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A B S T R A C T

Understanding the inductive biases that allow humans to learn in complex environments has
been an important goal of cognitive science. Yet, while we have discovered much about human
biases in specific learning domains, much of this research has focused on simple tasks that
lack the complexity of the real world. In contrast, video games involving agents and objects
embedded in richly structured systems provide an experimentally tractable proxy for real-
world complexity. Recent work has suggested that key aspects of human learning in domains
like video games can be captured by model-based reinforcement learning (RL) with object-
oriented relational models—what we term theory-based RL. Restricting the model class in this
way provides an inductive bias that dramatically increases learning efficiency, but in this paper
we show that humans employ a stronger set of biases in addition to syntactic constraints on
the structure of theories. In particular, we catalog a set of semantic biases that constrain the
content of theories. Building these semantic biases into a theory-based RL system produces more
human-like learning in video game environments.

. Introduction

In realistically complex environments, learning is impossible without inductive bias: the set of plausible hypotheses needs to be
estricted in some way to ensure that the correct hypothesis can be identified from finite data. This point, which has been formalized
n several ways (Gold, 1967; Valiant, 1984; Vapnik & Chervonenkis, 1971; Wolpert, 1996), imposes fundamental design principles
n intelligent systems, both artificial and natural. Loosely speaking, such systems must be able to make an educated guess about
he correct hypothesis before seeing data. As the philosopher Bertrand Russell put it, ‘‘A mind perpetually open will be a mind
erpetually vacant.’’

Since humans are capable of learning in many complex environments, one of the central questions of cognitive science is what
ind of inductive biases empower us to do this (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). Over the years, researchers
ave provided myriad answers to this question. For example, human category learning is consistent with a bias for categories
efined over single (Medin, Wattenmaker, & Hampson, 1987), separable feature dimensions (Nosofsky, 1987). Research on function
earning has shown that humans are biased towards learning linear (Kalish, Lewandowsky, & Kruschke, 2004), simple (Little &
hiffrin, 2009), and compositional functions (Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman, 2017), and in decision
aking tasks, humans assume that future reward is related to recent context (Gershman & Niv, 2015), and that strategies from
revious tasks often generalize to similar tasks (Tomov, Schulz, & Gershman, 2020).

Much of what we know about human inductive biases comes from studying relatively simple task domains. While these simple
omains have been useful in identifying many elements of human cognition, they fail to capture some key components of real-
orld learning environments. Everyday decision making tasks often involve many hidden, intertwining systems: Physical, biological,
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psychological, and social systems link together to produce complex sequential decision problems, and it has been argued that biases
relating to these systems are integral to human learning (Lake, Ullman, Tenenbaum, & Gershman, 2017). The current work seeks
to better understand human learning in these complex domains.

Video games introduce some key elements of real-world complexity while remaining tractable from a modeling standpoint. Much
ike the real world, video games can involve physical systems of varying complexity, rich taxonomic relations between objects, agents
ith various degrees of psychological nuance, and implicit social norms. Yet unlike the real world, video games allow us to both

ontrol the complexity of these systems and know the true value of many of their hidden states. This ground truth knowledge of the
nvironment can be fed directly into models in order to avoid having to provide an end-to-end account of cognition for every study.
y finding the right combination of task complexity and knowledge representations, we can gradually scale up existing models of
uman decision making to realistic domains.

Prior work has found that human decision making in simple domains is well described with a mix of model-free and model-
ased reinforcement learning (RL; Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Daw, Niv, & Dayan, 2005; Kool, Cushman, &
ershman, 2018). Efforts to scale model-free and model-based RL systems up to more complex domains have primarily focused on
mbedding biases for particular kinds of representational structures. For example, RL systems that learn representations involving
tructural elements like objects, relations, and rules learn more quickly and robustly in complex domains (Higgins et al., 2018; Pasula,
ettlemoyer, & Kaelbling, 2007; Zambaldi et al., 2018). While adding these structural biases to model-free RL has so far failed to
roduce human-like learning efficiency (Tsividis, Pouncy, Xu, Tenenbaum, & Gershman, 2017), integrating them into model-based
pproaches has been more successful. In recent work we showed that combining theories containing object-oriented, relational
ules with model-based RL produces human-level learning efficiency and generalization behavior in video game domains (Pouncy,
sividis, & Gershman, 2021; Tsividis et al., 2021). We refer to this combination of theory-based representations and model-based
L as theory-based RL.

Restricting the model class to object-oriented relational theories can be understood as a kind of syntactic inductive bias: only
odels that have a specific syntactic structure are considered by the learning system. However, prior work suggests that humans

lso exhibit a number of biases about the semantic content of learned representations. For example, humans make use of notions like
esign, purpose, and intention to learn categories and infer object usage (Bloom, 1996; Dennett, 1987; Duncker, 1945; Kelemen &
arey, 2006). Humans also learn preferences for certain kinds of elegant solution structures in domains like mathematics (Schoenfeld
Herman, 1982), programming (Weiser & Shertz, 1983), and physics (Chi, Feltovich, & Glaser, 1981). Though it is likely that these

inds of biases also play a role in sequential decision problems, this has not yet been formalized or systematically studied.
In summary, there is good reason to think that theory-based RL provides a plausible account of the representational structure

hat humans use to learn in complex sequential decision making domains like video games. However, we know relatively little about
he set of inductive biases that humans employ to make learning these representations tractable. The first goal of the current study
s to address this gap by collecting systematic data about human biases in video game learning. The second goal of the study is to
how how these biases can be formalized within a theory-based RL system that learns and acts in human-like ways.

. Theoretical framework

.1. An overview of theory-based RL

The general challenge of sequential decision making lies in identifying which sequences of actions are most likely to lead to a
esired set of goals. RL approaches solve this problem by translating information about goals into a reward function and learning
value function that tracks the expected future reward associated with the actions available in each task state. As these value

unctions implicitly encode information about both the goals and dynamics of the environment, they may need to be updated as new
nformation becomes available. Model-based RL addresses this issue by using an internal model of the environment to re-estimate
he value function when needed.

While internal models can take many forms, they are often represented as look-up tables that map task states and actions to
robability distributions over subsequent states. Tabular models are easy to describe and learn, but they do not scale well to video
ame environments. The combinatorial structure of objects and interactions produces a large state space that would be intractable to
tore in a single table. This limitation has stimulated the development of object-oriented and relational representations for model-
ased RL (Diuk, Cohen, & Littman, 2008; Guestrin, Koller, Gearhart, & Kanodia, 2003; Kansky et al., 2017; Lang & Toussaint,
010; Pasula et al., 2007; Scholz, Levihn, Isbell, & Wingate, 2014). A key advantage of such approaches is that they express task
nowledge compactly. For example, a game like chess has a vast number of distinct states (board configurations), making a tabular
pproach impractical. States can be represented much more compactly by expressing them in terms of each piece’s position on
he board. The dynamics of the game can then be expressed in terms of changes in piece position. Theory-based RL takes this a
tep further, extracting core knowledge about objects, events, and goals into a separate reasoning engine. This engine then turns
eneral knowledge into specific predictions much in the same way that a physics student can apply a general understanding of
ravity to predict the path of a specific falling apple depending on its starting height and mass. Thus, fairly complex tasks can be
epresented with compact theories consisting solely of object properties, interaction rules, and goal information. The compactness
f theory-based representations is one ingredient in the recipe for human learning efficiency. Another ingredient – the main focus
f our study – is the set of structured inductive biases that restrict the space of plausible theories. Below we will present a general
2

nd powerful way to express inductive biases over object-oriented relational theories.
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Fig. 1. Schematic of the theory-based reinforcement learning architecture. Agents observe state transitions from the environment then infer a posterior over
video game description language (VGDL) theories by combining likelihood estimates from a core knowledge engine and prior probabilities from a series of bias
functions. One set of bias functions captures the syntax of the VGDL theory language, while the other set of biases represent biases about the semantic content
of theories. Agents use the approximate posterior to estimate a value function and select optimal actions. Gray bars represent probabilities; yellow bars represent
expected future reward.

The major computational steps in theory-based RL are summarized in Fig. 1. Game play data is used to compute an approximate
posterior distribution over theories, which incorporates knowledge about the core knowledge engine (i.e., the mapping from theory
to game play data) and inductive biases about theories. Conditional on a hypothetical theory, a planner uses the core knowledge
engine to estimate action values and then select an action. We elaborate each of these steps in the following sections. Further
computational details can be found in Appendix A.

2.2. Inferring theories from observation

The central question of theory inference is how people use observations of their environment to infer complete theories about how
that environment works. Intuitively, the posterior probability of a complete theory 𝜃 given a set of observations 𝐃, 𝑃 (𝜃|𝐃), should
be related to how well the theory matches the data, 𝑃 (𝐃|𝜃), and the prior probability of the theory, 𝑃 (𝜃). Bayes’ rule formalizes this
relationship:

𝑃 (𝜃|𝐃) ∝ 𝑃 (𝐃|𝜃)𝑃 (𝜃), (1)

The probability of a set of observations 𝐃 given a particular theory 𝜃 should be higher when a theory can explain all the
observations than when it can only explain some. Here we will rely on a common sequential decision making formalization and
represent 𝐃 as a set of observed state transitions. In other words, each element in 𝐃 is a tuple (𝑠, 𝑎, 𝑠′) representing an observation
of a player taking an action 𝑎 from state 𝑠 and ending up in state 𝑠′. We can then formally represent the likelihood of a set of
observations given a particular theory 𝑃 (𝐃|𝜃) as follows:

𝑃 (𝐃|𝜃) =
∏

𝑠,𝑎,𝑠′∈𝐃
𝑃 (𝑠′|𝑎, 𝑠, 𝜃), (2)

We can calculate the transition probability 𝑃 (𝑠′|𝑎, 𝑠, 𝜃) by plugging 𝜃 into the core knowledge engine to query a model of the
environment. In general, theory-based RL is agnostic to the exact language used to encode theories and the core knowledge engine.
3
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For practical purposes, we used a subset of the Video Game Description Language (VGDL) as our theory language (Schaul, 2013).
VGDL is a rule-based task representation designed to describe a wide variety of 2D video game tasks using a small fixed ontology.
Each theory 𝜃 consists of a VGDL description containing three components: a sprite set, an interaction set, and a termination set.

he sprite set describes the kinds of objects present in a game and the properties of those objects. The interaction set describes the
utcome of an interaction between any two kinds of objects. The termination set describes the goals of the game (i.e., how the player
ins or loses). Fig. 2b shows an example of a VGDL description with all three components. We model the core knowledge engine
ith a VGDL parser that takes as input a VGDL theory, a game state, and a proposed action, and outputs a probability distribution
ver subsequent game states 𝑃 (𝑠′|𝑠, 𝑎, 𝜃).

In the interest of tractability, we focused on a subset of deterministic, grid-based VGDL games involving a single moving avatar.1
Focusing on deterministic VGDL theories means that the transition probability is zero for any transitions other than the one predicted
by a given theory. We can then represent the game dynamics in terms of a deterministic transition function 𝑠′ = 𝑇 (𝑠, 𝑎). For inference
purposes this would mean that theories that predict none of the observations would be just as likely as theories that predict every
state transition except one. Thus, during theory inference we instead use a ‘‘relaxed’’ formulation of the deterministic transition
function that allows for some gradations when theories do not fully explain the observations:

𝑃 ∗(𝑠′|𝑎, 𝑠, 𝜃) ∝ exp(1[𝑠′ = 𝑇 (𝑠, 𝑎)]), (3)

where the indicator function takes the value 1[⋅] = 1 if its argument is true, otherwise 0. Taking the exponential of this Boolean
indicator function ensures that the transition probability is always non-negative. See Appendix A for additional details about the
likelihood function implementation.

2.3. A structured prior over theories

Our primary focus in this work is on the prior probability distribution 𝑃 (𝜃). This prior encodes an agent’s inductive biases about
what makes one theory more plausible than another in the absence of any observed data. One way to think of these inductive biases
is as statements about the structure or content of plausible theories. For example, an agent that holds the bias ‘‘a game theory should
contain at least one way to win’’ should find a theory that has at least one win condition more a priori plausible than a theory with
no win conditions. Formally, if each bias 𝐵𝑖 is a Boolean function that operates over theories, 𝐵𝑖(𝜃) ∈ {0, 1}, then theories where
𝑖(𝜃) is true should be more likely a priori than theories where 𝐵𝑖(𝜃) is false. This intuition suggests that if we had access to an
gent’s complete set of biases about theories 𝐁, the prior probability 𝑃 (𝜃) should be greater for theories where more biases are
rue than theories where fewer biases are true. For practical purposes, just as with the transition probability used in the likelihood
unction, our prior over theories should not go to zero if a theory fails to meet any individual bias. We can formalize a prior that
atisfies these properties as follows:

𝑃 (𝜃) ∝ exp

[

∑

𝑖
𝜔𝑖𝐵𝑖(𝜃)

]

, (4)

ere 𝜔𝑖 represents a bias weight for the 𝑖th bias function that allows some biases to affect a theory’s plausibility more strongly than
thers. This prior has the important property that the probability of a theory declines incrementally when a bias is violated; thus,
he biases act as ‘‘soft constraints’’ on the theory.

This theory prior is a form of Markov logic network, which has been widely used in probabilistic logical modeling (Richardson &
omingos, 2006). One way to think about this model is that the bias weights represent the log-odds of each bias being true, holding

he truth value of all other biases fixed.2 The probability distribution over theories can then be understood as the distribution with
aximum entropy subject to the constraint that the log-odds of each bias is equal to its bias weight. Intuitively, this means that the

heory prior is as weak as possible, while still obeying a specific set of structured inductive biases.

.4. Specifying the theory space

To produce a precisely defined theory space, we developed a method of converting VGDL theories into a numeric representation.
e do this by defining a set of theory predicates that each relate to a specific part of a theory. We can then enumerate the possible

alues for each theory part and produce a predicate/value representation for the theory as a whole. Fig. 2b shows an example VGDL
heory, while 2c shows the set of predicate/value pairs that would describe this theory. The first line of the termination set for this
heory indicates that destroying all (i.e., ‘‘limit=0’’) of the green blocks (i.e., ‘‘s(prite)type=green’’) will win (i.e., ‘‘win=T’’) the game.
his first termination condition corresponds to the ‘‘HasCondition(1)’’, ‘‘Stype(1)’’, ‘‘Limit(1)’’, and ‘‘Win(1)’’ predicates in Fig. 2c,
here the ‘‘1’’ indicates that we are referencing the presence, sprite type, limit, and win value of the first line of the termination

et. The specific values of these predicates indicate that the first goal is present, involves the fourth sprite type in the sprite set,
s triggered when there are zero of this sprite type left, and results in winning the game, respectively. We can now formalize the
otion of ‘‘the space of possible theories’’ more precisely. Since each set of predicate/value pairs maps to a single theory, the space
f all possible predicate/value pairs implicitly defines a space of possible theories.

1 It is worth noting that given the compositional nature of VGDL, even this restricted theory space is quite large.
2 In general, it may not be possible to hold the truth values of other biases fixed, but this assumption only serves an explanatory purpose; it is not invoked

n our modeling.
4
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Fig. 2. A visualization of converting VGDL theories to a predicate/value representation to produce a space of possible theories. (a) A screenshot of an example
game (referred to as the ‘‘Fill the gaps’’ game in the text). (b) The VGDL description for the game in (a). Different colors represent types of theory elements
(e.g., pink represents integers, yellow represents Booleans, dark red represents color values, green represents sprite names). (c) The same theory represented as
a set of predicates with assigned values. (d) An example of a logical expression defined over the predicates in (c). This expression corresponds to a VGDL syntax
bias for ‘‘The sprites referenced in termination conditions should exist in the sprite set’’.

One side effect of using the predicate/value representation to form a theory space is that while every set of predicate/value
pairs maps to a theory, not all of those theories are syntactically valid in VGDL. For example, the sprite types referenced in each
termination condition must be defined in the sprite set in order for the VGDL theory to be executable. Changing the value of
the predicate ‘‘SType(1)’’ from four to seven would result in a termination condition that references a non-existent seventh sprite
type. While this theory can be encoded numerically, it violates VGDL syntax. Fortunately, the structure of the predicate/value
representation makes it straightforward to define a logical statement that captures this syntax rule. Fig. 2d shows an example of
such a statement. We can treat this logical statement as a bias function, which favors theories that match this syntax requirement.
Following in this vein, we created a set of syntactic bias functions (described in detail in Appendix A) such that predicate/value
pairs for which all syntactic biases 𝐵𝑖(𝜃) = 1 are guaranteed to map to syntactically valid VGDL theories.

2.5. Defining semantic biases

To identify other biases that humans might have for learning video games, we turned to a database of existing games descriptions:
the General Video Game AI (GVG-AI) competitive training sets (Perez-Liebana et al., 2016). GVG-AI is an annual competition for
AI developers that is designed to encourage the creation of general game-playing algorithms. It contains a broad sample of games
from different genres. In order to provide a consistent interface for training AI agents, the games have all been converted to VGDL
descriptions. Most of these games are clones of popular games whose designs have been gradually honed over many generations of
interactions between game players and designers. Iterated cultural transmission has been shown to produce stationary distributions
that reflect people’s prior beliefs (Kalish, Griffiths, & Lewandowsky, 2007; Tessler, Tsividis, Madeano, Harper, & Tenenbaum, 2021),
suggesting that databases such as the GVG-AI game set are a useful avenue for exploring human inductive biases about games.

Searching through the GVG-AI database revealed several patterns that were indicative of plausible inductive biases (Table 1).
Some of these patterns were specific to the domain of games. In particular, almost every game in the database had at least one
winning condition and at least one losing condition, and those conditions tended to involve non-arbitrary goals. In other words,
the goal of a game was almost always to collect/destroy/transform all of some kind of object rather than some arbitrary subset
(e.g., collect 2 of the 5 coins). Taken together, these patterns suggest a bias that games should have at least one way to win and
lose, and a bias that win/loss conditions should involve non-arbitrary goals.

We also found a set of patterns pertaining to the intended purpose of games. As the games in this data set were designed to be
learned by humans, they tended to have structures that clearly communicated their intended use. For example, many objects in the
GVG-AI games only serve a single function. If object A is a key that opens doors, it probably does not also serve as a bullet for a gun
or a bridge for filling gaps. Also interactions were often informative about termination conditions: interactions that award points
tended to provide information about how to win a game, while interactions that detracted points tended to provide information
about how to lose a game. These patterns suggest biases for consistent object functions and informative point structures.

The GVG-AI games also tended to have specific causal structures. All the object kinds in a GVG-AI game were involved in moving,
blocking, destroying, or otherwise interacting with at least one other kind of object. Furthermore, those interactions tended to move
the player towards (or away from) at least one goal. In other words, all of the object kinds in a theory served at least one purpose.
Similarly, goals and interactions were attainable in every GVG-AI game we explored. Here we use attainability to mean ‘‘at least one
5
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Table 1
Summary of semantic biases incorporated into the prior 𝑃 (𝜃).
Bias High-level description Formal description

Win/Lose Games should have at least one way
to win
and one way to lose.

[ ∃ 𝑔 ∈ 𝐺𝑜𝑎𝑙𝑠 s.t. 𝐻𝑎𝑠𝐶𝑜𝑛𝑑(𝑔) ∧𝑊 𝑖𝑛(𝑔) ==
𝑇 𝑟𝑢𝑒 ]∧ [ ∃ 𝑔 ∈
𝐺𝑜𝑎𝑙𝑠 s.t. 𝐻𝑎𝑠𝐶𝑜𝑛𝑑(𝑔) ∧𝑊 𝑖𝑛(𝑔) == 𝐹𝑎𝑙𝑠𝑒 ]

Non-arbitrary Goals Goals involve all of X rather than
some of X.

∀𝑔 ∈ 𝐺𝑜𝑎𝑙𝑠 ⋅ 𝐿𝑖𝑚𝑖𝑡(𝑔) == 0

Attainability For every goal/interaction, there is
some combination of interactions
that would
allow the avatar to trigger that
goal/interaction.

[∀𝑖 ∈ 𝐼𝑛𝑡𝑠.𝑖 ∈ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐶ℎ𝑎𝑖𝑛(𝑎𝑣𝑎𝑡𝑎𝑟)] ∧
[∀𝑔 ∈ 𝐺𝑜𝑎𝑙𝑠.𝑔 ∈ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐶ℎ𝑎𝑖𝑛[𝑎𝑣𝑎𝑡𝑎𝑟]]

Consistency Objects should have consistent
functions
(e.g., if A destroys B,
A should also destroy C)

∀𝑖1 ∈ 𝐼𝑛𝑡𝑠 ⋅ ∀𝑖2 ∈ 𝐼𝑛𝑡𝑠⋅
(𝑖1 == 𝑖2) ∨ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑖1) ≠ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡(𝑖2) ∨
𝑇 𝑦𝑝𝑒(𝐸𝑓𝑓𝑒𝑐𝑡(𝑖1)) == 𝑇 𝑦𝑝𝑒(𝐸𝑓𝑓𝑒𝑐𝑡(𝑖2))

Informativeness Interactions that award positive
points should
be involved in triggering win
conditions.

∀𝑖 ∈ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠⋅
( (𝐸𝑓𝑓𝑒𝑐𝑡(𝑖) == 𝑘𝑖𝑙𝑙𝑊 𝑖𝑡ℎ𝑆𝑐𝑜𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒) =>
[ (𝑉 𝑎𝑙𝑢𝑒(𝑖) > 0) => ( ∃ 𝑔 ∈ 𝐺𝑜𝑎𝑙𝑠 s.t. 𝑊 𝑖𝑛(𝑔) ==
𝑇 𝑟𝑢𝑒 ∧ 𝑖 ∈ 𝑅𝑒𝑣𝐶ℎ𝑎𝑖𝑛(𝑔) ) ]

Purpose Every interaction/object kind should
be
involved in triggering at least one
goal.

[ ∀𝑖 ∈ 𝐼𝑛𝑡𝑠 ⋅∃ 𝑔 ∈ 𝐺𝑜𝑎𝑙𝑠 s.t. 𝑖 ∈ 𝑅𝑒𝑣𝐶ℎ𝑎𝑖𝑛(𝑔) ] ∧
[ ∀𝑘 ∈ 𝑂𝑏𝑗𝐾𝑖𝑛𝑑𝑠.∃ 𝑔 ∈ 𝐺𝑜𝑎𝑙𝑠 s.t. 𝑘 ∈
𝑅𝑒𝑣𝐶ℎ𝑎𝑖𝑛𝑠[𝑔] ]

sequence of interactions makes it possible for the preconditions of a target interaction or goal to occur’’. These patterns suggest a
bias that all objects serve a purpose and that all goals are attainable. We implemented these notions of purpose and attainability by
building a function that used knowledge of properties of VGDL to construct reverse and forward causal chains. Reverse causal chains
described how goals were triggered by available interactions and how to trigger those interactions. If an interaction or object kind
participated in at least one reverse chain, then we marked it as serving a purpose. In contrast, forward causal chains described which
objects could affect other objects, and how those effects ultimately related to the goals of a theory. If an interaction or goal occurred
in the forward causal chain beginning with the player-controlled avatar object, then we marked it as attainable. The algorithm that
produced these causal chains is described in more detail in Appendix A.

The biases for consistency, informativeness, purpose, and attainability seem to reflect folk psychological tendencies to evaluate
entities abstractly in terms of the purpose they were designed to achieve (Dennett, 1987). Games are often designed to teach you
how to play, and providing informative points, attainable goals, and purposeful, consistent objects all helps in that regard. We refer
to the six biases described in Table 1 as semantic biases.

2.6. Approximating the posterior

Now that we have defined a likelihood 𝑃 (𝐃|𝜃) and prior 𝑃 (𝜃), we can compute the posterior probability 𝑃 (𝜃|𝐃). To calculate
his exactly, however, we would need to compute a normalizing constant so that the posterior probabilities sum to one. In practice,
owever, it is intractable to calculate the normalizing constant for a theory space of this size. Instead, we approximate the posterior
sing discrete particle variational inference (DPVI; Saeedi, Kulkarni, Mansinghka, & Gershman, 2017). The key idea is to replace the
osterior distribution over the full set of possible theories with a much smaller set of high probability theories (particles). Each
heory is assigned a weight, and the set of weights is optimized so that the particle approximation gets as close as possible to the
rue posterior.

Formally, the variational particle approximation consists of 𝐾 theories {𝜃1,… , 𝜃𝐾} and associated weights {𝑝1,… , 𝑝𝐾}, which
ogether form a probability distribution over the theory space:

𝑃 (𝜃|𝐃) ≈
𝐾
∑

𝑘=1
1[𝜃 = 𝜃𝑘]𝑝𝑘, (5)

where 𝑝𝑘 is proportional to the unnormalized posterior probability of that theory, 𝑃 (𝜃,𝐃). A complete technical description of the
algorithm can be found in Appendix B.

2.7. Using the model to estimate values

With a theory inference algorithm in hand, we return to the problem of using theories to estimate the value of sequential plans.
Estimating a value function requires first specifying a reward function. The structure of VGDL theories provides a natural reward
6

function. Many object interactions in a theory either directly award points or lead to completing termination conditions. These
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termination conditions can also be given explicit positive or negative values to incorporate them into the reward function. In the
current work we use values of 5 and −5 points for winning and losing respectively.

In our prior work on theory-based RL, we found that, in addition to external rewards, internal shaping rewards are also necessary
for successful planning in complex tasks (Tsividis et al., 2021). We replicated the general structure of the reward function from that
prior work here, with an additional bonus term that we will describe below:

𝑅(𝑠, 𝑎, 𝑠′, 𝜃) = 𝑅𝑒𝑥𝑡(𝑠, 𝑎, 𝑠′, 𝜃) + 𝑅𝑖𝑛𝑡(𝑠, 𝑎, 𝑠′, 𝜃) + 𝑅𝑏𝑜𝑛𝑢𝑠(𝑠′, 𝑎, 𝑃 ), (6)

where 𝑅𝑒𝑥𝑡(𝑠, 𝑎, 𝑠′, 𝜃) represents external points earned after taking action 𝑎 from state 𝑠 and arriving in state 𝑠′ (minus a constant
cost 𝑐𝑎𝑐𝑡𝑖𝑜𝑛 for every action taken), and the internal reward 𝑅𝑖𝑛𝑡(𝑠, 𝑎, 𝑠′, 𝜃) is defined as:

𝑅𝑖𝑛𝑡(𝑠, 𝑎, 𝑠′, 𝜃) =
∑

𝑔∈𝐺𝑜𝑎𝑙𝑠(𝜃)

|𝑁𝑥(𝑠′) −𝑁𝑥(𝑠0)|
|𝑇 𝑎𝑟(𝑥, 𝑔) −𝑁𝑥(𝑠0)|

. (7)

𝐺𝑜𝑎𝑙𝑠(𝜃) represents the termination conditions in theory 𝜃. All goals in the subset of VGDL used for the current work consisted of
reaching a target amount of a certain object kind; thus the agent received an internal reward proportional to the remaining amount
of each target object. 𝑁𝑥(𝑠′) represents the number of objects of kind 𝑥 in state 𝑠′, and 𝑇 𝑎𝑟(𝑥, 𝑔) represents the target count defined
in 𝑔.

Given a reward function 𝑅, there are many ways to estimate the expected future reward for an action. Here we draw on an
approach that we used previously (Pouncy et al., 2021), which involves identifying object-oriented actions, applying Monte Carlo
Tree Search (MCTS) to generate internal simulations with the core knowledge engine, and then estimating an action-value function
𝑄(𝑠, 𝑎, 𝜃) with these simulated trajectories by using the Sarsa(𝜆) algorithm (Rummery & Niranjan, 1994). The output of this algorithm,
𝑄(𝑠, 𝑎, 𝜃), represents an estimate of the total future reward that an agent could expect to earn under theory 𝜃 by selecting the action
𝑎 from state 𝑠 and then following the optimal policy from that point on. Appendix A provides additional details about this algorithm.

In a classical model-based RL setting, the task model is known a priori. Here, however, we have uncertainty about the task
model itself. Thus, rather than selecting actions to maximize future reward for a single theory, we instead want to identify actions
that maximize reward after marginalizing over all possible theories (Martin, 1967). While it is computationally intractable to
explicitly compute an action-value function in this case, there are a variety of ways of approximating this process. Here we use
an approximation method proposed by Littman, Cassandra, and Kaelbling (1995) called 𝑄𝑀𝐷𝑃 that estimates theory independent
Q-values 𝑄(𝑠, 𝑎) by marginalizing theory-dependent q-values over a posterior, as shown below:

𝑄(𝑠, 𝑎) = ∫𝜃
𝑄(𝑠, 𝑎, 𝜃)𝑃 (𝜃|𝐃)𝑑𝜃. (8)

We can estimate this using our particle approximation of the posterior as follows:

𝑄(𝑠, 𝑎) ≈
𝐾
∑

𝑘=1
𝑄(𝑠, 𝑎, 𝜃𝑘)𝑝𝑘, (9)

where 𝜃𝑘 and 𝑝𝑘 are the theory and weight associated with the 𝑘th particle in our approximation, respectively.
One limitation of the 𝑄𝑀𝐷𝑃 approach is that it does not take into account the potential value of learning new information

(i.e., reducing the uncertainty in the posterior over theories). This can lead to looping behaviors where the same actions are chosen
over and over again due to incomplete information about the task theory (Littman et al., 1995). To get around this issue, we provided
agents with an internal exploration bonus during the value estimation process. This bonus was designed to approximate the expected
information gain for exploring a particular interaction, and was implemented as follows:

𝑅𝑏𝑜𝑛𝑢𝑠(𝑠′, 𝑎, 𝑃 ) =
∑

𝑥1 ,𝑥2∈𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑(𝜃)
𝐶(𝑠′, 𝑎, 𝑥1, 𝑥2, 𝑃 ), (10)

where 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑(𝜃) represents the set of interactions between object kinds 𝑥1 and 𝑥2 that the agent has not yet observed.
𝐶(𝑠′, 𝑎, 𝑥1, 𝑥2) represents an internal reward for exploring the novel interaction between 𝑥1 and 𝑥2, defined below:

𝐶(𝑠′, 𝑎, 𝑥1, 𝑥2, 𝑃 ) =

{

𝑍−1
𝐻 𝐻(𝑥1, 𝑥2, 𝑃 ), if 𝑎 ↦ (𝑥1, 𝑥2)

0 otherwise
(11)

where 𝑎 ↦ (𝑥1, 𝑥2) means that action 𝑎 induces an interaction between 𝑥1 and 𝑥2. 𝐻(𝑥1, 𝑥2, 𝑃 ) is the entropy of the outcome of
the interaction between 𝑥1 and 𝑥2 under the posterior 𝑃 (𝜃|𝐃). This interaction entropy is easier to calculate than the expected
uncertainty reduction over the full posterior, and provides at least an approximation of the informativeness of a given interaction.
We calculated 𝐻(𝑥1, 𝑥2, 𝑃 ) using the posterior over theories:

𝐻(𝑥1, 𝑥2, 𝑃 ) = −
∑

𝑒
𝑃 (𝑒|𝑥1, 𝑥2) log𝑃 (𝑒|𝑥1, 𝑥2) (12)

where 𝑃 (𝑒|𝑥1, 𝑥2) is the probability of outcome 𝑒, marginalizing over 𝜃. To ensure that the bonuses did not overwhelm the reward
function in Eq. (6), we include a scaling factor 𝑍𝐻 which reflects the maximum potential entropy for a given posterior approximation.
This maximum entropy occurs when every outcome for an interaction is equally likely. If the number of potential outcomes 𝑁𝐸
is greater than the number of particles 𝐾, then the maximum entropy occurs when all outcomes are equally likely, 𝑃𝑒 = 1∕𝑁𝐸 , in
which case 𝑍𝐻 = log𝑁𝐸 .

Finally, agents used the Q-value function at every time step to selected the action with the highest estimated action value. To
make planning more tractable, we also had agents cache and re-use their action-value estimates. Agents re-estimated action values
7

every 4 steps, or whenever new rules were observed.
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3. Experimental design

The framework described in the previous section sharpens our empirical questions. Does theory-based RL with semantic and
yntactic biases better account for human learning behavior relative to theory-based RL with just the syntactic biases? To address
his question, we evaluated human and artificial agent performance as they learned to play a series of video games. We also looked
t human and agent predictions about their environment using a series of prompt questions that we designed to assay the biases of
nterest.

.1. Participants

We recruited 27 participants to play a series of games using the CloudResearch interface to Amazon’s Mechanical Turk
latform (Litman, J. Robinson, & Abberbock, 2017). All participants were vetted using CloudResearch’s standard attention and
ngagement measures to ensure high quality data3. Participants played three runs of seven different games. They received a base
ayment of $2.50 with a $0.20 bonus for each run that they won. Participants received an additional $0.20 bonus for each run where
hey earned the maximum points possible on that run. We removed 1 participant who won fewer than three of the 21 available
ame runs.

.2. Instructions and tutorial

Upon beginning the task, participants were told that they would play three runs of several different games by using the arrow
eys on their keyboard. They were then informed about the bonus structure of the task. Finally they were told that game rules might
ary from game to game, and that they might be asked to answer some questions during the task. Participants then completed a
hort tutorial to familiarize themselves with the task structure.

During the tutorial, participants controlled a block and navigated a series of rooms. To get from the first room to the second
oom they had to collect an object that awarded one point. After witnessing this interaction, participant’s attention was drawn to
he right-hand side of the screen where a rule explaining that interaction (e.g., ‘‘green blocks award one point by destroying red
locks’’) was added to a list of observed rules. Participants were told that rules would be added to this box as they were discovered
nd then had to click a button to continue with the task. A few steps after collecting the first object, participants were shown an
xample of a question. An overlay popped up over the game and required them to answer two questions of the form ‘‘Given the
ules you have observed so far, how likely is it that the following is also a rule of this game?’’ before they could continue playing the
ame. One question asked about the rule ‘‘when there are zero green blocks left you win the game’’, while the other question asked
bout the rule ‘‘when there are zero green blocks left you lose the game’’. Participants provided answers by sliding a scale from
ero ‘‘very unlikely’’, to 100, ‘‘very likely’’. The order of these questions was randomized across participants, as were the colors of
he objects in the game. Once both questions were answered, participants continued play, exploring other objects, observing other
ules, and answering intermittent questions until they either won or lost the game. After one run of this tutorial game, participants
ere told that they were going to move on to the main task.

.3. Main task

For the main task, participants played three runs of seven different games. Each game run involved the same object layout and
ules. Between games participants were warned that they were switching to a different game. The object layout and rules would then
hange for the next game. To minimize the overlap between games, each game involved a variety of different kinds of interactions.
he ‘‘Destroy the blocks’’ game focused on using one object to destroy multiple instances of another object, while the ‘‘Collect the
ey’’ game required using one object to pick up a key and use it to open a door. The ‘‘Fill the gaps’’ game involved transforming
set of intangible objects into blocks that could be used to remove dangerous gaps. The ‘‘A opens everything’’ and ‘‘A creates

oins’’ games involved using the same object kind to solve multiple puzzles, while the ‘‘A pushes/B freezes’’ and ‘‘A transmutes/B
estroys’’ games involved selecting from two objects with known functions to solve a novel puzzle. The names of these games were
sed only for data analysis and were not shown to the participants at any time. The layout and rules for each game are included
n Appendix B. These games were presented in random order, and the color of the objects in each game was randomized across
articipants to minimize the effect of any associations with particular colors.

Just as in the tutorial, participants discovered rules by interacting with objects. These rules were added to the right-hand side
f the screen as they were discovered. While we still highlighted the rule box with a red border to draw participant’s attention
hen new rules were added, we no longer required them to click a box to continue for the main task. The observed rule list helped

educe the memory load caused by this task and control for any differences that might arise from giving our model the ability to
earn game rules from a single observation. We also found that many participants enjoyed seeing new rules get added to the list and
eemed to explore more as a result. While the structure of these internal rewards was not exactly captured in the model, it loosely
aralleled the internal bonus that agents received for discovering informative rules. We will refer to the parts of the task involving
electing game actions to learn rules and maximize reward as the ‘‘planning sub-task’’.

3 CloudResearch independently screens their participants with a series of attention checks, bot detection processes, and language comprehension tasks and
8

e drew our participants from this pre-screened population.
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Fig. 3. Visualization of the experimental design. (a) Screenshot of a game as seen by participants. Previously observed rules were displayed to the right of the
game. (b) An example trigger and question pair for the Win/Lose bias. When the participant triggered the ‘‘green kills black’’ lose condition, they were asked
about the likelihood of another potential rule involving a win condition (the ‘‘bias upheld’’ question) and a lose condition (the ‘‘bias violated’’ question). (c)
Experiment structure. Participants played one run of the tutorial, followed by three runs of each evaluation game. Participants were asked questions like those
in (b) during each game. The colored images next to each game indicate the questions shown in that game. The color of the image border corresponds to the
bias targeted by that question. The ‘‘Semantic biases’’ section provides a color key for the bias types. The color of the objects in the game screen were randomly
chosen for each participant and do not reflect anything about the semantic biases represented in that game.

Following the tutorial, observing certain rules during the main task triggered pairs of questions. Questions were displayed a few
steps after first observing the triggering rule to give participants time to notice the new rule before answering. Each pair of questions
was designed to assay a particular semantic bias from Section 2.5. For example, shortly after participants first discovered that falling
in a gap caused them to lose the ‘‘Fill the gaps’’ game, we presented them with the two questions shown in Fig. 3b. One question
asked about the likelihood of an unobserved winning condition, while the other involved an unobserved second losing condition.
As theories containing the former rule are guaranteed to uphold the win condition bias, while theories containing the latter rule
could potentially violate the bias, we will refer to these questions as the ‘‘bias upheld’’ and ‘‘bias violated’’ questions, respectively.
Participants who believe that games should have at least one win condition should evaluate the bias upheld rule as more likely than
the bias violated rule. In contrast, participants without the win condition bias should evaluate both rules as equally likely.

Each question pair in the experiment was similarly constructed to contain one rule that would be more likely given a particular
bias and one rule that would be less likely given that bias. Most of the questions were structured like the ones in the tutorial. Due
to the nature of their associated biases, the purpose and attainability questions were structured differently. The purpose questions
asked ‘‘Given the rules you have seen so far, how likely is it that there is at least one rule that you haven’t seen yet involving the
following kind of object?’’ The attainability questions asked ‘‘Imagine you have discovered the following rule: X. How likely would
it be that the rule below was also a rule?’’ For example, an attainability bias question might ask ‘‘Imagined you have discovered the
following rule: ‘green objects transform blue objects into pink objects.’ How likely would it be that ’you can push green objects’ was
also a rule?’’ The intuition behind this question framing is as follows: in order for the ‘green objects transform blue objects into pink
objects’ rule to be attainable, there must be a way for green and blue objects to come into contact. Thus, if a theory contains this
transformation rule, an agent with an attainability bias should infer that it also contains a rule that allows green and blue objects to
interact, like ‘you can push green objects.’ In contrast the presence of the transformation rule should have no effect on the likelihood
of an unrelated rule like ‘you can destroy green objects.’

Participants answered three different question pairs for each of the six biases of interest. To ensure that response patterns for
each bias were not a result of the specific structure of individual games, the three question pairs associated with each bias appeared
in three different games. To avoid interrupting the flow of the game too much, we limited each game to only contain two or three
question pairs. Fig. 3c provides a schematic of which biases we evaluated in each game. Appendix B provides a complete list of
the question pairs associated with each bias along with the triggering interactions/games for each pair. All participants saw all 18
question pairs during a run. The question pairs appeared in the same games after the same interactions for all participants; due to
the fact that participants played the games in random order and potentially explored games in different ways, each participant saw
9
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the question pairs in a different order. The order of the questions within each pair was also randomized across participants. We will
refer to the parts of this task involving predicting the answer to these question prompts as the ‘‘prediction sub-task’’.

4. Results

To address our central question of whether theory-based RL with semantic and syntactic biases better accounts for human learning
ehavior, we begin by looking at our prediction sub-task. First we demonstrate that the question pairs in this sub-task reliably assay
he presence or absence of specific biases in our models. We then present evidence that human question responses match model
redictions for three of the six semantic biases. Next we compare human and model behavior on the planning sub-task and find
hat while humans outperform both agents on this sub-task, agents with all semantic biases produce more human-like behavior
han agents without them. In particular, agents with the semantic biases get stuck less and choose to target their exploration during
earning in more human-like ways. We further show that while fitting bias weights to human prediction behavior results in more
uman-like results in the prediction sub-task, the same fitted weights produce less human-like behavior in our planning sub-task.
e then use independent ratings of human and agent game play to look for differences in more complex, multi-step exploration

atterns. We find that agents with semantic biases receive slightly higher ratings of directedness and competence, though our current
mplementation still fails to capture some broader nuances of human behavior. Taken together, these results suggest that human
ehavior is generally consistent with models that possess all of the semantic biases.

.1. Model performance in prediction sub-task

To evaluate whether the question pairs in our prediction sub-task reliably assayed the presence or absence of their intended
ias, we first simulated model behavior. We used two classes of theory-based agents for these simulations: agents with the syntactic
iases prior, and agents with syntactic and semantic biases. We refer to the former as the syntactic agents and the latter as the
emantic agents. Both agent types used the inference and planning mechanisms described in Section 2. The only difference between
he two agents was in the set of bias weights 𝝎 used in Eq. (4) for the prior 𝑃 (𝜃). The syntactic agents had a fixed weight 𝜔𝑠 for all
f the syntactic biases, and a weight of zero for all of the semantic biases. The semantic agents used the same fixed weight 𝜔𝑠 for
he syntactic biases with a non-zero fixed weight 𝜔𝑎 for all six semantic biases. We fit 𝜔𝑠 and 𝜔𝑎 using a grid search over potential
ombinations of these parameters (using all combinations of integer values from −5 to 5). We found that setting these parameters
o 4 and 3, respectively produced posteriors with the highest proportion of theories that matched all non-zero weighted biases for
ach agent type. We simulated model predictions by using the particle approximation of the posterior described in Eq. (5). Since
ach prediction question involved evaluating the likelihood of a rule 𝑟 given prior observations 𝐃, we estimated this conditional
robability 𝑃 (𝑟|𝐃) by checking which of the 𝐾 particles in an agent’s posterior contained the rule 𝑟:

𝑃 (𝑟|𝐃) = ∫𝜃
1[𝑟 ∈ 𝜃]𝑃 (𝜃|𝐃)𝑑𝜃

≈
𝐾
∑

𝑘=1
1[𝑟 ∈ 𝜃𝑘]𝑝𝑘 (13)

o avoid the possibility that none of the 𝐾 particles in a given posterior approximation contained the rule in question, we fixed half
he particles in our variational approximation to ensure that they included the question rule. This allowed the model to approximate
he posterior probability of specific rules more accurately. For additional details about the approximation algorithm, see Appendix A.

To provide a fair comparison to humans, we ran one instance of each agent type for every participant. We accounted for any
ifferences in observations due to the order in which participants explored by yoking each agent to one human participant. Thus,
or the prediction sub-task, each agent took the same actions as their corresponding participant before being evaluated on each
uestion pair.

Fig. 4 shows the results of these simulations. The 𝑥-axis shows the six semantic biases from Section 2.5. The 𝑦-axis represents
he average response difference between the bias upheld and bias violated questions for each of the three question pairs associated
ith each bias. The color of the bars represents the agent type, with blue representing the syntactic agents and orange representing

he semantic agents. Green and red represent lesioned agents and fitted bias weights agents which we describe in detail below and
n Section 4.4, respectively. The semantic agents consistently predicted that the rule in the bias upheld question was more likely
han the rule in the bias-violated question for all six types of biases. In contrast, the syntactic agents predicted no difference. This
akes sense intuitively as the syntactic prior only cares about the structure of rules in a theory, not their content. Thus, as long as

oth rules in a question pair were syntactically valid, both rules were equally likely. T-tests of the simulated response differences
howed that the differences predicted by the semantic agent were significantly higher than those of the syntactic agent. Table 2
rovides t-tests comparing the response differences in Fig. 4. We used Bonferroni corrections within each table column to correct
or multiple comparisons.

We also looked at six lesioned versions of the semantic agents. Each of the six lesioned agents had the bias weight for one of
he six semantic biases set to zero. By looking at the simulated predictions of the lesioned agents, we confirmed that the response
ifferences on the question pairs for each bias type were largely independent. In other words, setting the informativeness bias weight
o zero only affected the predicted response differences on the informativeness question pairs. Appendix C provides additional details
bout these analyses. The green bars in Fig. 4 show the performance of these lesioned agents. Here we only include the response
10

ifferences that were relevant for each lesioned agent type. For example, the response differences for the lesioned agents on the
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Fig. 4. Overview of human and agent performance on the prediction sub-task. 𝑌 -axis shows the average difference in response between the ‘‘bias upheld’’ and
‘‘bias violated’’ questions across all three question pairs for each semantic bias. Error bars reflect one standard error of the mean. The lesioned agent category
only includes the agents with the associated bias removed (e.g., the green attainability bias type bar only includes agents with the attainability bias removed).

Table 2
P-values for t-tests comparing results from Fig. 4. Red text indicates cells where there was significant evidence of difference (p < 0.05). P-values were corrected
for multiple comparison within each column using a Bonferroni correction.

Bias Semantic
vs.
Syntactic

Fitted
bias weights
vs.
Lesioned

Human
vs.
Lesioned

Human
vs.
Semantic

Human
vs.
Fitted
bias weights

Non-arbitrary
goals

p<0.01 p<0.01 p<0.01 p=1.00 p=0.33

Attainability p<0.01 p=0.76 p=0.37 p<0.01 p=0.11
Consistency p<0.01 p<0.01 p=0.01 p<0.01 p=0.76
Informativeness p<0.01 p<0.01 p<0.01 p=0.05 p<0.01
Purpose p<0.01 p=0.96 p=1.00 p<0.01 p=0.32
Win/Lose p<0.01 p<0.01 p<0.01 p=1.00 p=0.43

consistency bias questions only reflect the lesioned agents where the consistency bias weight was set to zero. Similarly, the differences
for the lesioned agents on the win/lose bias only reflect the lesioned agents where the win/lose bias was set to zero. The agents
with lesioned biases for purpose, informativeness, and non-arbitrary goals showed significantly higher differences than the syntactic
agent, suggesting that some of the other biases played some role in answering these questions. However, all lesioned agents showed
significantly lower performance than the regular semantic agents, indicating that our question pairs at least predominantly relate to
a single bias. Taken together, these results provide evidence that the questions in our prediction task can be used to reliably assay
the presence or absence of particular biases as formulated in our model.

4.2. Evidence for biases in human prediction behavior

Human behavior in the prediction sub-task is consistent with the presence of some, but not all of the semantic biases that
we explored. The purple bar in Fig. 4 shows human performance across all question pairs. Humans produce responses that are
substantially higher than the lesioned agents for the question pairs associated with four of the semantic biases (non-arbitrary
goals, win/lose, consistency and informativeness) but not for the attainability or purpose question pairs. However, while there was
no significant difference between human and semantic agents on the non-arbitrary, win/lose and informativeness biases, human
responses for consistency bias question pairs were significantly lower than the responses predicted by the semantic agents. Thus
11
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human behavior in the prediction task is consistent with semantic biases for non-arbitrary goals, winning/losing conditions, and
informative point structures, but not with semantic biases for attainability, consistency, or purpose.

4.3. Comparing human and agent performance on the planning sub-task

To further explore whether humans exhibit the semantic biases from Section 2.5, we also compared human and agent behavior
n the planning sub-task. Just like with the prediction sub-task we ran 27 instances of the syntactic and semantic agents, one for
very human participant. However, for the planning analysis, we allowed the agents to select their own actions rather than yoking
hem to a human participant. Letting agents select their own actions sometimes resulted in agents pushing necessary objects into
orners or destroying them. Once this happened agents were effectively stuck, leading them to select actions at random. To address
his, we introduced a step limit and automatically ended games when an agent reached 250 steps. Since the maximum number of
teps in each game was much larger than the average number of steps required to win or lose, agents only produced this third
utcome when they got stuck.

On average, human participants won game runs more often than either kind of agent. Fig. 5a shows the percentage of runs that
nded in a win on the 𝑦-axis and agent type on the 𝑥-axis. There was no significant difference in win percentage between the syntactic

and semantic agents. However, task performance alone is not always the best measure of human-like behavior. For example, RL
agents often exhibit patterns of repeated interactions that humans do not. To explore this, we drew on the underlying structure of
the seven evaluation games to group object interactions into a few broad categories. All of these games essentially involved using
push-able tool objects to either trigger or avoid interactions with non-mobile target objects. While tools could be pushed into each
other, these tool/tool interactions rarely had any effect. Often there were also rewarding objects to collect, obstacles that blocked
progress, and punishing objects that killed the player. Fig. 5b shows the proportion of interactions belonging to each of these types
that agents explored during learning, averaged across all seven games. Since agents and humans were provided with rules as soon
as they were observed, we classified learning interactions as all actions taken up to and including an agent’s first time triggering
the win condition for a particular game.

For all interaction types except the Avatar/Blocker type, the semantic agents exhibited exploration preferences that were
significantly closer to human preferences than those of the syntactic agents. In particular, agents with the semantic biases spent
less time pushing tool objects into walls or other tools and more time using the tool objects to interact with target objects. This
resulted in them achieving a higher proportion of interactions with rewarding objects and getting stuck less. Fig. 5c shows the
proportion of runs during learning where the agent ended the game by running out of steps. All agents showed similar patterns of
behavior in runs where they got stuck. On runs where agents did not get stuck, the syntactic agents explored significantly more
tool/tool interactions (𝑡(359) = 2.36, 𝑝 < 0.05) while semantic agents spent more time exploring tool/target interactions (𝑡(359) = 2.55,
𝑝 < 0.05). This more directed exploration helped the semantic agents get to final part of each game more often, while the syntactic
agents often got stuck in the earlier parts of each game. However, when presented with the chance to trigger the winning and losing
conditions in the later parts of each game, the semantic biases were insufficient to push the semantic agents towards the winning
interactions. Thus the semantic agents did not win as often as humans, even though they got stuck less.

4.4. Fitting biases based on human prediction behavior

Human performance on the prediction sub-task was consistent with some but not all of the semantic biases. However, the agents
with all the semantic biases produced more human-like behavior on the planning sub-task. To further understand this combination
of results, we also evaluated whether agents with only the set of biases exhibited by humans in the prediction sub-task still produced
human-like behaviors in the planning sub-task. We accomplished this by evaluating a series of fitted bias agents. For these fitted
bias agents, we used the same 𝜔𝑠 of 4 for all syntactic biases, but fit the semantic bias weights separately for each participant.
Attempting to fit these bias weights using classical model fitting approaches proved to be computationally intractable, so instead
we used a confirmatory factor analysis (CFA) to estimate the latent bias weights from performance on the prediction task. The
central assumption behind a CFA is that a series of response variables 𝐲 are linearly related to a set of latent factors 𝜼. For the
current work, 𝐲 corresponds to the set of response differences on the prediction tasks, while the factor scores 𝜼 are linearly related
to the semantic bias weights 𝝎 for each participant. In order to properly re-scale the 𝜼 factor scores into the same space as the bias
weights 𝝎, we included the semantic and lesioned agent responses along with the human participant responses when fitting the
CFA. We could then use the mean factor scores for the lesioned and semantic agents (whose bias weights were known) to re-scale
the factor scores for the human participants into the bias weight space. This approach naturally takes into account any difference
in response variance between the different prediction questions associated with each bias.

After evaluating several different CFA models (described in more detail in Appendix D), our final model had a 𝜒2 of 378.6 with
125 degrees of freedom and a RMSEA of 0.091 (90% confidence interval: (0.081, 0.102)). Under the CFA fit rules proposed by Bentler
and Hu (1999), this model is right on the border between fair and poor. However, these metrics predominantly measure the model’s
ability to account for question responses on this task, which were inherently noisy. We also looked at the model’s ability to capture
differences in the known bias weights from the agents, where the CFA reliably estimated higher weights for the semantic than the
lesioned agents. Furthermore, we found that the question responses predicted by agents with the fitted bias weights did significantly
correlate with human responses for four out of the six biases studied4, and Fig. 4 shows that the agents with the fitted bias weights

4 See Appendix D for more details about the fitted bias weights and their correlation patterns.
12
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Fig. 5. Overview of human and agent performance on the planning sub-task. (a) shows the total percentage of runs where agents were successful. (b) show the
proportion of different kinds of interactions triggered by an agent during learning. P-values represent a comparison between syntactic and semantic agents with
Bonferroni correction for multiple comparisons. (c) shows the percentage of game runs where agents got stuck during learning. Error bars show the standard
error of the mean.
13
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provided a more qualitative match to human predictions overall. In particular, the fitted bias agents better match the pattern of large
and small prediction differences demonstrated by humans across bias questions, although the semantic agent produced differences
that were closer to human responses on three out of the six question types. This suggests that while our approach was imperfect, it
was adequate for our current purposes.

Fig. 5 shows that the behavior of the fitted bias agents in the planning sub-task was more similar overall to the syntactic agents
han the semantic agents. Furthermore, there was no significant correlation across participants between any of the fitted bias weights
nd success rate, rate of getting stuck, or proportion of interaction type in the planning sub-task. Similarly, there was no correlation
etween the success rate, rate of getting stuck, or proportion of interaction type for human participants and the agents with that
articipant’s fitted weights. Overall these results suggest that the attainability, purpose, and consistency biases that did not account
or human question responses were necessary for producing more human-like behavior in the planning sub-task. Given that the
ttainability and purpose questions were the only two sets of questions that were differently phrased, it is possible that this different
hrasing introduced a difference between how humans interpreted the questions and how we evaluated the questions using the
odel. Alternatively it is possible that humans possess semantic biases that we have not modeled here that affected either their
rediction or planning behavior. Further research is needed to properly disambiguate these results.

.5. Rating artificial agent behaviors

While looking at proportions of interaction types was useful for detecting some of the most blatant differences in human and agent
ehavior, we also observed broader differences in the gestalt character of agent planning behavior that were not well accounted
or with these descriptive statistics. More than any individual choice in any individual, much of the ‘‘humanness’’ of behavior in
hese kinds of complex tasks comes across in more abstract behavioral properties like the ‘‘directedness’’ of human approaches. For
xample, humans and semantic agents who discovered that the tool objects in the ‘‘Fill the Gap’’ game (shown in Fig. 2) could
e used to transform target objects often re-used that tool to immediately transform all of the other target objects on the screen.
yntactic and fitted bias agents, on the other hand, rarely exhibited this streamlined pattern of behavior. Understanding the source
f these differences in gestalt behavioral patterns is an important part of understanding the similarities and differences between
uman intelligence and our current best models of cognition. To explore whether these gestalt behavioral patterns are an emergent
roperty of inductive biases in decision making, we identified a few such characteristics and had independent human raters evaluate
he presence or absence of these characteristics in videos of both human and agent performance on our planning sub-task. Initial
xploration during a more open-ended pilot study suggested that raters found human play to be more directed and competent, so we
hose ‘‘directedness’’, and ‘‘competence’’ as gestalt qualities to evaluate. We also included a more general ‘‘humanness’’ characteristic
o capture other high level patterns of behavior not included in our other two characteristics.

We had a separate set of 87 participants familiarize themselves with each game and then compare videos of the 27 original
umans and agents learning to play that game. After playing each game, raters watched a video of a human, semantic agent,
nd syntactic agent playing the same game with color-matched objects. Given the length of the rating task and the similarity of
he fitted bias and syntactic agents on the planning task, we chose not to include the fitted bias agents in the rating task. After
ach video the raters were asked ‘‘Was the agent in this video a human or a computer?’’, ‘‘How competent was the agent you
ust watched?’’, and ‘‘How purposeful were the agent’s actions?’’. Participants answered each question using a sliding scale from

(‘‘Definitely a computer’’, ‘‘Not competent’’, or ‘‘Not purposeful/random’’) to 100 (‘‘Definitely a human’’, ‘‘Very competent’’, or
‘Very purposeful’’). The order of the games were randomized across participants and the order of the agent types was randomized
cross trials. Appendix E provides additional details about the rating task and participants.

Overall, raters were capable of distinguishing the three kinds of agents based on behavior. Because individual raters varied in
he proportion of the rating bar they used, we instead focused our analyses on the within-participant rating difference. Fig. 6a shows
ating differences between semantic and syntactic agents and humans and syntactic agents. Humans were rated as a more competent
𝑡(1012) = 12.43, 𝑝 < 0.001) and directed ((𝑡(1012) = 11.83, 𝑝 < 0.001) than syntactic agents. Semantic agents were also rated as more
ompetent ((𝑡(1012) = 2.61, 𝑝 < 0.01) and directed ((𝑡(1012) = 2.63, 𝑝 < 0.01) than syntactic agents, though to a much lesser degree.
ompetence and directedness ratings within participants were also strongly correlated.

There was no significant difference in the average humanness ratings for any of the three agents. On closer inspection, however,
his seems to be a result of how raters interpreted what it means for an agent to be human-like. Some of the raters consistently
ated more competent agents as more human-like, while others rated less competent agents as more human-like (see Appendix E for
orrelation analysis). This suggests that some raters expected humans to be better than computers at these kinds of games, while
thers thought the opposite. Fig. 6b shows that when we split the raters into these ‘‘more human = more competent’’ and ‘‘more

human = less competent’’ groups based on individual correlation between competence and humanness ratings, we found that the
former group rated human agents as significantly more human (𝑡(274) = 6.08, 𝑝 < 0.01) than syntactic agents while the latter rated
humans as significantly less human (𝑡(318) = 4.85, 𝑝 < 0.01) than the syntactic agents. The former group also rated the semantic
agents as significantly more human (𝑡(274) = 2.01, 𝑝 < 0.05). There was no significant difference between the semantic and syntactic
agents for the ‘‘more human = less competent’’ group.

To better understand the source of these rating differences, we also fit a mixed effects model predicting each rating as a function
of the success rate, rate of getting stuck, proportion of interaction types, and agent type. The coefficients for success rate, rate of
getting stuck, and proportion of interactions with walls were significant for all three ratings. This suggests that the rating differences
14
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Cognitive Psychology 138 (2022) 101509T. Pouncy and S.J. Gershman
Fig. 6. (A) Gestalt behavioral characteristic ratings for human and agent planning behavior. Each graph shows the within-rater difference scores between ratings
of the semantic and human agents relative to the syntactic agents. The 𝑌 -axis in the left-most figure represents the rater’s certainty that video was of a human
agent. Middle figure shows participant’s rating of agent competence. Right-most figure shows participant’s rating of the purposeful-ness of an agent’s actions.
Differences in competence and directedness ratings were significant at the 𝑝 < 0.05 level. (b) Humanness ratings split between raters who believed more competent
agents were more likely to be humans and raters who believed more competent agents were less likely to be human. Error bars show standard error of the mean.

humans avoid pushing objects into walls, use tools correctly, and avoid getting stuck in tasks. This makes them appear more directed
and competent.

Agent type for the mixed effects model was encoded with dummy variables for humans and semantic agents. The coefficient
for the semantic agent variable was not significant, suggesting that the semantic agent did not demonstrate any more nuanced
patterns of behavior that reliably distinguished them from the syntactic agents. In contrast, the coefficient for the human variable
was significant, suggesting that humans behavior did vary in some way not captured by the other metrics that we used to analyze
planning behavior. Appendix E provides a more thorough description of this analysis.

Taken together these results suggest that the semantic biases lead to differences in the gestalt character of planning behavior
that were strong enough to be observable to untrained human raters. However, the semantic biases we have explored so far were
15
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Fig. 7. An overview of the effectiveness of our DPVI algorithm for approximating posteriors during the planning sub-task. During planning, agents frequently
re-estimated a posterior over theories 𝑃 (𝜃|𝐃). The 𝑥-axis represents the proportion of theories in each of these estimated posteriors that had the maximum
likelihood score (i.e., satisfied all of the biases in the prior 𝑃 (𝜃) that had non-zero weights). The 𝑦-axis represents the number of estimated posteriors with that
proportion. Color indicates agent type. Blue represents the syntactic agents, while orange represents the semantic agents.

not sufficient to capture the full range of gestalt behaviors exhibited by humans in our task. Understanding nature of these patterns
and their cognitive origins is an important direction for future research.

4.6. Effects of posterior approximation on agent behavior

While the semantic agents produced more human-like behavior, they still fell short of human performance in the planning sub-
task. There are many potential explanations for this difference; here we highlight one explanation here for further analysis. One
reason for superior human performance is that humans may make use of better approximate inference algorithms than the ones we
used here. Upon closer inspection, the DPVI technique that we used often under-estimated high likelihood areas of the posterior
for the semantic agents specifically. Fig. 7 shows the proportion of theories in an agent’s approximate posterior that satisfied all
the non-zero weighted bias functions. For the syntactic agents, most of the theories in the approximate posterior satisfied all of the
syntactic bias constraints. However, the same process often failed to produce even a single particle that satisfied all of the inductive
bias constraints for the semantic agents. And yet in many of these cases there are dozens, if not hundreds, of valid VGDL theories
capable of explaining an agent’s observations which match all the semantic constraints.

The asymmetrical performance of the DPVI algorithm under the syntactic and semantic bias weight sets is likely a result of
the way we implemented the algorithm with our theory representation. As mentioned in Section 2, DPVI operates by weighting
particles based on their unnormalized posterior probability. We constructed the particle set by searching within a neighborhood
around a set of initial particles. Each neighbor theory was constructed by changing one of the predicate/value pairs associated with
a theory to any of the other values that a predicate could take on. This resulted in very small differences between theories and
their neighbors. This small step size was fine for the syntactic biases. Most of the syntactic biases have to do with individual lines
of a theory, so they can be fixed with a few of these small steps. However, most of the semantic biases involved more complex
links between multiple lines of a theory. A theory that violates the purpose bias, for example, may require dozens of small changes
to multiple lines to produce a valid theory. Furthermore, many of these small intermediate changes may temporarily violate other
biases. Intuitively, this suggests that adding the semantic biases made the DPVI algorithm more likely to get stuck in local optima
rather than exploring the theory space more broadly. Including theories that are a little further away in the set of neighbors might
help improve performance, bringing our model closer to human-level performance.

5. General discussion

What kinds of inductive biases do humans bring to complex tasks? We sought to answer this question in one complex task
domain (grid-based video games) which incorporates elements of many other, more realistic domains: object-oriented, relational
structure combined with events and goals. We developed an experimental approach to measuring and modeling inductive biases
in this domain, and used this approach to evaluate whether model-based RL with syntactic biases for theory-based representations
was sufficient to account for a variety of human-like learning behaviors.

In particular, we designed a series of video game environments and had both human and artificial agents complete two sub-
tasks in these environments. First we let agents freely explore the environment, planning out actions that would allow them to learn
16
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Table 3
Summary of VGDL predicates used in this work and their associated return types.

Predicate Return type Description

HasSpriteType(𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞) 𝐁𝐨𝐨𝐥𝐞𝐚𝐧 Indicates whether the 𝑛th line of the
SpriteSet is filled in or not.

SpriteFeature(𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞) 𝐓𝐲𝐩𝐞𝐅𝐞𝐚𝐭𝐮𝐫𝐞 Indicates the functional type of the 𝑛th
sprite type.

SpriteColor(𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞) 𝐂𝐨𝐥𝐨𝐫 Indicates the color of the 𝑛th sprite type.

HasInteraction(𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧) 𝐁𝐨𝐨𝐥𝐞𝐚𝐧 Indicates whether the 𝑛th line of the
InteractionSet is filled in or not.

InteractionAgent(𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧) 𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞 Indicates which sprite type is the agent
for
the 𝑛th interaction.

InteractionPatient(𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧) 𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞 Indicates which sprite type is the patient

for the 𝑛th interaction.

InteractionEffect(𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧) 𝐄𝐟𝐟𝐞𝐜𝐭 Indicates the effect of the 𝑛th
interaction.

HasParameter(𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧, 𝐏𝐚𝐫𝐚𝐦𝐓𝐲𝐩𝐞) 𝐁𝐨𝐨𝐥𝐞𝐚𝐧 Indicates whether the 𝑛th interaction
includes a value for a particular type of
parameter.

ParamValue(𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧, 𝐏𝐚𝐫𝐚𝐦𝐓𝐲𝐩𝐞) Either 𝐈𝐧𝐭𝐞𝐠𝐞𝐫,
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐈𝐧𝐭𝐞𝐠𝐞𝐫, or
𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞
depending on param type

Indicates the specific value for a given
parameter type for the 𝑛th interaction.

HasCondition(𝐓𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧) 𝐁𝐨𝐨𝐥𝐞𝐚𝐧 Indicates whether the 𝑛th line of the
TerminationSet is filled in or not.

LimitParam(𝐓𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧) 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐈𝐧𝐭𝐞𝐠𝐞𝐫 Indicates the limit associated with the
𝑛th termination condition.

WinParam(𝐓𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧) 𝐁𝐨𝐨𝐥𝐞𝐚𝐧 Indicates whether the 𝑛th termination
condition is a winning condition or a
losing condition.

STypeParam(𝐓𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧) 𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞 Indicates the sprite type associated with
the 𝑛th termination condition.

environment dynamics and maximize reward. This free exploration then triggered intermittent question prompts asking the agents to
predict the likelihood of novel rules based on their current understanding of the environment. These question prompts were divided
into categories, with each category being designed to assay the presence/absence of a particular inductive bias about the semantic
content of theory-based representations. We then compared human performance on these planning and prediction sub-tasks to the
performance of theory-based RL agents with and without these semantic inductive biases. Finally, we explored whether these same
semantic biases might account for more general gestalt properties of human planning behavior by using independent human raters
to evaluate the directedness, competence, and humanness of human and artificial agent gameplay videos.

Overall, human planning behavior was better accounted for with agents possessing both syntactic and semantic biases. In
articular, we found evidence for the following semantic biases in human planning behavior:

1. Games have at least one winning condition and at least one losing condition.
2. Goals are non-arbitrary (the goal of a game is to collect/destroy/transform all of some kind of object).
3. Points are informative (interactions that award points usually provide information about how to win a game, while

interactions that detract points usually provide information about how to lose a game).
4. Objects serve consistent functions.
5. All target interactions or goals are attainable through at least one sequence of interactions.
6. All objects serve a purpose (i.e., they are involved in moving, blocking, destroying, or otherwise interacting with at least one

other kind of object).

Human responses in the prediction sub-task were consistent with three of the six semantic biases (win/lose, non-arbitrary goals,
and informative of reward structures). The lack of evidence for the remaining three biases may be a result of the particular framing
of our question prompts. Additionally, agents with all six semantic biases were rated as demonstrating more human-like patterns
of gestalt behavior. Taken together these results suggest that human learning in complex task domains involves not just inductive
biases about the syntactic structure of learned representations, but also biases about their semantic content.

Our findings are broadly consistent with prior work on human biases in several other domains. For example, existing work
has shown that humans develop domain-specific preferences for particular solution structures (Chi et al., 1981; Schoenfeld &
17

Herman, 1982; Weiser & Shertz, 1983). The biases we found that favor classically structured games (i.e., at least one win/lose
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Table 4
Summary of type value ranges for each variable type.
Variable type Potential values

𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞 1–10

𝐓𝐲𝐩𝐞𝐅𝐞𝐚𝐭𝐮𝐫𝐞 MovingAvatar, Passive

𝐂𝐨𝐥𝐨𝐫 red, blue, green, yellow, black,
gray, light gray, dark gray,
purple, orange, light blue, gold,
pink.

𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧 1–12

𝐄𝐟𝐟𝐞𝐜𝐭 killSprite, stepBack, bounceForward, transformTo,
killIfOtherHasMore, collectResource, killIfHasLess,
killBoth,
killAll, killWithScoreChange, nothing

𝐓𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 1–3

𝐏𝐚𝐫𝐚𝐦𝐕𝐚𝐥𝐮𝐞 value, resource, limit, stype

𝐈𝐧𝐭𝐞𝐠𝐞𝐫 −1, 0, 1

𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐈𝐧𝐭𝐞𝐠𝐞𝐫 0–5

𝐁𝐨𝐨𝐥𝐞𝐚𝐧 True, False

condition and conditions involving non-arbitrary-goals) could be interpreted as similar domain-specific preferences in theory
learning. Additionally, previous work has highlighted how beliefs about designer intent bias human category learning (Kelemen
& Carey, 2006) and solution search (Duncker, 1945), and the biases we find for informativeness, consistency, attainability, and
purpose could be interpreted as evidence for a similar design stance in theory learning. This broader literature suggests that similar
biases apply to a wide swath of decision making domains, not just video games specifically.

We in no way intend to suggest that the six semantic biases studied here exhaust the space of human inductive biases in complex
asks. To this end, the current work is also intended to provide a novel computational framework for identifying other biases in
hese kinds of tasks. Using Markov logic networks as a prior allows for the integration of any set of conceptual biases that can be
ncoded as logical expressions over theory predicates. Defining biases over theory-based representations makes it easier to encode
igh-level biases that would be difficult to formalize over lower-level task representations. Furthermore, the weighted format of
he prior makes it easy to empirically evaluate the effects of individual biases. We therefore also present the current work as a
roof-of-concept for studying other biases in this domain.

Furthermore, while our current work has focused on biases in video game learning specifically, our general framework could
lso be used to explore biases in other complex learning domains. Theory-based RL is agnostic to the domain language used to
ncode theories, so our framework could be similarly applied to other domains by modifying this language. For example, while we
id not include these components here, VGDL is capable of modeling many different kinds of agents. These agents can incorporate
otions of belief, desire, and intent, and our framework could begin to include biases relating to these psychological notions as well.
imilarly, with more robust core knowledge engines, the same approach could explore biases in a wide range of real-world decision
aking tasks. Thus, the current work provides not just an analysis of biases in human video game play, but also a more general

pproach for studying biases in real-world theory learning.

.1. Limitations and future directions

While biases in theory learning play an important role in explaining human behavior, they are not the only piece of the puzzle of
uman intelligence. Even with the semantic biases, our agents still don’t present a full account of human learning. We have already
iscussed how our choice of theory inference algorithm struggles with more complex biases. Similarly, our choice of value estimation
rocess may not capture key elements of human cognition. For example, in spite of their successes, semantic agents still get stuck
ore than humans. One possible explanation for this is that humans also have inductive biases about what successful strategies look

ike for a task (cf. Rosman & Ramamoorthy, 2012; Wingate, Diuk, O’Donnell, Tenenbaum, & Gershman, 2013; Wingate, Goodman,
oy, Kaelbling, & Tenenbaum, 2011). Prior experience may have led humans to infer that pushing things into walls rarely helps,

hus humans do not even consider these actions when evaluating plans. Identifying human inductive biases over action policies
epresents an interesting direction for future research.

Our work also raises several other interesting questions for future work. First, where do these biases come from? Children readily
earn structured theories of the world from a young age (Gopnik et al., 2004), but it is not clear whether they do so using the
ame combination of inductive biases that adults exhibit. Second, could these kinds of biases be learned from experience? The
articular biases that we have presented in this work can all be specified in predicate logic, and could potentially be learned through
robabilistic program induction (Liu et al., 2019; Pu, Ellis, Kryven, Tenenbaum, & Solar-Lezama, 2020). It would be interesting to
xplore whether program induction could be used to learn inductive biases directly from experience. Third, are these biases mutable?
umans demonstrate contextual adaptation to signals like overall reward frequency (Gershman & Niv, 2015), so it is plausible

hat repeated exposure to counter-intuitive games (e.g., games with purpose-less objects or uninformative reward structures) could
ventually lead participants to learn context-specific exceptions to particular biases.
18
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Table 5
Summary of syntactic inductive biases. For simplicity, the Formal Description column only shows partial expressions where the rest of the expression can be
inferred from the high level description.

Syntactic
bias

High-level description Formal description

Avatar exists At least one sprite can be controlled by
the player.

∃𝑠 ∈ 𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞 s.t. 𝐻𝑎𝑠𝑆𝑝𝑟𝑖𝑡𝑒𝑇 𝑦𝑝𝑒(𝑠) ∧
𝑆𝑝𝑟𝑖𝑡𝑒𝐹 𝑒𝑎𝑡𝑢𝑟𝑒(𝑠) == MovingAvatar

InteractionSet
non-empty

VGDL description includes at least one
interaction
rule.

∃𝑖 ∈ 𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧 s.t. 𝐻𝑎𝑠𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑖)

Agent/Patient exist The agent, patient, stype, and resource
sprite types
are defined in the SpriteSet for all
interactions

∀𝑖 ∈ 𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧 ⋅𝐻𝑎𝑠𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) ⇒
𝐻𝑎𝑠𝑆𝑝𝑟𝑖𝑡𝑒𝑇 𝑦𝑝𝑒(𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑔𝑒𝑛𝑡(𝑖))

Unique
agent/patient
set

A VGDL description only describes one
effect for
every set of agent/patient sprite types.

∀[𝑖1 , 𝑖2] ∈ 𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧𝐬¬𝐻𝑎𝑠𝐼𝑛𝑡(𝑖1)
∨¬𝐻𝑎𝑠𝐼𝑛𝑡(𝑖2)∨
[{𝐼𝑛𝑡𝐴𝑔(𝑖1), 𝐼𝑛𝑡𝑃 𝑎𝑡(𝑖1)} == {𝐼𝑛𝑡𝐴𝑔(𝑖2), 𝐼𝑛𝑡𝑃 𝑎𝑡(𝑖2)} ⇒

𝐼𝑛𝑡𝐸𝑓𝑓 (𝑖1) == 𝐼𝑛𝑡𝐸𝑓𝑓 (𝑖2) ∨ 𝑠𝑡𝑒𝑝𝐵𝑎𝑐𝑘 ∈
𝑠𝑒𝑡(𝐼𝑛𝑡𝐸𝑓𝑓 (𝑖1), 𝐼𝑛𝑡𝐸𝑓𝑓 (𝑖2)])

Effects have
correct parameters

killAll and transformTo effects have
stype
parameters, killIfOtherHasMore and
killIfHasLess
effects have resource and limit
parameters,
collectResource effects have limit and
value
parameters

∀𝑖1 ∈ 𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧
[𝐻𝑎𝑠𝐼𝑛𝑡(𝑖1) ∧𝐻𝑎𝑠𝐼𝑛𝑡𝑃𝑎𝑟(𝑖1 , 𝑆𝑇 𝑦𝑝𝑒)] ⇔
[𝐻𝑎𝑠𝐼𝑛𝑡(𝑖1) ∧ 𝐼𝑛𝑡𝐸𝑓𝑓 (𝑖1) ∈ 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑇 𝑜, 𝑘𝑖𝑙𝑙𝐴𝑙𝑙]

TerminationSet
non-empty

VGDL description includes at least one
goal.

∃𝑔 ∈ 𝐓𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 s.t. 𝐻𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑔)

TerminationSet
sprites exist

Goal sprites defined in the sprite set. ∀𝑔 ∈ 𝐓𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 ⋅𝐻𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑔) ⇒
𝐻𝑎𝑠𝑆𝑝𝑟𝑖𝑡𝑒𝑇 𝑦𝑝𝑒(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑚(𝑔, 𝑆𝑇 𝑦𝑝𝑒))

Unique sprite/limit
set

Each goal has a unique sprite and limit
combination.
Thus the same condition cannot
simultaneously trigger winning and
losing.

∀[𝑔1 , 𝑔2] ∈ 𝐓𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 ⋅ ¬𝐻𝑎𝑠𝐶𝑜𝑛𝑑(𝑔1)
∨¬𝐻𝑎𝑠𝐶𝑜𝑛𝑑(𝑔2)∨
[𝐶𝑃𝑎𝑟𝑎𝑚(𝑔1 , 𝐿𝑖𝑚) ==
𝐶𝑃𝑎𝑟𝑎𝑚(𝑔2 , 𝐿𝑖𝑚) ∧ 𝐶𝑃𝑎𝑟𝑎𝑚(𝑔1 , 𝑆𝑇 𝑦𝑝𝑒) ==
𝐶𝑃𝑎𝑟𝑎𝑚(𝑔2 , 𝑆𝑇 𝑦𝑝𝑒) ⇔ 𝑔1 == 𝑔2]

Table 6
Parameter values for theory inference.
Parameter High-level description Value

𝑁𝐴 Number of variational distributions to approximate 10
𝐾 Number of particles for each variational distribution 10
𝑁𝑆 Number of vector components to sample 50
𝜖 Variational free energy threshold 0.0001
𝜔𝑠 Base weight for all syntactic biases 4
𝜔𝑑 Base weight for all semantic biases 3
𝑤𝑆 Likelihood weight for correct sprite set predictions. 1
𝑤𝐼 Likelihood weight for correct interaction set predictions. 10
𝑤𝐺 Likelihood weight for correct termination set predictions. 20

5.2. Conclusion

In conclusion, our work takes a step towards explaining how humans employ structured inductive biases in the service of learning
omplex tasks. It joins other recent work emphasizing the importance of inductive biases for explaining human performance and
mulating it in artificial agents (Gershman, 2021; Griffiths et al., 2010; Lake et al., 2017; Sinz, Pitkow, Reimer, Bethge, & Tolias,
019). The inductive biases we studied may partly explain the remarkable sample efficiency and flexibility of human learning.
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Table 7
Full list of hierarchical movement options for detecting object-oriented actions. Bold text indicates hierarchical
option names. Italic text indicates non-hierarchical option names.

Option name Alternative number Sequence

MoveTo 1 AlignX, AlignY
2 AlignY, AlignX

PushTo 1 MoveToPushObj, RotateIntoPlaceY, PushAlignY,
RotateIntoPlaceX, PushAlignX

2 MoveToPushObj, RotateIntoPlaceX, PushAlignX,
RotateIntoPlaceY, PushAlignY

AlignX 1 MoveUntilAlignedX
2 MoveUntilBlockedX, MoveUntilClearX, SingleStepX,

MoveUntilClearY, MoveTo
AlignY 1 MoveUntilAlignedY

2 MoveUntilBlockedY, MoveUntilClearY, SingleStepY,
MoveUntilClearX, MoveTo

MoveToPushX 1 MoveUntilTouchX
2 MoveUntilBlockedX, MoveUntilClearX, SingleStepX,

MoveUntilClearY, MoveToPush
MoveToPushY 1 MoveUntilTouchY

2 MoveUntilBlockedY, MoveUntilClearY, SingleStepY,
MoveUntilClearX, MoveToPush

PushAlignX 1 PushUntilAlignedX
2 PushUntilBlockedX, RotateIntoPlaceY, PushUntilClearX,

RotateIntoPlaceX, SinglePushX, PushUntilClearY, PushTo
PushAlignY 1 PushUntilAlignedY

2 PushUntilBlockedY, RotateIntoPlaceX, PushUntilClearY,
RotateIntoPlaceY, SinglePushY, PushUntilClearX, PushTo

Table 8
Full list of non-hierarchical movement options.
Option
name

Option
description

RotateIntoPlace X/Y Move clockwise or counterclockwise around a mobile object
to get into place for
pushing that object along the x/y-axis towards the target
object.

Move/PushUntilAlignedX/Y Move along the x/y-axis until mobile object has the same
x/y-coordinate as the target object.

Move/PushUntilBlockedX/Y Move along the x/y-axis towards the target object until the
mobile object
is blocked by another object.

Move/PushUntilClearX/Y Move along the x/y-axis until there are no objects next to
the mobile object.

SingleStep/PushX/Y Move a single step along the x/y-axis towards the target
object.

MoveUntilTouchX/Y Move a along the x/y-axis until the mobile object is adjacent
to the target object.

Table 9
Parameter values for value estimation.
Parameter High-level description Value

𝛾 Discount rate 0.90
𝛼 Learning rate 0.05
𝑐𝑎𝑐𝑡𝑖𝑜𝑛 Cost of taking each object-oriented action 0.01
𝐷𝑠 Maximum action depth during MCTS simulation 0.0001
𝑁𝑠 Number of simulations for MCTS 50
𝑀𝑑 Maximum actions explored during action detection 30
20
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Table 10
Descriptions for games. Game screen shows starting position of all object kinds. Object colors were randomized across participants. The colors written into the
game rules in this table match the object colors shown in the game screen of this table.

Game name Starting screen Game rules

Collect the key SpriteSet
avatar > MovingAvatar color=Purple
type2 > Passive color=LightBlue
type3 > Passive color=COLOR3
type4 > Passive color=LightGray
type5 > Passive color=Pink
type6 > Passive color=Gold
type7 > Passive color=Black

InteractionSet
type2 avatar > bounceForward
type3 avatar > bounceForward
type3 type2 > collectResource value=1 limit=1
type2 type7 > killWithScoreChange value=-1
avatar type7 > killSprite
type3 type7 > killWithScoreChange value=-1
type4 type2 > killIfOtherHasMore res=type3 lim=1
type2 type4 > stepBack
type6 avatar > killSprite

TerminationSet
SpriteCounter stype=type6 limit=0 win=True
SpriteCounter stype=avatar limit=0 win=False

Destroy the blocks SpriteSet
avatar > MovingAvatar color=Black
type2 > Passive color=LightGray
type3 > Passive color=Purple
type4 > Passive color=Pink
type5 > Passive color=Green
type6 > Passive color=Gold

InteractionSet
type2 avatar > bounceForward
type3 avatar > bounceForward
type3 type2 > killSprite
type4 type2 > killSprite
type5 type3 > killWithScoreChange value=1

TerminationSet
SpriteCounter stype=type4 limit=0 win=True
SpriteCounter stype=type3 limit=0 win=False

Fill the gaps SpriteSet
avatar > MovingAvatar color=Black
type2 > Passive color=Red
type3 > Passive color=LightGray
type4 > Passive color=Green
type5 > Passive color=Gold
type6 > Passive color=Purple

InteractionSet
type2 avatar > bounceForward
type3 avatar > nothing
type3 type2 > transformTo stype=type6
type6 avatar > bounceForward
avatar type4 > killSprite
type2 type4 > killWithScoreChange value=-1
type4 type6 > killBoth

TerminationSet
SpriteCounter stype=type4 limit=0 win=True
SpriteCounter stype=avatar limit=0 win=False

(continued on next page)

Appendix A. Theory inference details

Here we present the relevant details for implementing the likelihood function and structured prior that we described in the main
paper.

As introduced in Section 2.2 of the main paper, we define a likelihood function using a graded transition probability, 𝑃 ∗(𝑠′|𝑎, 𝑠, 𝜃).
This assumes that all state transitions are equally important when calculating the likelihood. However, in practice, some states
21
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Table 10 (continued).
Game name Starting screen Game rules

A transmutes, B destroys SpriteSet
avatar > MovingAvatar color=Green
type2 > Passive color=Black
type3 > Passive color=Purple
type4 > Passive color=Red
type5 > Passive color=LightGray
type6 > Passive color=Pink
type7 > Passive color=Gold

InteractionSet
type6 avatar > killWithScoreChange value=1
type3 avatar > bounceForward
type4 avatar > bounceForward
type2 type3 > transformTo stype=type6
type4 type3 > transformTo stype=type6
type2 type4 > killBoth
type5 type4 > killBoth

TerminationSet
SpriteCounter stype=type6 limit=0 win=True
SpriteCounter stype=type4 limit=0 win=False

contain more information than others. For example, some state transitions involve interactions that trigger multiple rules from the
theory’s interaction set. Intuitively, these states should weigh more heavily than states that don’t involve any interaction information.
Furthermore, state transitions that provide information about the termination conditions are relatively rare, and thus should also
weigh more heavily. To account for this, we split the representation of 𝑠′ into three components. 𝑠′𝑆 contained all the information
about object positions and features, while 𝑠′𝐼 and 𝑠′𝑇 contained information about which interactions and termination conditions
were triggered as the player arrived in 𝑠′. We could then split the transition probability used for inference into three components,
as follows:

𝑃 ∗(𝑠′|𝑎, 𝑠, 𝜃) = 𝑃 (𝑠′𝑆 |𝑎, 𝑠, 𝜃)𝑃 (𝑠
′
𝐼 |𝑎, 𝑠, 𝜃)𝑃 (𝑠

′
𝑇 |𝑎, 𝑠, 𝜃) (14)

𝑃 (𝑠′𝑆 |𝑎, 𝑠, 𝜃) ∝ exp(𝑤𝑆1[𝑠′𝑆 = 𝜃𝑆 (𝑎, 𝑠)]) (15)

𝑃 (𝑠′𝐼 |𝑎, 𝑠, 𝜃) ∝ exp(𝑤𝐼1[𝑠′𝐼 = 𝜃𝐼 (𝑎, 𝑠)]) (16)

𝑃 (𝑠′𝑇 |𝑎, 𝑠, 𝜃) ∝ exp(𝑤𝑇1[𝑠′𝑇 = 𝜃𝑇 (𝑎, 𝑠)]), (17)

where 𝜃𝑆 (𝑎, 𝑠), 𝜃𝐼 (𝑎, 𝑠), and 𝜃𝑇 (𝑎, 𝑠) represent the object positions, triggered interactions, and triggered termination conditions
predicted by 𝜃. The scalar parameters 𝑤𝑆 , 𝑤𝐼 , and 𝑤𝐺 are weights determining the relative influence of information about the
object positions, interactions, and termination conditions. These were fit by hand to the values in Table 6 to reflect the approximate
rarity of each kind of event in the game data.

We also defined a structured prior over theories by converting each theory to a set of predicates and defining a series logical
expressions over those predicates. In essence, we have defined a typed, second-order logical system for describing VGDL theories.
Table 3 describes the predicates that we use in more detail. Each predicate in Table 3 takes in typed variables as inputs and returns
a variable of a specific type. Table 4 shows the potential values for each variable type. Every theory in the subset of VGDL that
we consider here represents a unique grounding of these typed predicates to specific values. Similarly, every unique grounding of
predicates represents one VGDL theory (though not necessarily a unique VGDL theory). Thus, when taken together, Tables 3 and 4
define the full space of possible theories considered by the model.

The inductive biases we consider in the main paper are all logical expressions composed of the predicates in Table 3. For example,
all syntactically valid VGDL theories must have at least one player-controllable sprite type in the sprite set. We can represent this
constraint with the logical expression below:

∃𝑠 ∈ 𝐒𝐩𝐫𝐢𝐭𝐞𝐓𝐲𝐩𝐞 s.t. 𝐻𝑎𝑠𝑆𝑝𝑟𝑖𝑡𝑒𝑇 𝑦𝑝𝑒(𝑠) ∧ 𝑆𝑝𝑟𝑖𝑡𝑒𝐹 𝑒𝑎𝑡𝑢𝑟𝑒(𝑠) == MovingAvatar

Similarly, we can represent the constraint that the agents involved in each interaction must exist with the following pair of
expressions:

∀𝑖 ∈ 𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧 ⋅𝐻𝑎𝑠𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) ⇒

𝐻𝑎𝑠𝑆𝑝𝑟𝑖𝑡𝑒𝑇 𝑦𝑝𝑒(𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑔𝑒𝑛𝑡(𝑖))

Table 5 describes the set of syntactic biases used in this work. All of the syntactic biases and the majority of the semantic
biases consist of relatively simple logical expressions. However, as described in Section 2.3 of the main paper, the attainability and
purpose biases require generating causal chains. While it is possible to encode the process for generating these chains as a logical
expression using the predicates in Table 3, the resulting expression would be too long to reasonably write out here. For brevity, we
22
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Table 11
Continuation of Table 10.

Game name Starting screen Game rules

A pushes, B freezes SpriteSet
avatar > MovingAvatar color=Red
type2 > Passive color=LightBlue
type3 > Passive color=Purple
type4 > Passive color=Gold
type5 > Passive color=Blue
type6 > Passive color=Green
type7 > Passive color=Pink
type8 > Passive color=Black

InteractionSet
type2 avatar > killWithScoreChange value=1
type3 avatar > bounceForward
type4 avatar > bounceForward
type5 type3 > bounceForward
type6 type3 > bounceForward
type5 type4 > transformTo stype=type7
type6 type4 > transformTo stype=type7
avatar type8 > killSprite

TerminationSet
SpriteCounter stype=type2 limit=0 win=True
SpriteCounter stype=avatar limit=0 win=False

A opens everything SpriteSet
avatar > MovingAvatar color=Gold
type2 > Passive color=LightBlue
type3 > Passive color=Pink
type4 > Passive color=Red
type5 > Passive color=Purple
type6 > Passive color=Black
type7 > Passive color=Green
type8 > Passive color=Blue
type9 > Passive color=LightGray

InteractionSet
type8 avatar > killWithScoreChange value=1
type2 avatar > bounceForward
type5 avatar > bounceForward
type4 type2 > collectResource value=1 limit=1
type3 type2 > killIfOtherHasMore res=type4

lim=1
type2 type3 > stepBack

type6 type2 > collectResource value=1 limit=1
type7 type2 > killIfOtherHasMore res=type6

lim=1
type2 type7 > stepBack
type5 type7 > killSprite

TerminationSet
SpriteCounter stype=type8 limit=0 win=True
SpriteCounter stype=type5 limit=0 win=False

(continued on next page)

instead generate these causal chains with the algorithms shown in Algorithm 1 and Algorithm 2 and define two helper functions
𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐶ℎ𝑎𝑖𝑛(𝑘) and 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝐶ℎ𝑎𝑖𝑛(𝑔) that return the set of rules and goals in each forward chain or rules and objects in each reverse
chain, respectively.

Finally, we approximate the posterior described in Section 2 of the main paper using a variational inference approach known
as Discrete Particle Variational Inference (DPVI). Variational approaches approximate a posterior by finding the distribution 𝑄 in a
family of distributions 𝐐 that maximizes the negative variational free energy, 𝐿[𝑄]. In discrete particle VI, each distribution in 𝐐
is represented by a set of weighted particles. Saeedi et al. (2017) describe an optimization algorithm for finding 𝑄 that performs
coordinate ascent from a random set of starting particles. They prove that the negative free energy is maximized by finding the 𝐾
particles with the highest likelihood scores and associating those particles with weights 𝑝𝑘 as follows:

𝑝𝑘 = 𝑍−1
𝑄

𝑓 (𝜃𝑘)
𝑉𝑘

, (18)

where 𝑓 (𝜃𝑘) is the likelihood of the theory 𝜃𝑘 associated with the 𝑘th particle, 𝑉𝑘 is the number of times that the 𝑘th particle appears
in 𝑄, and 𝑍 =

∑ 𝑓 (𝜃𝑘) is a normalizing constant.
23
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Table 11 (continued).
Game name Starting screen Game rules

A creates coins SpriteSet
avatar > MovingAvatar color=Pink
type2 > Passive color=Purple
type3 > Passive color=LightGray
type4 > Passive color=Gold
type5 > Passive color=Green
type6 > Passive color=Black
type7 > Passive color=LightBlue
type8 > Passive color=Blue

InteractionSet
type6 avatar > killWithScoreChange value=1
type2 avatar > bounceForward
type4 avatar > bounceForward
type3 type2 > transformTo stype=type6
type5 type2 > transformTo stype=type6
type2 type6 > killSprite
type5 type4 > transformTo stype=type7
type6 type4 > transformTo stype=type7
avatar type8 > killSprite

TerminationSet
SpriteCounter stype=type6 limit=0 win=True
SpriteCounter stype=avatar limit=0 win=False

Algorithm 1 GenerateForwardChains(𝜃)
Initialize ForwardChains, VisitedElements, 𝑞
Add avatar of 𝜃 to 𝑞
start ← avatar
while |𝑞| > 0 do

𝑒 ← Pop(𝑞)
if 𝑒 ∉ VisitedElements then

Add 𝑒 to VisitedElements
Add 𝑒 to ForwardChains(start)
if Type(𝑒) == sprite then

Prepend interactions where 𝑒 is agent, patient, or resource to 𝑞
else if Type(𝑒) == interaction then

Prepend agent, patient, resource, or stype sprites to 𝑞
if InteractionEffect(𝑒) pushes something then

Prepend all interactions involving pushed sprite
else if InteractionEffect(𝑒) destroys something then

Prepend all goals involving destroyed sprites
else if InteractionEffect(𝑒) requires resource then

Prepend all interactions involving collecting resource
end if

end if
end if

end while
return ForwardChains

The original version of this algorithm often only explores a limited subset of the distributional space, thus for the current work
we used a modified version of the algorithm that identifies multiple plausible 𝑄s from different starting points, and then takes the
highest weighted particle from each. This empirically produces more diverse posterior approximations. Additionally, the original
algorithm requires evaluating all single step changes to each theory, which drastically slows the algorithm for larger theory spaces.
Instead our algorithm only evaluates a random sample of 𝑁𝑆 single step changes. When fixing the presence of particular rules in
generating the model simulations for the prediction task we also ensured that all the random starting theories contained the given
rule 𝑟 and that all single step changes we sampled maintained the inclusion of this rule. We present our modified algorithm in
Algorithm 3, along with a list of parameters and values in Table 6.

In prior work, we found that combining Monte Carlo Tree Search with Upper Confidence bound for Trees (MCTS-UCT) over
object-oriented actions with value estimation techniques from the RL literature was sufficient for modeling human planning in
24
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Table 12
Full list of questions used to assay semantic biases. Bold text in rules indicates difference between bias upheld and bias violated conditions.

Bias
name

Question
pair

Game trigger Bias upheld
rule

Bias violated
rule

Non-arbitrary
limits

1 Fill the
gaps

avatar/type2 How likely is it that
‘‘Win when there are
ZERO of type3’’
is a rule?

How likely is it that
‘‘Win when there are
TWO of type3’’
is a rule?

Non-arbitrary
limits

2 A opens
everything

type2/type4 How likely is it that
‘‘Win when there are
ZERO of type8’’
is a rule?

How likely is it that
‘‘Win when there are
TWO of type8’’
is a rule?

Non-arbitrary
limits

3 A pushes,
B freezes

type3/type6
or type4/type6

How likely is it that
‘‘Win when there are
ZERO of type2’’
is a rule?

How likely is it that
‘‘Win when there are
ONE of type2’’
is a rule?

Attainability 1 Fill the
gaps

avatar/type2 Imagine the rule
‘‘type3 turns type4 into
type6.’’
How likely is it that
‘‘avatar PUSHES type3’’
is also a rule?

Imagine the rule
‘‘type3 turns type4 into
type6.’’
How likely is it that
‘‘avatar DESTROYS
type3’’ is also a rule?

Attainability 2 Destroy the
blocks

avatar/type2 Imagine the rule
‘‘type3 destroys type4
for 1 point.’’
How likely is it that
‘‘avatar pushes TYPE3’’
is also a rule?

Imagine the rule
‘‘type3 destroys type4
for 1 point.’’
How likely is it that
‘‘avatar pushes TYPE5’’
is also a rule?

Attainability 3 A creates
coins

avatar/type6 Imagine the rule
‘‘type4 and type5 kill
each other.’’
How likely is it that
‘‘avatar PUSHES’’ type4
is also a rule?

Imagine the rule
‘‘type4 and type5 kill
each other.’’
How likely is it that
‘‘avatar DESTROYS
type4’’
is also a rule?

Consistency 1 Collect the
key

type2/type7 or
type3/type7

How likely is it that
‘‘type2
REMOVES A POINT
BY DESTROYING’’
type7 is a rule?

How likely is it that
‘‘type2 TRANSFORMS
type7
INTO TYPE5’’
is a rule?

Consistency 2 A transmutes,
B destroys

type5/type4 How likely is it that
‘‘type2
TRANSFORMS TYPE3
INTO TYPE6’’ is a
rule?

How likely is it that
‘‘type2 AND TYPE4
DESTROY EACH
OTHER’’
is a rule?

Consistency 3 A pushes,
B freezes

avatar/type4 How likely is it that
‘‘type3 PUSHES type6’’
is a rule?

How likely is it that
‘‘type3 TRANSFORMS
type6
INTO TYPE7’’
is a rule?

Informative-
ness

1 A opens
everything

avatar/type8 How likely is it that
‘‘WIN when there are
zero
type8 left’’ is a rule?

How likely is it that
‘‘LOSE when there are
zero
type8 left’’ is a rule?

Informative-
ness

2 A transmutes,
B destroys

type2/type3 How likely is it that
‘‘WIN when there are
zero
type6 left’’ is a rule?

How likely is it that
‘‘LOSE when there are
zero
type6 left’’ is a rule?

(continued on next page)

simple grid-based video games (Pouncy et al., 2021). For the games in this previous work, a simple Breadth-First Search (BFS) over
directional actions was enough to identify the small set of objects that could be interacted with in a reasonable number of steps.
The resulting set of object-oriented actions was also small enough that we could use the standard version of MCTS-UCT. However,
the games in the current work involved objects that could be pushed into one another. This created two problems: larger levels,
and a greater number of object-oriented actions.
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Table 12 (continued).
Bias
name

Question
pair

Game trigger Bias upheld
rule

Bias violated
rule

Informative-
ness

3 A pushes,
B freezes

avatar/type2 How likely is it that
‘‘WIN when there are
zero
type2 left’’ is a rule?

How likely is it that
‘‘LOSE when there are
zero
type2 left’’ is a rule?

Purpose 1 Destroy the
blocks

type2/type3 How likely is it that
there is a rule you
haven’t
seen yet involving
TYPE5?

How likely is it that
there is a rule you
haven’t
seen yet involving
TYPE2?

Purpose 2 A transmutes,
B destroys

type4/type5 How likely is it that
there is a rule you
haven’t
seen yet involving
TYPE2?

How likely is it that
there is a rule you
haven’t
seen yet involving
TYPE5?

Purpose 3 A creates
coins

type2/type3 How likely is it that
there is a rule you
haven’t
seen yet involving
TYPE5?

How likely is it that
there is a rule you
haven’t
seen yet involving
TYPE6?

Win/Lose 1 Collect the
key

avatar/type6 or
avatar/type7

How likely is it that
‘‘LOSE when there are
zero
avatar left’’ is a rule?

How likely is it that
‘‘WIN when there are
zero
avatar left’’ is a rule?

Win/Lose 2 Fill the
gaps

avatar/type4 How likely is it that
‘‘WIN when there are
zero
type3 left’’ is a rule?

How likely is it that
‘‘LOSE when there are
zero
type3 left’’ is a rule?

Win/Lose 3 Destroy the
blocks

type2/type3 How likely is it that
‘‘WIN when there are
zero
type5 left’’ is a rule?

How likely is it that
‘‘LOSE when there are
zero
type5 left’’ is a rule?

Table 13
P-values for t-tests comparing lesioned agents to the syntactic agents in Fig. 8. Red text indicates cells where there was significant evidence of difference
(p < 0.05). P-values were corrected within columns using a Bonferroni correction.

Bias Arb. Goals
vs.
Syntactic

No Attain.
vs.
Syntactic

No Cons.
vs.
Syntactic

No Inf. Pts
vs.
Syntactic

No Purpose
vs.
Syntactic

No W/L
vs.
Syntactic

Non-arbitrary
goals

p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01

Attainability p<0.01 p=0.20 p<0.01 p<0.01 p<0.01 p<0.01
Consistency p<0.01 p<0.01 p=0.01 p<0.01 p<0.01 p<0.01
Informativeness p<0.01 p<0.01 p<0.01 p=0.03 p<0.01 p<0.01
Purpose p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01
Win/Lose p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p=1.00

Table 14
P-values for t-tests comparing lesioned agents to the semantic agents in Fig. 8. Red text indicates cells where there was significant evidence of difference
(p < 0.05). P-values were corrected for multiple comparison within column using a Bonferroni correction.

Bias Arb. Goals
vs.
Semantic

No Attain.
vs.
Semantic

No Cons.
vs.
Semantic

No Inf. Pts
vs.
Semantic

No Purpose
vs.
Semantic

No W/L
vs.
Semantic

Non-arbitrary
goals

p<0.01 p=1.00 p=1.00 p=1.00 p=1.00 p=0.55

Attainability p=1.00 p<0.01 p=1.00 p=1.00 p=1.00 p=1.00
Consistency p=1.00 p=1.00 p<0.01 p=1.00 p=1.00 p=1.00
Informativeness p<0.01 p<0.01 p=1.00 p<0.01 p=0.26 p=0.36
Purpose p=1.00 p=1.00 p=1.00 p=1.00 p<0.01 p=1.00
Win/Lose p=0.46 p<0.01 p=1.00 p=0.54 p=1.00 p<0.01
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Table 15
Comparison of CFA models. Parentheses represent 90% confidence interval for RMSEA.

Model
name

Model
description

𝜒2 Deg. of
freedom

RMSEA Comparative
fit index

Independent
bias factors

Zero correlation
between bias
weights.

698.6 136 0.130
(0.121, 0.140)

0.57

All bias factor
correlations

Correlations for
all biases.

374.7 122 0.092
(0.082, 0.103)

0.81

Sig. bias factor
correlations

Only significant
correlations
between biases.

378.6 125 0.091
(0.081, 0.102)

0.80

Table 16
Parameters of mixed effects models for competence, directedness and humanness (for both ‘‘more human = more competent’’ and ‘‘more human = less competent’’
participants). Each cell represents parameter estimate and associated p-value. ‘‘N/A’’ indicates that parameter was not included in best-fitting model. Red and
green text indicate negative and positive parameters that were significant at the P < 0.05 level, respectively.

Parameter Competence
Ratings

directedness
Rating

humanness
Rating
(More Hum. =
More Comp.)

humanness
Rating
(More Hum. =
Less Comp.)

Intercept 58.73
(𝐩 < 𝟎.𝟎𝟏)

64.44
(𝐩 < 𝟎.𝟎𝟏)

55.95
(𝐩 < 𝟎.𝟎𝟏)

60.67
(𝐩 < 𝟎.𝟎𝟏)

Pct.
stuck runs

−21.43
(𝐩 < 𝟎.𝟎𝟏)

−19.53
(𝐩 < 𝟎.𝟎𝟏)

−12.94
(p = 0.08)

13.82
(p = 0.04)

Pct.
success runs

12.70
(𝐩 < 𝟎.𝟎𝟏)

12.17
(𝐩 < 𝟎.𝟎𝟏)

10.96
(p = 0.02)

−12.83
(𝐩 < 𝟎.𝟎𝟏)

Agent type
(Human v.
Semantic)

10.58
(𝐩 < 𝟎.𝟎𝟏)

8.51
(𝐩 < 𝟎.𝟎𝟏)

10.60
(𝐩 < 𝟎.𝟎𝟏)

−9.01
(𝐩 < 𝟎.𝟎𝟏)

Agent type
(Semantic v.
Syntactic)

0.72
(p = 0.65)

1.03
(p = 0.51)

6.10
(p = 0.07)

0.66
(p = 0.84)

Num.
Avatar/Death

−5.64
(𝐩 < 𝟎.𝟎𝟏)

−4.75
(𝐩 < 𝟎.𝟎𝟏)

−5.84
(𝐩 < 𝟎.𝟎𝟏)

5.77
(𝐩 < 𝟎.𝟎𝟏)

Num.
Avatar/Rew.

0.00
(p = 0.99)

0.64
(p = 0.12)

−0.12
(p = 0.89)

−0.08
(p = 0.92)

Num.
Mobile/Wall

−0.42
(𝐩 < 𝟎.𝟎𝟏)

−0.42
(𝐩 < 𝟎.𝟎𝟏)

−0.37
(p = 0.02)

0.42
(𝐩 < 𝟎.𝟎𝟏)

Num.
Tool/Target

0.77
(p = 0.19)

0.29
(p = 0.61)

0.79
(p = 0.52)

0.31
(p = 0.78)

Num.
Tool/Tool

0.19
(p = 0.09)

0.35
(𝐩 < 𝟎.𝟎𝟏)

0.06
(p = 0.82)

−0.08
(p = 0.69)

In order to give the players enough space to push tools around each other, objects in the current games had to be further apart.
s the search time of the BFS algorithm increases exponentially with the average space between objects, these larger levels made

he original object-detector intractable for the games in the current work. To get around this, we replaced this BFS algorithm with a
ierarchical planner. We provided this planner with a number of low-level options for moving and pushing objects in a 2-dimensional
rid space. Crucially, these low-level options were agnostic to the distance between objects (e.g., ‘‘move left until you touch a target
bject’’, ‘‘push a block up until it is in the same row as a target object’’, etc.). Some of these options were hierarchically defined in
erms of other options. For example, pushing an object to the left required first moving the avatar so that it was to the right of the
ushed object. Tables 7 and 8 provide a complete list of these non-hierarchical and hierarchical options, respectively.

To identify potential object-oriented actions, we created a function 𝐺𝑒𝑡𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑂𝑏𝑗𝑒𝑐𝑡𝑠 that generated a list of every kind of object
in a game that could be moved and identified the 2 instances of each object kind that were nearest to those mobile objects. Finally,
for each of these potential object interactions, the detector would start with either the 𝑀𝑜𝑣𝑒𝑇 𝑜 (if the interaction involved the
avatar) or 𝑃𝑢𝑠ℎ𝑇 𝑜 (if the interaction involved a non-avatar mobile object) option defined in Table 7 and try to find a combination
f options that would produce the target interaction by using the 𝐺𝑒𝑡𝑁𝑒𝑥𝑡𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒() function to randomly iterate through the

alternatives for that option. Algorithm 4 provides pseudo-code for this process.
The ability to push objects into one another also increased the average number of object-oriented actions available from each

state. This exponentially increased the size of the state space. Classically, MCTS-UCT simulates actions using a uniform random
policy to explore states until all actions from a state have been explored at least once. The algorithm then switches to selecting the
27
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Algorithm 2 GenerateRevChains(𝜃)
Initialize RevChains, VisitedElements, 𝑞
for goal in 𝜃 do

Add goal to 𝑞
start ← goal
while |𝑞| > 0 do

𝑒 ← Pop(𝑞)
if 𝑒 ∉ VisitedElements then

Add 𝑒 to VisitedElements
Add 𝑒 to RevChains(start)
if Type(𝑒) == goal then

Prepend interactions that trigger 𝑒
else if Type(𝑒) == interaction then

Prepend agent, patient, resource, or stype sprites to 𝑞
if InteractionEffect(𝑒) pushes something then

Prepend all interactions that block or destroy the pushing object
end if

else if Type(𝑒) == sprite then
if 𝑒 is mobile then

Prepend all interactions with all obstacles that 𝑒 can destroy or move
else if 𝑒 is a resource then

Prepend all interactions involving collecting 𝑒
end if

end if
end if

end while
end for
return RevChains

estimates until each state has been simulated many times. In theory the estimates from this algorithm can be improved by increasing
the number of simulations used during value estimation, however the number of simulations required proved to be computationally
intractable for our task. Instead, we used the leaf parallelization strategy described by Chaslot, Winands, and van den Herik (2008).
Leaf parallelization speeds up MCTS by simulating multiple actions in parallel whenever a new state is reached. This allows the
algorithm to get to the second, upper-confidence bound selection policy more quickly.

In addition, we further improved the early MCTS value estimates by using the causality graphs that we generated to evaluate
he purpose and attainability biases to approximate how relevant interactions were for the different goals in a game theory.
ather than selecting actions at random, our updated MCTS algorithm preferentially explored interactions that were closer to
chieving rewarding goals. This helped ensure that early value estimates for recently expanded nodes more accurately represented
he maximum potential values for that node. Aside from these changes, we used the same value estimation process and planning
arameters that we used in the prior work. The new parameters introduced by the hierarchical action detector were fit to maximize
he performance of agents that had been given access to ground truth theories for each game. Table 9 provides a list of the parameters
sed here. See Pouncy et al. (2021) for additional details about the MCTS-UCT algorithm and the value estimation process.

ppendix B. Additional task details

In this section we present additional details about the question pairs that we used to assay the biases described in the main paper.
s mentioned in the main paper, we had participants play seven games in random order. Each question pair was displayed within
few steps of a participant triggering a particular interaction. Table 12 provides a full list of the question pairs that participants

ould trigger. We also include the bias related to each question pair, the game in which the pair occurred, the triggering condition
or each pair, and the bias upheld and bias violated question within each pair. For context, Tables 10 and 11 provide the starting
ositions and rule sets for each game. The types in each question pair refer to the sprite types in the rules for the corresponding
ame. In order to avoid confusing participants, all instances of ‘‘typeX’’ in the questions were replaced with colored squares that
atched the appropriate object kind in each game before presenting questions to participants.

Each question pair was designed to assay a particular bias. As such, question pairs that assay the same bias have similar structure.
our of the biases involved asking about the likelihood of an unobserved rule or goal based on the rules and goals that the participant
ad observed so far. The non-arbitrary goals question pairs compared the likelihood of goals involving removing all of some object
ind rather than an arbitrary number of some object kind. Each informativeness question pair was triggered by discovering a
ewarding object kind, and involved comparing the likelihood that collecting all the rewarding objects would win the game rather
han lose it. Similarly, each win/lose question pair was triggered by discovering either a winning or losing goal of the game and
28
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Algorithm 3 DiscreteParticleVariationalInference(𝑁𝐴, 𝐾, 𝜖)
/* INPUT: Number of variational distributions to approximate (𝑁𝐴), */
/* Number of particles for each variational distribution (𝐾), */
/* Variational free energy threshold (𝜖) */
for 𝑎 = 1 ∶ 𝑁𝐴 do

Initialize the 𝑎th variational distribution 𝑄𝑎 with 𝐾 particles
𝐿[𝑄] ← ∞
for 𝜃𝑘 ∈ 𝑄𝑎 do

𝑝𝑎,𝑘 ← 𝑍−1
𝑄

𝑓 (𝜃𝑘)
𝑉𝑘

end for
𝐿[𝑄′] ← log(𝑍𝑄)
while |𝐿[𝑄] − 𝐿[𝑄′]| > 𝜖 do

𝐿[𝑄] ← 𝐿[𝑄′]
Initialize new particles 𝐏′

𝐚 and weights 𝐩′𝐚
for 𝑘 = 1 ∶ 𝐾 do
for 𝑑 ∈ SubSample(Predicates) do
for 𝑣 ∈ Domain(𝑂𝑢𝑡𝑝𝑢𝑡(𝑝)) do

Copy particle 𝑄𝑎,𝑘
Set component 𝑑 of new particle to 𝑣
Add new particle to 𝐏′

𝐚
Set weight for new particle to 𝑍−1

𝑄
𝑓 (𝜃𝑘)
𝑉𝑘

end for
end for

end for
𝑄′

𝑎 ← 𝑁𝑘 unique particles from 𝐏′
𝐚 with highest weights

for 𝜃𝑘 ∈ 𝑄′
𝑎 do

𝑝𝑎,𝑘 ← 𝑍−1
𝑄

𝑓 (𝜃𝑘)
𝑉𝑘

end for
𝐿[𝑄′] ← log(𝑍𝑄)

end while
end for
𝑄 ← Top weighted particle from each 𝑄′

𝑎
for 𝜃𝑘 ∈ 𝑄 do

𝑝𝑘 ← 𝑍−1
𝑄

𝑓 (𝜃𝑘)
𝑉𝑘

end for
return 𝑄

then asking whether another potential goal would be more likely to be a winning condition or a losing condition. Finally, each
consistency question pair was triggered when the participant learned how to use a given tool, and involved inferring how that tool
would interact with a novel object.

The attainability question pairs all involved imagining learning a new rule involving two unexplored object kinds and then
valuating a second rule based on the imagined rule. In the bias upheld question the second rule would make the imagined rule
ttainable, while in the bias violated question the second rule would not make the imagined rule attainable. For example, the
magined rule ‘‘the purple block destroys the pink block’’, is definitely attainable if the avatar can push the purple block, but may
r may not be attainable if the avatar can push an unrelated green block.

Finally, the purpose question pairs all involved asking about the likelihood of additional unobserved rules about a given object
ind. Each of these question pairs was triggered when the participant had discovered a purpose for one kind of object (A) but had
et to discover a purpose for another kind of object (B). In the bias violated question, participants were asked how likely it was
hat there were additional rules involving A, while in the bias upheld question they were asked about additional rules involving B.

ppendix C. Additional results

Fig. 8 shows the average response differences for the lesioned semantic agents. As in Fig. 4, the 𝑦-axis represents the difference
between bias upholding and bias violating questions, averaged across all three question pairs for each semantic bias. Each cell in
Fig. 8 represents the question pairs associated with a different semantic bias, while the 𝑥-axis represents the type of agent evaluated.
For comparison, the syntactic agents are on the far left of each 𝑥-axis, while the regular semantic agents are on the far right. Table 13
shows p-values for independent t-tests comparing each type of lesioned agent to the syntactic agents, while Table 14 shows the
29
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Algorithm 4 DetectObjectOrientedActions(𝜃, s)
Initialize ObjectOrientedActions
Add avatar of 𝜃 to 𝑞
𝑞 ← GetNearestObjects(𝜃, s)
while |𝑞| > 0 do

𝑡 ← Pop(𝑞)
ℎ ← ResetHierarchicalOptions()
Initialize current action path 𝑝
CurrentAlternatives ← GetNextAlternative(ℎ)
𝑖 = 0
while |CurrentAlternatives| > 0 and 𝑖 < 𝑀𝑑 do

𝑖 = 𝑖 + 1
CurrentLevel, 𝑜 ← Pop(CurrentAlternatives)
TriggeredInteractions, 𝑠, 𝑎 ← TakeOption(𝑜)
𝑝 ← 𝑝 + 𝑎
if |TriggeredInteractions| > 0 then
if 𝑡 in TriggeredInteractions then

Add 𝑝 to ObjectOrientedActions
Clear CurrentAlternatives

else
Undo all changes to 𝑝 and 𝑆 at current level

end if
else if 𝑖 == 𝑀𝑑 then

Undo all changes to 𝑝 and 𝑆 at current level
end if

end while
end while
return ObjectOrientedActions

biases, only the lesioned agents missing the associated bias showed no evidence of difference from the syntactic agents. This suggests
that these question pairs uniquely assayed their associated biases.

In contrast, the arbitrary goals, consistency, and purpose lesioned agents still produced response differences that are substantially
igher than the syntactic agent. The fact that the syntactic agent produced responses that are substantially lower than these lesioned
gents suggests that the question pairs associated with these three biases may also partially assay the presence of other biases.
owever, Table 14 shows all three of these lesioned agents still produced substantially lower responses than the regular semantic
gents, suggesting that these question pairs were at least predominantly assaying their intended biases.

ppendix D. Confirmatory factor analysis details

As mentioned in Section 3.3 of the main paper, we used a Confirmatory Factor Analysis (CFA) to efficiently estimate participant’s
ias weights. We tested three different CFA models to find the best fit to the data. All three models included six latent factors (one for
ach semantic bias). Each factor was estimated using the three question pairs associated with each bias. We then tested a model with
ompletely independent latent factors, a model with correlations between all latent factors, and a model with only the significant
orrelations between latent factors. Table 15 shows the 𝜒2, Root Mean Squared Error of Approximation (RMSEA) and Comparative

Fit Index (CFI) statistics for these three models. The large decrease in 𝜒2 between the zero correlations model and the all correlations
model suggests that adding the factor correlations improved model fit. There was no meaningful difference between the model with
all factor correlations and the model with only the significant correlations. We chose the model with only the significant correlations
as it produced marginally lower RMSEA and CFI values.

Fig. 9 shows distributions of the fitted weights for each semantic bias found by the best-fitting CFA. Qualitatively we see evidence
of some individual variation in each parameter. For the non-arbitrary goals, informativeness, and win/lose biases, the human fitted
parameters skew towards higher values, while for the attainability, consistency, and purpose biases the fitted parameters skew
towards low values. However, we see a range of values for all biases suggesting some potential variability in the population.

Fig. 10e shows the correlation between participants’ scores on each of the question sets and the performance of their yoked
agents. The 𝑥-axis here reflects participants’ difference scores, while the 𝑦-axis reflects the difference scores of the agents with that
participant’s fitted weight parameters. Since the model parameters for the syntactic, lesioned, and semantic agents were identical
across participants, the only difference between individual instances of these agent types was the order in which rules and questions
were observed. We found no significant correlations between the syntactic agents, lesioned, or semantic agents and their yoked
human participants. This suggests that individual variability cannot be accounted for with differences in question order under these
30
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Fig. 8. Average response difference for lesioned agents. 𝑌 -axis shows the response difference between the bias upheld and bias violated questions for each
question pair. 𝑋-axis represents agent type. For comparison, the far left agent in each figure is the syntactic agent, while far right is the semantic agent. Middle
agents have all semantic biases but one. Error bars show standard error of the mean.

models. In contrast, there were significant correlations between the fitted bias agents and their human participants for the non-
arbitrary goals, attainability, informativeness, and win/lose biases, suggesting that at least some of the variance in human responses
could be accounted for with differences in latent bias weights.
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Fig. 9. Frequency counts of fitted bias weight parameters 𝐰𝐛 for each of the six additional biases. Each cell corresponds to one bias. The horizontal axis
represents the weight value, while the vertical axis represents the number of agents with that weight value. Color indicates agent type.
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Fig. 10. Correlations between agent and human response differences for each semantic bias. 𝑋-axis represents the human response difference for each question
pair associated with a given bias. 𝑌 -axis represents the response difference from the agent whose actions were yoked to a given participant. Error bars reflect 1
standard error of the mean. Color represents which bias weight set an agent had. The quantities next to each element in the legend reflect Pearson correlations,
while the numbers in parentheses represent p-values.
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Fig. 11. Distribution of correlations between (a) competence and directedness, and (b) competence and humanness ratings within participants. Orange bars
represent correlations that were significant at the 𝑝 < 0.05 level.

Appendix E. Additional details about independent raters

We recruited 87 participants using the CloudResearch interface and vetting process mentioned in Section 3 of the main paper.
Participants were told that they were going to play a series of games and that their goal was to earn as many points as possible on
these games. The bonus payment structure and set of games used were the same as in the original planning experiment. However, for
the rating experiment, participants were also told that after each game, they would be asked to watch videos of three other agents
learning to play the same game. Participants were informed that some of these agents would be computers and some would be
humans. After watching each video, participants were asked to rate the agents on a series of scales. The tutorial for this experiment
included sample videos and ratings so that participants could familiarize themselves with the interface before play. We removed
two participants who failed to successfully complete three or more runs.

The structure of the rating experiment consisted of a brief tutorial followed by seven blocks, one for each of the seven games
from original planning task. Although we collected data for all seven games, one of the seven games that we evaluated (the ‘‘Destroy
the blocks’’ game), produced no difference in success rate or proportion of interactions between the artificial agents and the human
participants. This suggests that this game was not useful as a diagnostic tool for differentiating agent behavior. Thus we omitted
this game from the results presented for this experiment. As before, the games were presented in random order.

In each block we first asked participants to play three runs of the game in order to familiarize themselves with the game’s
structure. Then we presented them with three videos of other agents learning to play the same game. There was always one video
of an syntactic agent, semantic agent, and human participant, but the order of presentation varied from block to block. Videos were
selected at random from the 27 instances of each agent type. To avoid confusion, the colors of the objects in each video were changed
to match the colors of the objects that the rater saw during their play through. Since humans often paused between decisions while
agents did not, we generated the videos using a fixed pace of 5 actions per second for both agents and humans.

After watching each video, participants were asked to answer the following three questions: ‘‘Was the agent in this video a human
or a computer?’’, ‘‘How competent was the agent you just watched?’’, and ‘‘How purposeful were the agent’s actions?’’. Participants
answered each question using a sliding scale from 0 (‘‘Definitely a computer’’, ‘‘Not competent’’, or ‘‘Not purposeful/random’’) to 100
(‘‘Definitely a human’’, ‘‘Very competent’’, or ‘‘Very purposeful’’). We will refer to these three ratings as ‘‘humanness’’, ‘‘competence’’,
and ‘‘directedness’’. To ensure that participants had watched the video before rating, the button to continue the task would only
appear after each video had been playing for at least 10 s.

As mentioned in the main paper, participants interpreted the humanness rating differently. Fig. 11 shows the distribution of
Pearson correlations between each participant’s humanness and competence ratings.

In addition to the analyses presented in the main paper, we also fit mixed effects models for each rating type. Table 16 shows
the parameters for mixed effects models for each rating type. In order to best compare the effect of different parameters, here
we show the parameter estimates and p-values for models with all the metrics that we used in the original planning behavior
analysis from Section 4 of the main paper included as independent variables. Competence and directedness were both related to the
proportion of interactions taken and percentage of stuck runs. This suggests that the semantic agents were rated as more competent
and directed largely because they got stuck less and earned more reward. Additionally, competence and directedness were also
related to percentage of successful runs. Since humans were successful more often, this partially explains why humans were rated as
34
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more competent and directed. However, we also found a significant effect of being human above and beyond ability to succeed on
this task, suggesting that humans exhibit other, holistic patterns of behavior that differentiate them from both agents. This pattern
also emerged in humanness ratings to a lesser degree (with flipped signs for the ‘‘more human = less competent’’ participants),
though this might just be a reflection of the correlation between humanness and competence.
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