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Abstract
A classic result of psychophysics is that human perceptual estimates are more variable for larger magnitudes. This “Weber behavior,” 
however, has typically not been the focus of the prominent Bayesian paradigm. Here, we examine the variability of a Bayesian 
observer in comparison with human subjects. In two preregistered experiments, we manipulate the prior distribution and the reward 
function in a numerosity-estimation task. When large numerosities are more frequent or more rewarding, the Bayesian observer 
exhibits an “anti-Weber behavior,” in which larger magnitudes yield less variable responses. Human subjects exhibit a similar pattern, 
thus breaking a long-standing result of psychophysics. Nevertheless, subjects’ responses are best reproduced by a logarithmic 
encoding of magnitudes, a proposal of Fechner often regarded as accounting for Weber behavior. We thus obtain an anti-Weber 
behavior together with a Fechner encoding. Our results suggest that the increasing variability may be primarily due to the skewness 
of natural priors.

Significance Statement

When estimating magnitudes, such as a number of items, humans have long been reported to exhibit a larger response variability for 
larger magnitudes (Weber behavior). This has been understood as reflecting a decreasing precision in their perception of the magni
tudes. The prominent Bayesian models of perception, however, have been little studied with respect to their implications for variabil
ity. We show that in some contexts Bayesian models in fact predict a reduced variability for larger magnitudes (anti-Weber behavior). 
In two experiments, we find that indeed in such contexts human subjects estimate larger magnitudes with less variability, in contra
diction with the traditional observation. Our results suggest that the typical natural distribution of magnitudes may be key in the 
emergence of Weber behaviors.
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Introduction
To usefully interact with our environment, we need internal repre
sentations of the external variables that are relevant to us. 
Experimental investigations in psychophysics—the study of the re
lation between physical, external stimuli and subjective, internal 
sensations—have identified since the 19th century a handful of re
gularities in the responses of human subjects in various perceptual 
tasks. In estimation tasks, a common result is that the standard de
viation (SD) of magnitude estimates increases in proportion with 
the estimated magnitude. This finding (which has been called “sca
lar variability”) has been understood as extending to estimation 
tasks the prominent Weber’s law, which states that in discrimin
ation tasks the difference in magnitude necessary to reliably distin
guish two stimuli is proportional to the magnitude of the stimuli 
(1–4). These observations seem to point to a general principle that 
judgments about larger magnitudes come with greater variability, 
and hence, a loss of sensitivity to magnitude differences.

The past decades have seen the development of a different line 
of theory regarding perceptual judgments, in which perception is 

conceived as resulting from a process of Bayesian inference about 
external stimuli, carried on the basis of imprecise (noisy) internal 
signals (e.g. the activity of sensory neurons), in combination with 
prior knowledge about the distribution of stimuli that one can ex
pect (5–10). The Bayesian paradigm has an appealing theoretical 
grounding, and it readily accounts for the pervasive variability 
in responses observed in estimation tasks and for the difficulty 
of distinguishing two stimuli that are close in magnitude. 
Furthermore, with the added assumption that magnitudes are 
represented on a logarithmic internal scale, as proposed by 
Fechner (11), or that the imprecision in internal signals increases 
as a function of the represented stimulus, Bayesian models typic
ally predict that greater magnitudes should result in more vari
able estimates (7, 9, 12). In other words, Bayesian inference 
seems compatible with the psychophysical results mentioned 
above, and the increasing behavioral variability is seen as directly 
resulting from the decreasing precision of the internal signals.

In this paper, we argue that Bayesian decision theory implies 
important modulations of the behavioral variability even with 
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constant precision of the internal signals, and, in some contexts, 
the traditional psychophysical results should be contradicted. In 
two preregistered experiments, we show that indeed these 
regularities can be inverted. The noise in internal signals is an 
important ingredient of Bayesian models of perceptual judg
ments, but two other ingredients shape the responses of the 
Bayesian observer and their statistics: first, the prior, i.e. the 
relative frequencies of different stimuli; and second, the object
ive function, i.e. the relative importance of estimating different 
stimuli. The role of the prior in Bayesian inference has already 
been extensively studied, in particular to the extent that it im
pacts the average judgments of human subjects, in different con
texts (9). For instance, it accounts for the “central tendency of 
judgment” (13) (a bias toward the center of the range of stimuli 
that are presented in a given experimental session). But how 
the prior and the objective function impact the variability of esti
mates has received limited attention in the literature. Here, we 
call Weber behavior a behavior in which the variability of esti
mates increases with the magnitude (this is a less stringent re
quirement than that of scalar variability, which requires a 
linear relationship between the SD of estimates and the magni
tude). We show, first, that a Weber behavior may find its origin in 
the skewness of the prior only, or in that of the objective func
tion; a Fechnerian encoding, or an increasing imprecision of in
ternal signals, is not a necessary assumption. Second, we show 
that a simple manipulation of the prior or objective function, 
in a Bayesian observer model, yields a behavioral variability 
that is opposite to the generally accepted result that greater mag
nitudes entail greater variability. We call this pattern 
anti-Weber behavior.

We test these empirical predictions of Bayesian decision theory 
using numerosity-estimation tasks, where subjects are asked 
to judge the number of items in a briefly presented collection 
(14–20). Studies of numerosity estimation have yielded results re
markably similar to those obtained in more traditional psycho
physics, including Weber’s law and scalar variability (3, 4, 14, 15, 
21, 22). Together with neurobiological studies, which have re
vealed the tuning-curve properties of number-selective neurons 
(23–26), these results point to the existence of a “number sense” 
(27), comparable with the other senses traditionally studied in 
psychophysics experiments, and which provides humans (and 
some animals) with the ability to represent approximate numeric
al magnitudes. Studying numerosity has the advantage of allow
ing us to directly ask human subjects for their estimate of a 
magnitude (i.e. a number) without any ambiguity about the re
sponse scale, while it is not obvious how a subject should respond 
when asked to estimate, for instance, the “loudness” of a stimulus. 
We conducted two numerosity-estimation tasks: one in which we 
manipulated the prior and one in which we manipulated the ob
jective, so as to study the impact of each on the variability of 
estimates.

We first present these two tasks and the specifics of the priors 
and of the objective functions that we utilize in different experi
mental conditions. We then present a model of a Bayesian obser
ver, and we examine its behavior in the context of the two tasks; 
specifically, we show in which circumstances a Weber or an 
anti-Weber behavior is obtained. Turning to the subjects, we 
look at the statistics of their responses in the two tasks, and we ex
hibit how their behavior is qualitatively similar to that of the 
Bayesian observer. Finally, we fit nine variants of the Bayesian 
model to subjects’ data, and we compare their ability to success
fully capture the behavioral patterns of the subjects. In particular, 
we examine in this comparison the performance of models 

featuring a logarithmic, Fechnerian encoding and of models fea
turing a power-law encoding.

Results
Numerosity-estimation tasks
We now present the two numerosity-estimation tasks used in this 
study (more details can be found in Methods). The trial structure 
is the same in both tasks: the subject is presented for 500 ms with 
a cloud of dots containing between 41 and 80 dots, and is then 
asked to provide, using a slider, their best estimate, x̂, of the num
ber of dots, x (Fig. 1A). In each trial the subject receives a number 
of points that is a decreasing linear function of their squared error, 
(x̂ − x)2. At the end of the experiment, their total score is converted 
to a financial reward. Each experiment comprises two conditions, 
i.e. two blocks of 120 consecutive trials that differ in one aspect of 
the task: in the “priors experiment,” we manipulate the relative 
frequencies of the numbers of dots shown, while in the “stakes ex
periment,” we manipulate the point rewards associated with 
these different numbers. We now present in more detail these 
experiments.

The two conditions of the priors experiment differ in terms of 
the prior, p(x), i.e. the distribution from which the number of 
dots is sampled on each trial. In the “smaller-is-more-probable” 
condition, the numbers of dots between 41 and 60 are four times 
more probable than the numbers of dots between 61 and 80 (the 
total probability of the smaller numbers is 80%, while the total 
probability of the larger numbers is 20%; see Fig. 1B, left panel). 
These frequencies are inverted in the “larger-is-more-probable” 
condition: in this condition, the larger numbers (x ≥ 61) are four 
times more probable than the smaller numbers (x ≤ 60; see 
Fig. 1B, right panel).

In contrast, in the stakes experiment, the prior is uniform in the 
two conditions: all the numbers (between 41 and 80) have the 
same probability. The two conditions of this experiment differ 
by the “stakes,” which are the maximum amount of points that 
a subject can get in a trial. Specifically, the stakes in each trial, 
q(x), are a function of the correct number of dots; and the amount 
of points collected in the trial is proportional to the stakes (more 
precisely, it is q(x)(1 − ((x̂ − x)/12)2)). In the “smaller-has-higher- 
stakes” condition, the stakes of the smaller numbers (x ≤ 60) are 
high, while the stakes of the larger numbers (x ≥ 61) are low 
(Fig. 1C, left panel). In the “larger-has-higher-stakes” condition, 
conversely, the stakes of the larger numbers are high, whereas 
for the smaller numbers they are low (Fig. 1C, right panel). 
(In the priors experiment, the stakes are identical for all the num
bers, in all trials.) The features of each of these conditions are ex
plained to the subjects, in the instruction sections of the tasks. 
Before looking at the responses of subjects, we describe the behav
ior of a Bayesian observer in these two tasks.

Patterns of variability of the Bayesian observer
We consider a Bayesian model subject for whom the presentation 
of a cloud containing x dots results in a noisy perceptual signal, r, 
on the basis of which the subject infers, using Bayes’ rule, the 
number of dots presented. We assume that the noisy signal is nor
mally distributed around an increasing transformation of the cor
rect number of dots, as

r|x ∼ N(μ(x), ν2), (1) 

where μ′(x) > 0. The SD, ν, parameterizes the amount of impreci
sion in the noisy representation of the number. In short, this 
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model posits a mapping μ from the stimulus space to an internal, 
psychological scale, on which a stimulus x is represented by a 
noisy signal r, with a degree of imprecision ν that is independent 
from the stimulus.

We further assume that given an internal signal, r, the model 
subject chooses as a response the optimal estimate in the current 
task, x∗(r). In our tasks, the reward is a decreasing linear function 
of the squared error (multiplied by the stakes, in the stakes experi
ment); thus, the optimal estimate x∗ is the one that minimizes the 
quantity ∫q(x)(x∗ − x)2p(x|r)dx, where q(x) is the stakes function 
(constant in the priors experiment), and p(x|r) is the Bayesian pos
terior over the numbers given the internal signal, r (and given the 
prior, p(x)). The optimal estimate (obtained by setting the deriva
tive to zero) is a weighted average of the numbers, weighted by 
the prior and the likelihood (as a result of Bayes’ rule), but also 
by the stakes, as

x∗(r) =
∫xq(x)p(x)p(r|x)dx
∫q(x)p(x)p(r|x)dx

. (2) 

The optimal estimate x∗(r) is a deterministic function of the noisy 
signal r; thus, it is itself noisy (i.e. random), and repeated presen
tations of the same number x will result in different estimates. 
(Below, we also introduce motor noise in the responses of the 
model subject, but here, first, we assume that the selected 

response is the optimal estimate, and we examine the resulting 
behavior in this case.) The variability of the optimal estimate orig
inates in that of the noisy internal signal, but it is also strongly 
shaped by the priors and the stakes function. For instance, esti
mates are less variable if the product p(x)q(x) is more “concen
trated” (i.e. if it takes large values around some number). In a 
degenerate case in which this product is zero everywhere except 
at a single number, then the optimal estimate is this number, 
and there is no variability.

Our experimental setup provides less extreme instances of the 
functions p(x) and q(x), and thus, we use these to illustrate how 
the distribution of the responses of the Bayesian observer is modu
lated by the priors and stakes function. Specifically, we consider the 
model subject described above, with the identity transformation 
μ(x) = x, and a noise parameter fixed to ν = 10 (a value close to 
that obtained by fitting a similar model, presented below, to sub
jects’ data). In the smaller-is-more-probable condition of the priors 
experiment, we find that when the presented numerosity is x = 41, 
the distribution of the responses of this Bayesian observer is rela
tively narrow, with an SD just above 3. For larger numerosities, 
the distribution widens and its SD increases (a pattern we call 
Weber behavior), up until x = 70, where the SD reaches a maximum 
(6.5), before slightly decreasing (Fig. 2, top row, blue lines). The be
havior in the smaller-has-higher-stakes condition of the stakes 

A

B

C

Fig. 1. Manipulation of the priors and of the objective function in two numerosity-estimation tasks. A) Cloud of dots (top panel): example of visual 
stimulus presented to the subject for 500 ms in each trial of the two numerosity-estimation tasks. Immediately after the presentation of the cloud of dots, 
the subject is asked to provide, using a slider (bottom panel), his or her best estimate of the number of dots in the cloud. Subjects respond at their own 
pace. B) Prior distributions from which the numbers of dots are sampled, in the two conditions of the priors experiment. In the smaller-is-more-probable 
condition (left panel), the probability of each number between 41 and 60 is 4%, while the probability of each number between 61 and 80 is 1%. These 
probabilities are inverted in the larger-is-more-probable condition (right panel). C) Stakes functions in the two conditions of the stake experiment. In the 
smaller-has-higher-stakes condition (left panel), the stakes for each number between 41 and 60 is 1,000, while the stakes for each number between 61 and 
80 is 10. These amounts are inverted in the larger-has-higher-stakes condition (right panel).
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experiment is qualitatively similar, i.e. a Weber behavior (except 
that the variability does not decrease close to the upper bound, 
x = 80; Fig. 2, bottom row, blue lines). As the priors and the stakes 
function, p(x) and q(x), are interchangeable in the expression of 
the optimal estimate (Eq. 2), the differences in the distributions 
of the optimal estimate between the two experiments result from 
the specifics of these two functions, in each experiment. In particu
lar, in the priors experiment, the ratio of the probabilities of the 
large and small numbers is four, while in the stakes experiment 
the equivalent ratio, for the stakes, is 100 (Fig. 1B and C).

We emphasize that here the Weber behavior we obtain does 
not result from a Fechnerian, logarithmic encoding of the number 
(as the encoding is linear, μ(x) = x), neither does it result from an 
imprecision of the internal signal that increases with the number 
(as the SD, ν, is constant). This stands in contrast with the two ac
counts of Weber behavior most commonly found in the literature 
(9, 12, 14, 23, 28, 29).

Finally, the responses of the Bayesian observer in the 
larger-is-more-probable condition (priors experiment) and in the 
larger-has-higher-stakes condition (stakes experiment) mirror 

the behavior just described. The prior, or the stakes function, “at
tracts” estimates toward the numbers that are more probable, or 
that have higher stakes; i.e. the larger numbers. This widens the 
distributions of estimates for small numbers, in comparison 
with those for large numbers, which appear narrower (Fig. 2, left 
panels, orange lines). Thus the variability mainly decreases as a 
function of the number, i.e. the Bayesian observer exhibits an 
anti-Weber behavior (Fig. 2, right panels, orange lines). In sum, 
our model of a Bayesian observer displays a Weber behavior 
when small numbers have higher probabilities or higher stakes 
than large numbers, but it reveals an anti-Weber behavior when 
it is the large numbers that have higher probabilities or higher 
stakes. We now ask whether human subjects exhibit similar be
havioral patterns.

Weber and anti-Weber behavior of human 
subjects
Before examining the variability of subjects’ responses, we first look 
at the average responses. We find that the estimates provided by the 

Fig. 2. Weber and anti-Weber behavior of the Bayesian observer. Statistics of the responses of the Bayesian observer in the priors experiment (top row) 
and in the stakes experiment (bottom row). Left panels: Distribution of the responses, in the smaller-is-more-probable and the smaller-has-higher-stakes 
conditions (blue lines), and in the larger-is-more-probable and the larger-has-higher-stakes conditions (orange lines), for different presented 
numerosities (indicated above each distribution). Right panels: SD of the Bayesian estimate, x∗, as a function of the number, x, in each condition.
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subjects increase as a function of the presented number, in all con
ditions of the two experiments. However, in all conditions, subjects 
are biased: they tend to overestimate small numbers and to under
estimate large numbers. Such central tendency of judgments has 
been reported since the beginning of the 20th century (13). But 
here, we find in addition that the specifics of the subjects’ central 
tendency depend on the condition. In the larger-is-more-probable 
and larger-has-higher-stakes conditions, the average estimate 
for almost all numbers is significantly greater than in the 
smaller-is-more-probable and smaller-has-higher-stakes condi
tions. In other words, the response for a number depends not only 
on the number (as evidenced by the sensitivity of estimates to the 
number) but also on whether the larger numbers have high prob
abilities (or high stakes), in which case the responses are larger 
than when the larger numbers have low probabilities (or low stakes). 
Consequently, although in all conditions there is a number for which 
the bias vanishes (i.e. for which x̂ is on average equal to x), this num
ber is different depending on the condition; specifically, it is larger 
when large numbers are more probable, and when they have higher 
stakes (Fig. 3A and B).

We turn to the SD of subjects’ responses, in each condition of the 
two experiments. In the smaller-is-more-probable condition of the 
priors experiment, the SD is an increasing function of the presented 
number, for numbers up to around 70, and it slightly decreases for 
larger numbers (Fig. 3C, blue line). We conclude that over most of 
the range of numbers presented, the subjects’ variability is consistent 
with a Weber behavior, as was found in other studies (4, 15, 28, 30, 
31). Turning to the larger-is-more-probable condition, we find that 
the variability decreases with the presented numbers (except near 

the lower boundary, where it increases), and thus that it presents a 
pattern opposite to that obtained in the smaller-is-more-probable 
condition (Fig. 3C, orange line). In other words, the behavior exhibited 
by subjects in this condition is of the anti-Weber kind. As a result, the 
variability of responses to the large numbers is significantly lower, 
when these are more frequent, than when the smaller numbers in
stead are more frequent. In the stakes experiment, a similar pattern 
emerges, and in particular, we find again an anti-Weber behavior of 
subjects, in the larger-has-higher-stakes condition (Fig. 3D, orange 
line). Overall, the behavioral patterns of the subjects are qualitatively 
consistent with those of the Bayesian observer (compare Fig. 3C and 
D with Fig. 2, right panels).

They are also consistent with the predictions that we had in
cluded in our preregistrations of the experiments (see Methods). 
For the priors experiment, our prediction was that the variance 
of estimates would be lower when the probability of the presented 
number is higher. We thus conducted two Levene’s tests of equal
ity of the variances between the smaller-is-more-probable and the 
larger-is-more-probable conditions, as detailed in the preregistra
tion: one for the small numbers (x ≤ 60) and one for the large num
bers (x ≥ 61). The P-values for the two tests were 0.002 and 4e−24 
(F(1, 8, 914) = 9.51 and F(1, 8, 842) = 103.26), and in both cases, 
our prediction regarding the sign of the difference was correct. 
For the stakes experiment, our prediction was that the variance 
of estimates would be lower when the stakes are higher. We thus 
similarly conducted two Levene’s tests, whose P-values were 1.2e 
−5 and 7.5e−10 (F(1, 13, 904) = 19.20 and F(1, 13, 932) = 37.93), 
and the signs of the differences were also as predicted. In short, 
all our preregistered predictions were verified.

A C E

B D F

Fig. 3. Subjects adapt the statistics of their responses to the priors and to the stakes. Subjects’ responses (A, B), SDs of responses (C, D), and square root of 
MSE (E, F), as a function of the presented number, in the priors experiment (A, C, E) and in the stakes experiment (B, D, F), with data grouped in six bins of 
the number (dark lines), or not (light-colored lines). Shaded areas show the 5–95% credible intervals, and stars indicate Bayesian P-values <0.005 across 
conditions (see Methods).
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To summarize, we find bias and variability in subjects’ re
sponses, and we find that they both depend on the shapes of the 
prior and of the objective function. In the Bayesian model, the sub
ject takes into account these two functions in order to provide a 
response that minimizes a loss function. Hence, we investigate 
whether subjects seem to modulate the statistics of their re
sponses so as to minimize their loss. Looking at the square root 
of their mean squared error (MSE), which essentially combines 
the errors brought about by the bias and by the variability, we 
find that it is not a constant function of the presented number. 
The MSE, instead, adopts a U shape, and crucially its 
minimum is reached at a different number in the different condi
tions: specifically, in the larger-is-more-probable and the 
larger-has-higher-stakes conditions, it is minimized at a larger 
number than in the other two conditions (Fig. 3E and F). In other 
words, the subjects minimize their errors for the presented num
bers that “matter” more, either because they are more frequent or 
because they have higher stakes in the estimation task. While a 
traditional Weber behavior implies that larger magnitudes should 
lead to larger errors in estimation, our results indicate that human 
subjects can make, conversely, smaller errors for large magni
tudes, if it is warranted by the prior or by the objective function.

Best-fitting Bayesian model
Our main goal in this study is to investigate the implications of 
Bayesian inference with respect to behavioral variability, and 
examine in comparison the variability of human subjects. In the 
previous sections, we have shown that subjects, like our model 
of a Bayesian observer, indeed exhibit Weber and anti-Weber be
havior, depending on the experimental condition. Here, we seek to 
describe in some more detail the ability of the Bayesian approach 
to capture the patterns that we have identified in the behavioral 
data. We thus fit several Bayesian models to the responses of 
the subjects (by maximizing their likelihoods). These models are 
variants of the model we have presented. First, they all include 
some noise in the selection of the response (“motor noise”): given 
the optimal estimate x∗ (derived through Eq. 2), the response x̂ is 
sampled from a Gaussian distribution centered on x∗, with SD σ, 
and “clipped” (or “rectified”) to remain in the legal response inter
val (41 to 80), i.e. responses that would be outside of this range are 
replaced instead by the corresponding extreme value, 41 or 80 (in 
our investigations, we have found that this better accounts for the 
data than a “truncated,” renormalized Gaussian distribution).

Second, although we have seen that a linear encoding (μ(x) = x) 
yields a Weber behavior in the smaller-is-more-probable and 
smaller-has-higher-stakes conditions, the prominence of the 
Fechnerian view prompts us to examine a logarithmic encoding 
(μ(x) = logx). Thus, we implement both encodings, in variants of 
the model that we label accordingly as “linear” and “Fechner” 
models. Another nonlinear encoding, prominent in magnitude es
timation studies, is the power law (32), in which the magnitude is 
raised to an exponent a, as μ(x) = xa. Equivalently, we can choose 
any affine transformation of this encoding (as the resulting distri
bution of Bayesian estimates would be the same). We thus imple
ment “power-law” variants of the model, with the encoding 
function μ(x) = (xa − 1)/a, for a ≠ 0, which we extend, for a = 0, to 
its limit lima→0(xa − 1)/a = logx. With this specification, the power- 
law variants of the models nest the Fechner variants (with a = 0) 
and the linear variants (with a = 1), and values of a lower than 1 
indicate a compression of the magnitude space in the encoding.

Finally, we surmise that the subjects may not perfectly learn 
the priors and the stakes function in each condition, although 

these are fully described in the instructions. The conditions of 
the experiments are characterized by the ratio between the prior 
probabilities, or between the stakes, of the large vs. the small 
numbers (Fig. 1B and C). Thus, we implement variants of the mod
el, which we label “subjective,” in which we allow the model sub
ject to derive its estimate on the basis of a subjective ratio that 
may deviate from the correct value. In “subjective-symmetric” 
models, the subjective ratio is the same in the two conditions of 
each experiment (as is actually the case, in the experiments), 
while in “subjective-asymmetric” models the subjective ratio is al
lowed to be different: for instance, in the stakes experiment, the 
model subject may believe that large numbers in the 
larger-has-higher-stakes condition have proportionally greater 
stakes than the small numbers in the smaller-has-higher-stakes 
condition. In contrast, the correct ratio is used in variants of the 
model that we call “correct.” We thus obtain nine models, speci
fied by the choice of the encoding, “linear,” “Fechner,” or “power 
law,” and by whether the priors and the stakes used in derivations 
are “correct,” “subjective-symmetric”, or “subjective-asymmet
ric”. The linear and Fechner correct models have two parameters, 
ν and σ, that determine the imprecision in the internal signal and 
in the choice of response, respectively; and the power-law correct 
model has a third parameter, the exponent a. The subjective- 
symmetric counterparts of these models have an additional par
ameter, the subjective ratio applied in both conditions, which 
we denote by ρ; and the subjective-asymmetric models have two 
additional parameters, ρs and ρl, the two ratios used in the two 
conditions. (Specifically, ρs for the smaller-has-higher-stakes 
and the smaller-is-more-probable conditions, and ρl for the other 
two; the correct values would be ρs = ρl = 4 in the priors experi
ment, and ρs = ρl = 100 in the stakes experiment.) For each model, 
we compute its Bayesian Information Criterion (BIC), a measure of 
fit that penalizes additional parameters (33). We find that the sub
jective models improve the BICs by a sizable amount, thus war
ranting the additional parameters (Table 1).

We use random-effects Bayesian model selection to compare 
models (34, 35). In this procedure, the behavior of each subject 
is treated as a random draw from a distribution over the models, 
which is estimated using the data. For each model we report the 
expected probability, P, which is an estimate of the fraction of 
the population that is best captured by the model. Together, the 
Fechner models represent in both experiments a relative majority, 
with a total expected probability of 60 and 47% in the priors and in 
the stakes experiments, respectively, compared with 30 and 39%, 
respectively, for the linear models, and 10 and 14%, respectively, 
for the power-law models (Table 1). We also report the “protected 
exceedance probability” (PXP), a conservative estimate of the 
probability that the model is the most prevalent in the population. 
The PXPs substantiate the relative prevalence of the Fechner mod
els, with values close to 100% in the priors experiment and 82% in 
the stakes experiment. Moreover, the median exponent param
eter a of the power-law model (in its subjective-asymmetric vari
ant) is 0.18 in the priors experiment and 0.24 in the stakes 
experiment, and the best-fitting exponent is <1 for 76 and 72% 
of subjects, respectively. Overall, we conclude that a compressive 
encoding of the numerosities is dominant in the population, with 
a significant fraction of subjects well captured by Fechner models, 
thus supporting the hypothesis that a logarithmic encoding 
underlies the representation of numerical magnitudes (23, 29).

Although across the two conditions of each experiment the two 
priors (or the two stakes functions) are symmetric to each other, 
model fitting suggests that the subjects do not learn them sym
metrically, as evidenced by the lower BICs and the greater 
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expected probabilities and PXPs of the subjective-asymmetric 
models (Table 1). Subjects in the two experiments seem more 
sensitive to the conditions in which larger numbers are more im
portant (i.e. ρl > ρs for most subjects, in both experiments). With 
the “Fechner, subjective-asymmetric” model (whose BIC is the 
lowest in both experiments), the ratio of the two parameters, 
ρl/ρs, has a median (across subjects) of 1.34 in the priors experi
ment and of 2.47 in the stakes experiment (instead of 1 in the cor
rect, symmetric case), with a large interindividual variability 
(interquartile range [IQR]: 0.53–5.50 and 0.61–21.1 in the priors 
and stakes experiments, respectively). This suggests that for 
most subjects, large numbers in the larger-has-higher-stakes 
and larger-is-more-probable conditions have greater stakes and 
higher probabilities, respectively, than the small numbers in 
the smaller-has-higher-stakes and smaller-is-more-probable 
conditions.

Furthermore, the best-fitting ratios ρs and ρl suggest a strong at
tenuation in how most subjects incorporated the difference be
tween the probabilities or the stakes of the two halves of the 
magnitude space. Indeed the median ratio ρs is close to 1 in the 
stakes experiment (median: 1.01, IQR: 0.24–2.44), and also to a 
lesser extent in the priors experiment (median: 1.16, IQR: 0.49– 
10.8), implying that in the smaller-has-higher-stakes condition 
of the stakes experiment, almost half of the subjects consider 
that small numbers, in fact, have lower stakes than the large num
bers—although not as low as in the larger-has-higher-stakes con
dition. This would account for the fact that the subjects’ 
variability in the smaller-has-higher-stakes condition reaches its 
maximum where numbers have high stakes, in the lower half of 
the interval (and their MSE reaches a minimum in the larger 
half; Fig. 3D and F). We surmise that this may stem from the eco
logical relevance of large quantities, typically associated with 
higher stakes in real-world contexts. This question, however, is 
beyond the scope of our study; here, we emphasize that our ma
nipulation of the stakes function yields a behavioral effect in the 
expected direction. As for the ratio ρl, as mentioned, it is generally 
larger than ρs (stakes experiment, median: 2.93, IQR: 1.09–9.45; 
priors experiment, median: 2.14, IQR: 0.97–7.55). Aside from these 
ratios, the noise parameters are stable across the two experi
ments: the median best-fitting value of ν is 0.14 in both 

experiments (IQR, priors experiment: 0.11–0.18; stakes experi
ment: 0.11–0.17), and the median best-fitting value of σ is 2.05 
(1.17–3.04) in the priors experiment and 2.34 (1.54–3.04) in the 
stakes experiment.

We simulate the Fechner model and the linear one (both in 
their subjective-asymmetric variants) and examine the statistics 
of their responses. They provide a good qualitative match 
with subjects’ responses. The models reproduce the central 
tendency of estimates, and the way it is modulated by the condi
tion (with larger responses in the larger-is-more-probable and 
larger-has-higher-stakes conditions; Fig. 4A and B). The SDs of 
the models’ responses differ in the two conditions of each experi
ment, in a way similar to that of the subjects. In particular, in the 
larger-is-more-probable and larger-has-higher-stakes conditions 
(orange lines), the SD for large numbers is lower than that in the 
other two conditions (blue lines), and for small numbers, it is high
er than that in the other conditions; the SD reaches its maximum 
at a number that is smaller than the number at which the max
imum is reached in the other conditions, with a more modest dif
ference in the stakes experiment (Fig. 4C and D). The same 
patterns are found in the behavioral data (Fig. 3C and D). We 
note in addition that the SDs of the Fechner model, in the 
larger-is-more-probable and larger-has-higher-stakes conditions, 
decrease with the number over most of the range of numbers, al
though the logarithmic encoding in this model has precisely been 
proposed as an account of Weber behaviors. Finally, the MSEs 
have a U shape similar to the subjects’, also with a minimum 
reached at a larger number in the larger-is-more-probable and 
larger-has-higher-stakes conditions (Fig. 4E and F).

Discussion
We compared the behaviors of human subjects and Bayesian 
models in two numerosity-estimation tasks. Across the conditions 
of these tasks, small and large numbers differ either by the rela
tive frequency in which they appear (e.g. in one condition, small 
numbers are more frequent) or by the reward associated with 
their estimation (e.g. in one condition, estimating correctly a 
small number brings more points than estimating correctly a 
large number; Fig. 1). The Bayesian observer takes into account 

Table 1. The Fechner, subjective model is prevalent among subjects in both experiments.

Priors experiment Stakes experiment

Model BIC P PXP BIC P PXP

Fechner Subjective (asym.) 107,192 0.31 0.54 171,065 0.37 0.47
Power-law Subjective (asym.) 107,308 0.06 171,164 0.10
Linear Subjective (asym.) 107,266 0.24 0.13 171,091 0.37 0.53
Fechner Subjective (sym.) 108,793 0.28 0.33 176,312 0.09
Power-law Subjective (sym.) 108,945 0.02 176,085 0.03
Linear Subjective (sym.) 109,015 0.03 176,561 0.01
Fechner Correct 112,298 0.01 183,655 0.01
Power-law Correct 112,460 0.02 183,796 0.01
Linear Correct 112,475 0.02 183,649 0.01

Fechner 0.60 1* 0.47 0.82
Power-law 0.10 0.14
Linear 0.30 0.39 0.18

Subjective (asym.) 0.61 0.99 0.84 1*
Subjective (sym.) 0.34 0.01 0.13
Correct 0.06 0.03

Each row in the first part of the table corresponds to a model; the second part corresponds to models grouped by their type of encoding; the third part groups models 
according to the beliefs about the ratios characterizing each condition. BIC, Bayesian Information Criteria (lower is better). P and PXP: expected probability of each 
model or group of models, and their protected exceedance probability (see Methods). For PXPs, an empty cell means PXP < 0.0015 and 1* means PXP > 0.9985.
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these differences in the relative “importance” of small and large 
numbers, and this influences the statistics of its responses. In par
ticular, we show how it yields a Weber behavior, when small num
bers are more frequent or more rewarding, and conversely an 
anti-Weber behavior, when large numbers instead are more fre
quent or more rewarding (Fig. 2). The examination of subjects’ re
sponses reveals similar patterns (Fig. 3). Notably, we find a 
decreased variability for larger magnitudes, a finding that directly 
conflicts with traditional results of psychophysics. In short, our 
results suggest that the behavior of subjects is consistent with a 
model of Bayesian inference, and that their variability exhibit a 
Weber behavior only when a Weber behavior is indeed predicted 
by the Bayesian model.

A crucial feature of the distributions that we use in the priors 
experiment is that they are skewed. In particular, in the 
smaller-is-more-probable condition, the prior is right-tailed, i.e. 
the mass of the distribution is concentrated on the smaller num
bers. A similar skewness characterizes the empirical distributions 
of numbers observed in various contexts, which have been ap
proximated by power-law distributions (36–40); in turn, power 
laws have been used to model priors over numerosities (4, 41) (oth
er studies have posited log-normal priors, which are similarly 
right-tailed (31, 42–44)). Our results suggest that the shape of 
the prior impacts the variability of estimates, and in particular 
that this skewness may participate in the emergence of a Weber 
behavior. Indeed with the right-tailed prior used in our experi
ment the Bayesian observer exhibits a Weber behavior (Fig. 2), 
and thus, this behavior may more generally originate in the skew
ness of natural magnitude distributions. To complement the 

analysis presented in the Results section, we look at the variability 
of the Bayesian observer equipped with a linear encoding (μ(x) = x), 
and a power-law prior with exponent 2 (p(x) ∝ 1/x2; this is the ex
ponent found in most studies on the natural frequencies of num
bers (36–38)). We simulate this model subject with three different 
degrees of internal noise: ν = 5, 10, and 20. The resulting SD of es
timates is an increasing function of the number x, up to a max
imum that is reached for x ≈ 4ν (above that, the SDs plateaus at 
a value close to ν; Fig. 5). In other words, in any experiment in 
which such a Bayesian observer is asked to estimate numbers 
that are below four times the magnitude of its imprecision, the re
sulting behavior will exhibit approximate scalar variability—al
though the encoding itself is not more precise about some 
numbers than others (the encoding Fisher information, a measure 
of the encoding precision, is in this model constant and equal to 
1/ν2).

This account of Weber behaviors with a linear encoding does 
not however preclude the possibility of a logarithmic, 
Fechnerian encoding (μ(x) = logx), and in fact, we find that the 
most prevalent model features such a logarithmic encoding. 
(Here, we note that identifying the encoding was however not 
the first aim of our study. Had it been our goal, an estimation 
task with a uniform prior would presumably have been a more ap
propriate choice.) The logarithmic encoding is more precise about 
small numbers than about large numbers (its Fisher information 
decreases with the number x, as (μ′(x)/ν)2 = (νx)−2); this “diminish
ing marginal precision” leads to a greater variability of estimates 
for larger numbers. Supporting the hypothesis of a logarithmic in
ternal scale, neurophysiological investigations have exhibited 

A C E

B D F

Fig. 4. The Bayesian models reproduce subjects’ behavior. Model subjects’ responses (A, B), SDs of responses (C, D), and square root of MSE (E, F), as a 
function of the presented number, in the priors experiment (A, C, E) and in the stakes experiment (B, D, F), with the Fechner, subjective model (solid lines) 
and with the linear, subjective model (dotted lines). Compare with subjects’ behavior in Fig. 3.
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numerosity-selective neurons, whose tuning curves are best de
scribed on a logarithmic scale (14, 24, 25). Why should the brain 
represent numerosities on such a nonlinearly compressed scale? 
A possibility is that this results from an optimal adaptation to 
the distribution of numbers that one will need to represent, under 
limited resources available for representation. This idea is formal
ized in models of efficient coding, which typically predict that the 
encoding Fisher information should be proportional to the prior 
raised to some exponent. Specifically which exponent best reflects 
the constraints of the neural encoding remains unclear and seems 
to depend on the encoding objective (typical values are between 
1/2 and 2 (20, 45–49)). But if the distribution of numerosities that 
one typically encounters is well approximated by a power law, 
as suggested by the studies mentioned above, then the Fisher in
formation predicted by efficient-coding models is a (negative) 
power of the represented magnitude. The precise exponent will 
depend on the specifics of the priors and the efficient-coding mod
el, but with a power-law prior with exponent 2 as assumed above 
and an efficient-coding exponent of 1, the optimal Fisher informa
tion is proportional to 1/x2; with our encoding model (Eq. 1), this 
would be achieved with a logarithmic encoding (μ(x) = logx). 
With different exponents, one obtains a power-law encoding of 
the kind we have implemented here, and which seems to also 
yield a reasonably good account of the data (Table 1). Reference 
(37) presents a similar, “rational-analysis” derivation of such non
linear encodings (see also Ref. (50)); and Ref. (51) presents an 
efficient-coding model under two priors similar to ours, which 
they examine in the context of risky choices. (In a different do
main, visual working memory, tests of resource-rationality under 
manipulations of the reward have produced conflicting results 
(52, 53).) More generally, if larger magnitudes are less frequent, 
then under efficient coding they should be represented with de
creasing precision. Alternatively, the apparent logarithmic encod
ing of numerosity could emerge from the properties of the brain’s 
processing of visual input, at least when numerosities are 

presented as visual arrays of multiple items; for instance, neural- 
network models of the visual stream, which are not trained for nu
merosity discrimination, nonetheless exhibit numerosity-tuned 
responses (54–56).

Regardless of the origins of the logarithmic encoding, it is often 
regarded, since Fechner’s proposal, as accounting for Weber be
haviors. Our results suggest that the logarithmic encoding may 
in fact be neither necessary nor sufficient to account for Weber be
haviors. Indeed, we have shown, first, that a model with linear en
coding can yield a Weber behavior (Figs. 2 and 5). Second, we have 
seen that subjects’ responses are overall best captured by a 
Fechner-encoding model. One might thus think that this should 
imply that they exhibit a Weber behavior, but instead, they adopt 
an anti-Weber behavior in the larger-is-more-probable and the 
larger-has-higher-stakes conditions. Moreover, in these condi
tions, the variability of this model also decreases with the magni
tude over a large part of the magnitudes’ interval, although this 
model features a Fechner encoding (Fig. 4C and D). The prevalence 
of Weber behaviors, thus, may result from the skewness of the 
(possibly subjective) priors used by subjects in psychophysics ex
periments. Many magnitudes seem indeed to follow power laws 
and other skewed distributions (57–62).

Other kinds of encoding have been proposed to account for 
Weber behaviors. In another prominent model, the encoding is 
linear, but the scale of noise is a linear function of the encoded 
magnitude (28, 63–65). Reference (65) generalizes this approach 
by showing that many encoding schemes yield Weber’s law, pro
vided that their Fisher information is inversely related to the 
square of the magnitude. Here, our primary goal was to examine 
the behavior of subjects under different priors and different re
ward functions; we leave the investigation of which of these alter
native encodings best captures the behavioral data to future 
studies.

We note that the term “Weber’s law” primarily refers to an em
pirical property of just-noticeable differences in discrimination 
tasks. This should be distinguished from several other notions. 
First, it relates to threshold discrimination (i.e. difference detec
tion), and in a strict sense it is unrelated to suprathreshold dis
crimination. Second, it is different from scalar variability, which 
pertains to estimation tasks. Third, Weber’s law is different 
from Fechner’s law: most notably, the latter introduces a notion 
of subjective sensation magnitude that is entirely absent in the 
former. In practice, however, Weber’s law often refers to the 
idea that the subjective dissimilarity between two stimuli is deter
mined by the ratio of their magnitudes, a proposal that has been 
dubbed the “W-principle” or the “Weber principle”—in an effort, 
precisely, to distinguish it from Weber’s law (66, 67). As for scalar 
variability, from the start it was associated with Weber’s law (1, 2), 
and it is telling that several studies that involve estimation tasks 
examine the “Weber fraction” of subjects, defined in this context 
as the ratio of the SD to the mean of estimates (3, 7). A common 
thread in these various concepts is the diminishing sensitivity of 
perceptual judgments with the perceived magnitudes, and it is a 
similar notion that we have kept in our definition of a Weber be
havior, whereby the variability of estimates increases with the 
magnitudes presented. This has made straightforward the intro
duction of anti-Weber behaviors, readily defined as a decrease 
of the variability with the magnitude. Both are properties of re
sponses obtained in estimation tasks, which do not rely on a puta
tive subjective sensation magnitude. An important question is 
whether similar manipulations of the priors and the stakes in a 
discrimination task would exhibit an increasing ability to discrim
inate stimuli of increasing magnitudes when large magnitudes 

Fig. 5. Weber behavior obtained with a linear encoding and a power-law 
prior. SD, as a function of the magnitude x, of the estimates x∗ of the 
Bayesian observer with linear encoding (μ(x) = x), when the prior follows a 
power-law ( p(x) ∝ 1/x2), and with three different values of the internal 
noise parameter: ν = 5, 10, and 20.
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are more frequent or more rewarding. We leave the examination 
of this question to future studies.

In all conditions of our experiments, we find that large numbers 
are on average underestimated, and small numbers are overesti
mated (Fig. 3A and B). This pattern is also found in the responses 
of the Bayesian model (Fig. 4A and B), and indeed, the ability of 
Bayesian models to capture such central tendency of judgments 
(13) has already been noted (9). The central tendency has been ob
tained with various kinds of stimuli (7, 9, 68), including numeros
ities (16, 69). In many of these studies, three different ranges of 
magnitudes are typically used in different experimental condi
tions, and the magnitudes in a given condition are sampled 
from a uniform distribution over the corresponding range. The 
subjects’ estimates, in each condition, are then shown to be biased 
toward the center of the range; consequently, the same magni
tude results in different estimates, depending on the current 
range. Thus, these studies manipulate the range of the prior, but 
not its shape. Here, we do not manipulate the range of the prior, 
which is [41, 80] in all the conditions, and instead we manipulate 
its shape (in the priors experiment). We find that the central ten
dency is modulated by the shape of the prior, in a way that is read
ily accounted for by the Bayesian model: as the posterior is 
proportional to the prior, the posterior mean is pulled toward 
the numbers that, under the prior, are more frequent. This shifts 
upwards the estimates in the larger-is-more-probable condition, 
in comparison with the smaller-is-more-probable condition 
(Fig. 3A). Hence, the central tendency is not an arbitrary attraction 
toward the middle of the range (or toward the middle of the re
sponse slider), but it appears instead to result from the observer 
taking into account, in the choice of a response, the relative fre
quencies of different magnitudes.

In the stakes experiment, the prior is uniform, and thus the fre
quencies of the different magnitudes are all equal. Thus, the 
Bayesian posterior does not “favor” small or large numbers, and 
one might predict that the central tendency should thus be the 
same in the two conditions of this experiment. But we find in 
this experiment a shift of the estimates very similar to that found 
in the priors experiment, with larger responses in the larger- 
has-higher-stakes condition than in the smaller-has-higher- 
stakes condition (Fig. 3B). Here also, this modulation of the central 
tendency is reproduced by the Bayesian model (Fig. 4B). Bayesian 
responses are indeed pulled toward the numbers that result in 
higher rewards (while in the priors experiment, Bayesian re
sponses are pulled toward the numbers that result in higher prob
abilities of reward). This behavior emphasizes the role of the 
objective (or loss) function in Bayesian decision theory, in addition 
to the prior. In fact, in the expression of the optimal Bayesian re
sponse (Eq. 2), the priors p(x) and the stakes function q(x) have 
interchangeable roles. Thus, our manipulation of the stakes func
tion modulates the behavior of the Bayesian observer in very 
much the same way that our manipulation of the prior does. 
The statistics of subjects’ responses are also impacted in remark
ably similar ways by the two manipulations, and each in a fashion 
that is well captured by the Bayesian model (Figs. 3 and 4). Our 
work adds to a literature that has previously exhibited the influ
ence of reward on perceptual judgments (70–75), including in nu
merosity estimation (18). (The paradigm of the stakes experiment, 
however, differs slightly from that employed in these studies, in 
which the reward for each trial is typically revealed to the subject 
before stimulus onset: in the stakes experiment, in contrast, the 
stimulus itself determines the size of the potential reward, and 
thus, all trials have the same value a priori.) Our work shows 
how the influence of reward is similar to the influence of prior 

probabilities. As such, it substantiates the idea that perceptual 
decision-making and economic decision-making should be under
stood within a common framework (76).

Subjects however do not seem to perfectly learn the priors and 
the stakes function. Despite the symmetry of these functions in 
the two conditions of each experiment, the behavior of subjects in 
one condition does not perfectly mirror their behavior in the other 
condition, especially in the stakes experiment. We have noted that 
in the smaller-has-higher-stakes condition, although subjects shift 
the number where the MSE is minimized toward a lower number 
(when compared with the larger-has-higher-stakes condition), still 
the minimum is reached for a number above 60, i.e. not where num
bers have high stakes (Fig. 3F). Our subjective-asymmetric models 
capture this behavior, and suggest that subjects have not perfectly 
learned the stakes functions and the priors in these experiments. 
This impacted their performance: subjects collected significantly 
more points in the larger-has-higher-stakes condition than in the 
smaller-has-higher-stakes (P-value of t test of equality: 0.038), re
sulting in a reward on average $0.24 higher in the former condition 
(average reward in the stakes experiment, including both conditions: 
$8.58). Although the effect is less pronounced in the priors experi
ment (where subjects seem to minimize the MSE toward smaller 
numbers, in the smaller-is-more-probable condition; Fig. 3E), it is 
in fact more consequential, as in this experiment the frequency of 
the resulting errors is increased. We find that subjects collected sig
nificantly more points in the larger-is-more-probable condition than 
in the smaller-is-more-probable (P-value of t test of equality: 0.003), 
resulting in a reward on average $0.29 higher in the former condition 
(average reward in the priors experiment, including both conditions: 
$8.40). This emphasizes the importance of matching one’s beliefs 
with the true statistics, and the true stakes, of one’s environment.

The importance of the priors and stakes raises the question as 
to where in the brain these quantities are encoded. There is cur
rently no consensus regarding the neural representations of the 
prior. The theory of efficient coding mentioned above implies 
that the properties of sensory neural populations implicitly en
code a long-term prior about the incoming stimuli (46). But the pri
or seems to be also represented at higher levels of processing. In 
the macaque, the inferior temporal cortex, a later-stage visual 
processing area, appears to carry information about the statistics 
of stimuli (77). An fMRI study of humans performing a random-dot 
motion task with varying priors finds that several frontoparietal 
regions are sensitive to the priors (78). It might be the case that 
the prior is indeed encoded in many locations: a study using brain- 
wide data from the International Brain Laboratory concludes that 
in the mouse, the prior is encoded in 20 to 30% of brain regions, 
spanning all levels of processing: sensory, motor, and cortical re
gions (79). The authors argue that this should allow for carrying 
out complex inferences in any direction over a large Bayesian 
network.

Our theoretical framework suggests that the stakes have a role 
very similar to that of the prior (Eq. 2). Consistent with this idea 
and with the results just mentioned, the literature suggests that 
value-based information is also found at multiple levels in the 
brain. For instance, in the fMRI random-dot study mentioned 
above, the authors manipulate the payoff (in addition to the prior), 
and they find that similar frontoparietal areas are sensitive to 
these manipulations (78). In early visual areas (like V1), value 
has been shown to increase response amplitude and to sharpen 
the tuning profiles of the relevant sensory populations, suggesting 
that sensory representations at a relatively early stage can be 
modulated by value (72, 73). More traditionally, however, value re
presentation in the brain is associated with the “reward system,” 
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which comprises cortical and subcortical structures such as the 
ventromedial prefrontal cortex (vmPFC), the ventral striatum 
(VS), and the ventral tegmental area. In rhesus macaques, for in
stance, VS and vmPFC were shown not only to exhibit very similar 
neural sensitivities to value-related information, including the ab
solute value of an option, but also the probability of winning in a 
gambling task (80). A possibility is that value (or expected value) is 
primarily represented in these areas, which then modulate neural 
sensitivities in sensory regions. Paralleling the question above on 
where the prior is encoded, the multiplicity of the locations of val
ue signals in the brain is a source of debate in neuroeconomics 
and related fields (81). As noted, some regions encoding informa
tion about value may also encode information about related prob
abilities. Adding to the complexity of the problem, different 
representations of probabilities and values across different loca
tions in the brain may be inconsistent with each other (82).

Although our experimental results for the priors and the stakes 
experiment are both in line with the prediction of the Bayesian 
model, we have noted that the behavioral data suggest that the 
stakes functions might have been learned less accurately than 
the priors. A possibility is that these two functions are not learned 
the same way because they are not represented the same way in 
the brain. We also note, however, that the prior might be more sa
lient: subjects are indeed more often exposed to the more prob
able numbers in the priors experiment, but they are not more 
often exposed to the higher-stakes numbers in the stakes experi
ment. If priors and values are not learned equivalently well, one 
may wonder which would yield a stronger effect if the two were 
conflicting, e.g. if some numbers had both high stakes and low 
probability, and conversely for other numbers. This would cap
ture interesting (and not unusual) scenarios in which high-stakes 
events have low probabilities, and conversely. Our current results 
suggest that the prior may show a stronger influence, but we leave 
this question to further investigations. In any event, we have 
noted that in both experiments, model fitting suggests that sub
jects strongly underestimate the ratios characterizing the correct 
priors and stakes functions. We surmise that with more training, 
human subjects should be able to incorporate more accurate sub
jective functions in their decisions. This raises the question as to 
how priors and values are learned. In economics, a recent model 
of “adaptive utility” proposes an iterative mechanism to construct 
a utility function optimally adapted to any distribution of reward 
for an agent who has a limited representational capacity (83). In 
psychology, studies on the ability of human subjects to learn pri
ors are surprisingly scarce and call for further experimental and 
theoretical investigations on prior learning (84, 85).

Methods
Details of the tasks
Trials
Each condition of each task started with 15 “learning” trials, in 
which the correct number of dots was shown alongside the cloud 
of dots. No response was required from the subject in these trials. 
The next 30 trials were “feedback” trials, in which the subject was 
shown the correct number, after providing their estimate. These 
were followed by 120 “no-feedback” trials, in which the correct 
number of dots was not shown, which we assumed would limit 
the risk of residual learning dynamics and of trial-to-trial sequen
tial effects. All the analyses presented in this paper were con
ducted on the basis of the data obtained in the no-feedback 
trials. The task was coded with jsPsych (86).

Reward
In both experiments, the reward had two components: a fixed $3 
USD base pay and a performance bonus. The performance bonus 
was a function of the total number of points accumulated by the 
subject in the experiment. In the priors experiment, every 1,000 
points were worth 32¢. In each trial of the priors experiment, 
the number of points earned by the subject was a function of 
the difference between the correct number, x, and the subject’s 
provided response, x̂, as 100(1 − ((x̂ − x)/12)2). Subjects earned an 
average of $8.40 (SD: $2.10) in the priors experiment. In the stakes 
experiment, every 1,000 points were worth 6¢. The reward in each 
trial of the stakes experiment depended on the stakes function, 
q(x), as q(x)(1 − ((x̂ − x)/12)2). Subjects earned an average of $8.58 
(SD: $1.61) in the stakes experiment.

Subjects
Each subject participated in one experiment, and experienced the 
two conditions of this experiment (which were presented in coun
terbalanced orders). Subjects were recruited on Amazon 
Mechanical Turk through CloudResearch (87). One hundred and 
twenty subjects participated in the stakes experiment (66 males, 
54 females; average age: 41.4, SD: 10.2), and 80 subjects partici
pated in the priors experiment (47 males, 31 females, two nonbi
nary; average age: 39.9, SD: 9.9). The study protocol was 
approved by the Institutional Review Board (IRB) of Harvard 
University (protocol IRB15-2048). Informed consent was obtained 
from all participants. As described in the preregistrations of the 
experiments, we excluded from the analysis the responses of all 
the subjects who obtained a performance bonus lower than 
$0.50. This resulted in the exclusion of 3.3% of subjects in the 
stakes experiment and 7.5% of subjects in the priors experiment.

Data analysis
The statistics presented in Fig. 3 correspond to the posterior-mean 
estimates of the fixed-effect components of a statistical model 
that included subject-specific random effects. In particular, the 
statistical model was specified by the three following equations:

x̂si|x ∼ N(ms(x), σs(x)2),
ms(x) ∼ N(m0(x), τ2),

ln(σ(x)) ∼ N(ln(σ0(x)), ν2), 

with the priors

m0(x) ∼ N(x, 202),
σ0(x) ∼ N+(5, 102),

τ ∼ N+(5, 202),
ν ∼ N+(5, 102), 

where x̂si was the response of subject s in trial i, and N+ is the 
Gaussian distribution truncated to the positive numbers. This 
statistical model was estimated using Stan with the HMC-NUTS 
sampler (88) (10 chains of 1,000 samples each, following 1,000 
warmup iterations.) The shaded areas in Fig. 3 correspond to the 
fifth and 95th percentiles of the posterior. The stars indicate, for 
each quantity, that the Bayesian P-value is lower than 0.005, 
where the Bayesian P-value is defined as the posterior probability 
that the sign of the quantity’s difference across conditions is op
posite to the sign apparent in the figure. All other data analyzes 
were conducted using NumPy and Scipy, and figures were made 
using Matplotlib (89–91).
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Model fitting and model selection
We fit the nine models to the behavioral data by maximizing their 
likelihoods. In order to compute the likelihood function, i.e. the 
probability of a response x̂ conditional on a presented number x, 
p(x̂|x), we first compute the distribution of the optimal estimate, 
x∗, conditional on x, p(x∗|x), using the distribution of the internal 
signal, r, conditional on x, p(r|x), as specified by the model, and 
the expression of x∗(r) given in Eq. 2. We note that the distribution 
of the Bayesian mean, with the priors and the stakes functions that 
we use in our experiment, does not belong to a canonical family of 
distributions, and neither its density nor its cumulative distribution 
function admit an analytic expression. We thus resort to numerical 
computations. Second, we compute (numerically) the distribution 
of estimates x̂ conditional on the optimal estimate, x∗, p(x̂|x∗), 
which is a normal distribution centered on x∗ and clipped to the 
interval 41–80. Finally, we compute p(x̂|x) on the basis of the two 
distributions just presented, as p(x̂|x) = ∫p(x̂|x∗)p(x∗|x)dx∗.

For each model, we fit each subject’s dataset separately (with a 
different set of parameters per subject). The resulting BICs are re
ported in Table 1. To obtain a more refined view on the relative 
prevalence of each model in the population of subjects, we con
ducted a “Bayesian model selection” analysis (34, 35). This proced
ure enabled the derivation of a Bayesian posterior over the nine 
models, as a Dirichlet distribution. From this posterior we com
puted, first, the expected probability of each model: this is the ex
pected value of the probability that the behavior of a subject 
chosen randomly in the population follows the given model. On 
the basis of the posterior, we also computed the PXP of each mod
el, defined as the probability that the model is the most prevalent 
in the population, taking into account the possibility that differen
ces in model evidence may be due to chance (35). The estimation 
of the PXP was derived from the “exceedance probability,” which 
we estimated by sampling 10 million times the Dirichlet posterior, 
and counting the number of times each model has the largest 
probability. The expected probabilities and the PXPs are reported 
in Table 1. We report here the sum of the parameters of the 
Dirichlet posterior, which indicates the concentration of the pos
terior: for the priors experiment the sum is 83; for the stakes ex
periment the sum is 125.
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