𝛿t otherwise
(14)

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013226 July 2, 2025 22/ 31

https://doi.org/10.1371/journal.pcbi.1013226


ID: pcbi.1013226 — 2025/7/4 — page 23 — #23

PLOS COMPUTATIONAL BIOLOGY Nucleus accumbens dopamine release reflects Bayesian inference during learning

• PearceHall (Pearce Hall model) is one of the most established reinforcement learning
model with dynamic learning mechanism [33]. It adopts a similar general framework as
RL model with forgetting (𝜁 is the forgetting parameter), but adapts a dynamic learning
component 𝛼𝜈 with a adjustment rate 𝜓. Intuitively, 𝛼𝜈 functions as a running estimate
of magnitude of RPEs. Formally, we have:

𝛿t = Rt –Qt(ct) (15)
𝛼𝜈 = 𝛼𝜈 + 𝜓(|𝛿t| – 𝛼𝜈) (16)

And Q values are estimated as follows, combining both dynamic learning, as well as
forgetting:

Qt+1(ct) =
⎧⎪⎪⎨⎪⎪⎩

Qt(ct) + 𝛼𝜈𝛼+𝛿t if 𝛿t ≥ 0
Qt(ct) + 𝛼𝜈𝛼–

t 𝛿t otherwise
(17)

Qt+1(–ct) =Q0 + 𝜁(Qt(–ct) –Q0) (18)

Neural data analysis
All analysis was carried out with a custom Python module for aligning, visualization, and data
modeling. After baseline correction, we visually inspected both 415 nm channel recording
and 470 nm channel recording, as well as the AUC-ROC scores between the rescaled baseline
values against signal channel recordings. We picked sessions that meets the following condi-
tions: AUC-ROC higher than 0.9, longer tail in distributions in 470 nm recording compared
to rescaled 415 nm recordings suggesting clear fluorescence increases, and no sharp discon-
tinuity in both channels’ recordings. We use baseline-corrected and z-scored dLight signals
for in-depth analysis, called Z(DA). For neural data alignment, we interpolated Z(DA) around
event times and appended them to the trial level dataframe.

Aligned neural signals are appended to the trial level data frames as additional columns.
Aligned Z(DA) is baselined by subtracting out its value at “outcome” time (we denote this
procedure as de-base for simplicity). For trial average dopamine visualization, we first iden-
tified a list of relevant columns as grouping variables of interest, we then dropped any row
with one or more NaN entries in the relevant columns. These contain trials that either missed
neural data or behavioral data, happening mostly at the beginning or the end of the session,
accounting for ∼ 0.5% of the trials. The trial averaged plots are then plotted using seaborn
with the error bar being bootstrapped confidence intervals. When reporting summary statis-
tics, we used bootstrapped confidence intervals to characterize mean estimates. For difference
comparisons, we used suitable paired or unpaired tests and reported both the testing statistics
as well as effect size, and the confidence intervals associated with it. For model RPE prediction
fitting to RPE, we fitted the following regression: outcome_DA_PT ~ rpe:rpe_pos +
rpe:rpe_neg + port_dur:rpe_pos + port_dur:rpe_neg + ego_action
+ session_num + log__MVMT + log__center_dur. rpe:rpe_pos and
rpe:rpe_neg respectively encoded positive and negative RPE responses in dopamine.
ego_action describes the effect of movement laterality on dLight signal. We included
port_dur, MVMT, center_dur to control any potential movement-related com-
ponents of dLight signals. To minimize the effects of intertrial events on neural signals, we
selected sessions with center_dur <= 0.8 (mice lingering less than 0.8 seconds at center
port), port_dur <= 6 (intervals shorter than 6s between outcome and side port depar-
ture), MVMT <= 3 (intervals shorter than 3s between the final side port departure and next
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trial initiation). We also filtered out trials with SO_lat01 > 1, where the trials had gaps
longer than 6s between two nose poke bouts at side ports. These trials typically consist of tri-
als where mice revisited the port multiple times, or simply mistriggered the infrared sensors
used to measure nose pokes, biasing the task structure. After this cleaning, we were left with
20952 trials (∼ 68% of the dataset) across 34 sessions with valid dopamine recordings. With
the processed data, we fit the above model to dopamine data, and observed consistent results
across model metrics (S3 Fig).

Linear mixed effects modeling
Linear Mixed Effect Modeling was used to capture the effect of past rewards on the current
chosen port, or the opposing port. We modeled using rpy2 with the lme4 package with the
following formula:
DA ~ Reward:Switch|Subject + R_chosen:Switch|Subject +

Switch|Subject
+ R_unchosen:Switch|Subject + 1|Subject + Reward:Stay|Subject
+ R_chosen:Stay|Subject + R_unchosen:Stay|Subject
For model simulated RPEs, we changed the output variable to be RPE predictions instead

and ran regular regressions without subject level effects due to the uniform sample size in
each simulated session.

To determine the optimal lags, we did cross validation and compared multiple models with
distinct feature space to arrive at R+Sw model at lag 4 (S4 Fig), which was enough to capture
similar levels of variance compared to L0:R. We used 4 lags because it allows us to capture a
relatively high amount of past outcome levels, with only the expense of 1% variance explained.
Additionally, we fit the models to individual animals, and compared them to neural data and
found varied but qualitatively consistent results across animals (S5 Fig).

Quantification and statistical analysis
Statistical analysis was performed using Python with standard packages: scipy, statsmodels,
pingouin. We included n = 5 subjects with 14 sessions each. Statistical details of each analy-
sis can be found in each figure legend, result section or correspondent method section. Error
bars are 95% bootstrapped confidence intervals, and Holm-Bonferroni correction was applied
when appropriate.

Model fitting and comparison: We fit all models to 14 sessions of all 5 mice during the
Probswitch (Full task) phase using custom implemented cogmodels python module. The
module finds the best-fitting model parameters for each animal by maximum likelihood esti-
mation. The model initializes the parameters by randomly sampling from distributions as
follows:

• RL4p: 𝛼+ ∈Unif(0, 1), 𝛼– ∼Unif(0, 1), 𝜙 ∼ Γ(2, 0.2), 𝛽 ∼ Exp(1)
• RLCF: Same as RL4p
• RFLR: 𝛼 ∼ Exp(1), 𝜙 ∼N (0, 1), 𝜏 ∼ Exp(1)
• RLFQ3p: 𝛼+ ∈Unif(0, 1), 𝛼– ∼Unif(0, 1), 𝛽 ∼ Exp(1)
• RL_meta: Same as RL4p, plus 𝜁 ∼Unif(0, 1), 𝛼𝜈 ∼Unif(0, 1), 𝜓 ∼Unif(0, 1)
• BIfp: 𝛽 ∼ Exp(1), 𝜙 ∼ Γ(2, 0.2), q∼Unif(0, 0.05)
• BRLfwr: Same parameters as BIfp, plus 𝛼 ∼Unif(0, 1)

where Γ(𝛼,𝜃) denotes the gamma distribution with shape 𝛼 and scale 𝛽;N (𝜇,𝜈2) denotes
the Gaussian distribution with mean 𝜇 and variance 𝜈2.
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After obtaining maximum likelihood estimates, we constructed an empirical range of
parameters and performed model recovery tests. We simulated behavioral data from ran-
domly sampled model parameters for each model from the empirical ranges, and refit to the
simulated data to obtain the model-fitted values for 1000 random iterations. All three model
classes are able to recover model parameters with high correlation (S2 Fig). We performed
model comparison by computing the Akaike Information Criterion (AIC) for each model
Mi:

AIC = 2k – 2∑
t
( lnP(ct| ̂𝜃,Mi)), (19)

where P(ct| ̂𝜃,Mi) is the likelihood of the data ct conditional on the maximum likelihood esti-
mate ( ̂𝜃). We report AIC scores relative to RL4p, the baseline RL model. More negative scores
indicate that a model explains the data better compared to RL4p.

Model identification
Themodel identification tests go through three stages: model behavior simulation, model
cross-fitting, and confusion matrix construction. We denote our total model set asM.

1. Model behavior simulation: Similar to the previous section, sampling randomly from
the empirical range of parameters constructed from the mice data fitting, we simu-
lated behavioral data Dk(mi) for 1000 times for each modelmi ∈M, where k indexes
simulation runs.

2. Model cross-fitting: For each simulated data set Dk(mi), we fit eachmj ∈M, and get a
best fitting modelm∗ki|Dk(mi) based on lowest AIC measure.

3. Confusion matrix: For all 1000 sessions, we can compute an empirical probability
that the modelmj best fits to D(mi), or P(mj|mi). Then we construct a confusion
matrix from P(mj|mi), ∀mi,mj ∈M, where each element at row i, column j represent
P(mj|mi).

Key resources table

Table 2. Summary of key resources.
REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
1:1000 chicken anti-GFP Aves Labs, Inc. GFP-1020
1:1000 goat anti-chicken AlexaFluor 488 Invitrogen byThermo Fisher Scientific A11039
Bacterial and Virus Strains
AAV5-hSyn-dLight1.2 Patriarchi et al., 2018 [30]; Courtesy of

Prof. Lin Tian (UC Davis)
Addgene Cat: 111068-AAV5; RRID: Addgene_111068

AAV9-CAG-dLight1.3b Patriarchi et al., 2018 [30], Addgene Addgene Cat: 125560-AAV9; RRID: Addgene_125560
Chemicals, Peptides, and Recombinant Proteins
4% paraformaldehyde (PFA) This paper N/A
0.1M phosphate buffer (PB) This paper PB
Fluoromount-G Southern Biotech Cat: 0100-01
Experimental Models: Organisms/Strains
C57 Bl/6 male bred in-house N/A
Software and Algorithms
Standard python open source packages (numpy, statsmodels,
pingouin, seaborn, plotly, scipy, etc.)

python pip OR anaconda

photometry baseline filtering procedure Martianova et al., 2019 [70] DOI:10.3791/60278-v

https://doi.org/10.1371/journal.pcbi.1013226.t002
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Supporting information
S1 Fig. Mice switch and commit to correct ports faster across multiple sessions. Top
row y-axis shows the number of trials mice take to switch to the correct port in a new block
(trial2sw). Bottom row y-axis shows a metric of the first trial from which the animal chose the
correct port and then persisted with the choice selection for 2 subsequent trials consequently
(trial2asymp). First column x-axis shows the relationship between the measures and the num-
ber of blocks within a training session, demonstrating within session learning. A downward
trend for both measures suggests learning and faster switches across different reward blocks
within session. Second column x-axis shows that the switch measures decreased as the num-
ber of training sessions increased, describing learning across multiple sessions. This is con-
sistent with results in Fig 1F, where accuracy improved over multiple sessions. Third column
x-axis shows the same thing as the second column, but separated by animals. Error bars show
95% bootstrapped confidence intervals.
(PNG)

S2 Fig. Parameter recovery of cognitive models.We took the maxima and minima for each
of the best fitted parameter values for all subjects, and constructed a uniform distribution for
each. We then sampled from these empirical distributions for simulating behaviors and fit-
ted best fitted parameters for each set of simulated behaviors for each model. The results are
generated after 500 runs of random parameter samples for each model, shown as a scatter plot
with truth parameter against fitted parameters. Each row is a different model noted at the top
left corner. Outliers, defined as 6 standard deviations from mean true parameter values, were
thrown out for visualization purposes but percentages were noted.
(PNG)

S3 Fig. Comparison of fitness of model predicted RPE to dopamine data. Similar to Fig 4F,
we included results of model fitness using different metrics: relative AIC, relative BIC, relative
cross validated R2 (R2CV), and relative cross validated log likelihood (llk_CV). All metrics
converged on favoring Bayesian model predictions of dopamine at outcome phase. Error bars
show 95% bootstrapped confidence intervals.
(PNG)

S4 Fig. Selection of LMERmodels and lags.We compared the cross validated R2 score
using different feature sets, while keeping the use of dopamine as output variable. L0:R:
Standard formulation using N trial back choice and reward interactions. 3R: just R_chosen,
R_unchosen, Reward features. 3R+Sw: in addition to 3R features, we included interactions of
whether a trial is an animal switch trial, or animal stay trials. L0:DA: we used the interactions
between past trial dopamine values and choice selections. Together we found that 3R+Sw
was enough to capture similar levels of variance compared to L0:R. We used 4 lags because it
allows us to capture a relatively high amount of past outcome levels, with only the expense of
1% variance explained. Error bars show 95% bootstrapped confidence intervals.
(PNG)

S5 Fig. Dopamine data are qualitatively consistent across animals. (A) Average differences
in dopamine responses to rewards or unrewarded outcomes across switch stay trials are fairly
consistent across animals. (B-C) Similar to LMER regression of influence of past rewards on
dopamine responses, we did OLS for each animal separately. All but one animal showed a
strong qualitative resemblance to Bayesian model predictions for Switch trials. As discussed
in the main text, R_unchosen effect was highly variable across animals, and had a near-zero
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net effect, corresponding more to the predictions of BIfp simulation. Error bars show 95%
bootstrapped confidence intervals.
(PNG)

S6 Fig. Behavior analysis with logistic regressions and model simulations. (A) Following
the formulation from [19], we fitted logistic regression models to individual mice behavior
data and identified consistent patterns of decaying choice outcome weights for more distant
outcome histories. Error bars show 95% bootstrapped confidence intervals. Specifically, we
used this formula (C̃t–i = 2Ct–i –1): Ct =∑i 𝛽CR

i C̃t–iRt–i + 𝛽R
t–iRt–i + 𝛽C̃

t–iC̃t–i. (B) To identify
the blocking effect of the reward at trial t-1 found in [32], we fitted the following regression
model, where 𝛽CR+

i represent the R1-blocked coefficient:
Ct =∑p

i=2 𝛽CR+
i C̃t–iRt–i1[Rt–1 = 0] + 𝛽CR–

i C̃t–iRt–i1[Rt–1 = 1] +∑p
i=1 𝛽R

t–iRt–i + 𝛽C
t–iC̃t–i

(PNG)

S7 Fig. Model fitness results for behavioral data across sessions: To test if there was meta-
learning across sessions, we fitted cognitive models to mouse behavior across multiple ses-
sions. We did not find evidence of any significant and consistent increase in model fitness
across multiple sessions. We speculate that mice were able to learn the inference structure
of the task during a brief pre-training phase, when the reward probability of the high value
option changed from 90%, 80%, to 78% (Fig 1B). Model fitness of Bayesian models did show
some decline in some later sessions but then recovered, suggesting that there was no sustained
change in behavioral strategy after extended training. Error bars show 95% bootstrapped
confidence intervals.
(PNG)

S8 Fig. BRL model with fitted weights did not have significant model fitness differences
compared to BRLfwr: To further justify that the success of Bayesian models (e.g., BRLfwr)
is not solely due to setting the initial reward probability of high value state as ground truth,
we fitted BRLwrp, where both rewarded weights as well as reward probabilities are fitted to
data. No statistical differences were observed between BRLfwr and BRLwrp in their ability
to explain mice behavior and dopamine data. Error bars show 95% bootstrapped confidence
intervals.
(PNG)
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