
Supplementary materials for “What is the
model in model-based planning?”

November 6, 2020

1 Appendix A: Task representation implementation de-
tails

Integrating the four task representations and the MBP framework we have described in
this work required a few small additional considerations. The baseline representation, for
example, included object positions in its compressed representation and thus new task
instances with slightly different object positions produced compressed representations
that did not match any previously observed states. In this case, there would be no entry
in the agent’s lookup table for this state, and the agent would be unable predict about
what might happen next. When this happened, our agents simply selected randomly
from the currently available actions.

Secondly, to ensure that the behavioral differences between agents were solely due
to their task representations, we wanted each agent’s transition function to be as close
as possible to what would have been learned under an ideal learning process. For the
rule-based representation, this simply required providing hand-coded rules that appro-
priately captured the dynamics of each task. For the three tabular representations, how-
ever, it would have been impractical to try and fill-in the hundreds or thousands of
observed state transitions that an agent would have stored during training. Instead we
provided the tabular agents with a simple update process that compressed each state s,
action a, and subsequent state s′ observed during training into compressed representa-
tions (CS(s), CA(a), CS(s′)). We then updated the agent’s table entry for (CS(s), CA(a))
to keep track of CS(s′) and nCS(s′) where nCS(s′) was the number of times that the com-
pressed format CS(s′) was visited from taking CA(a) in CS(s). When then used these
counts to estimate P (s′|s, a) for each agent.

Thirdly, one challenge of using this planning architecture was that MCTS tries to ex-
plore all actions from each state at least once before exploring any action multiple times.
Given that the rule-based agent selected from object instances rather than categories of
objects and that some states in our task contained dozens of instances of wall objects, the
rule-based agent required too many simulations to produce reasonable value estimates.
Thus, we added a heuristic to our planner to ignore any wall objects in order to make
the action space more tractable. To allow fair comparison, we provided the same heuris-
tic to the informative-object-features and relational-categories representations when we

1



start -
("START", segment): p_0

segment -
(trap, ): p_1
(treasure, ): p_2

trap -
("AVOID_TRAP", "END_SUBGOAL"): p_3

treasure -
("TOUCH_TREASURE", "END_SUBGOAL"): p_4

Figure 1: A probabilistic context-free grammar for generating solutions to the Object
Number Variation Task.

evaluated them. This introduced another difficulty: the probability of selecting a wall
object for these agents became 0. Since our human participants did occasionally select
wall objects as targets this caused a problem when fitting our agent parameters to human
data. To account for this, we added a small probability ε of selecting a random target
object. This ε parameter was set to the base rate of wall selection in human participants
(roughly 3% of object interactions).

2 Appendix B: Task generation
To measure generalization across within-domain variation, we needed to generate many
instances of each task that varied along a given dimension. To this end, we used a
generative process to produce task instances by creating solutions and then laying out
objects on a grid to make that solution attainable.

For example, instances of the Object Number Variation Task involve the player nav-
igating to treasures while avoiding traps and then heading to an exit. We can represent
the commonalities in these puzzles using a generative grammar. We used the probabilis-
tic, context-free grammar (PCFG) shown in Figure 1 to generate solution phrases like
the following:

TOUCH(treasure1)→ END(goal1)→ AVOID(trap1)→ END(goal2)→ ...→ TOUCH(exit1)

Depending on the parameters of the PCFG, each solution produced by this grammar
involved a different number of treasures, traps, and walls.

We then used the algorithm shown in Figure 2 to arrange the solution objects on a
grid.

The process described in Figure 2 ensures each sub-goal in the solution can be reached
without necessarily going through any other sub-goal. In the ONVT for example, this
meant that all treasures could be touched without first touching a trap. In the OFVT we
ensured that it was always possible to reach the exit without going through doors. This
prevented players who did not learn how keys work from getting stuck. In the OCVT, we
ensured that there was always one treasure and trap available without using teleporters
or conveyor belts. This allowed players to learn what each object type did before having

2



1. Initialize a starting point in space.

2. If the current item is not an “end-sub-goal” item, either:

(i) Add an empty space with some probability pe. Place wall objects in all
unoccupied spaces around the current cell.

(ii) Add the current item with probability 1− pe and remove the current item
from the solution. Place wall objects in all unoccupied spaces around the current
cell.

3. If the first item in the solution is an “end-sub-goal” item, select a previously-placed
wall at random to use as the new current cell and remove the wall in that space.
Remove the current item from the solution.

4. Select a random space that is adjacent to the current cell and filled with a wall
that does not border any other filled cells. Remove the wall and set this as the
current cell. If no such cell exists, remove everything generated since the last non-
empty item and try again. If that doesn’t work, keep removing segments until some
maximum number of attempts is reached.

5. Repeat 2-4 until there are no more items in the solution phrase.

Figure 2: Task instance generation process

to figure out how to use the teleporters or belts. We also ensured that each conveyor
belt/teleporter setup could be interacted with independently. Splitting each task instance
into sub-goals allowed us to control planning complexity by limiting the number of sub-
goals available in each instance. This in turn allowed us to minimize how much working
memory, attention, or general planning ability our tasks required.

Once we had grid layouts for each solution we randomly assigned shapes and colors
to each object. For each participant, we used random self-avoiding walks in 2D grids to
generate unique shapes for each distinct kind of object. We then generated unique colors
by representing colors as HSL (Hue, Saturation, Light) vectors and selecting nk different
hue values that were equidistant from each other in HSL space, where nk was the number
of object kinds that needed distinct colors for a given task. On average participants saw
4-7 different shapes and colors depending on which specific task they played (although
the specific set of shapes and colors used varied from participant to participant). The
same setup could be used to generate instances with dozens of unique shapes and colors
for training artificial agents that require more variation.

This shape and color randomization process also allowed us to ensure that each in-
stance was unique along the key dimension of variation for each task. All other dimen-
sions were held constant within participants across instances. Thus, the treasures in the
ONVT would be different shapes and colors for each participant, but would remain the
same shape and color from instance to instance within participants. This allowed us to at
least partially account for the prior knowledge brought to each task (e.g., ‘red’ is bad and
‘green’ is good). Generating many different shapes and colors introduced the possibility

3



that a task representation might fail during evlaution due to encountering shapes/colors
that were not seen during training. Thus we set up our instance generating process to
ensure that every color used in the evaluation instances had been previously observed in
at least one training instance. In other words, while an evaluation instance might have
involved never-before-seen green walls, the agent was guaranteed to have seen other green
objects during training, just never green objects that were acting as walls.

3 Appendix C: Model specification and simulation
We explored four different potential task representations in this work. Algorithms 1-3
provide pseudocode for the MCTS + Sarsa(λ) value estimation process used by all four
model classes, while Table 1 includes a description of all the parameters used by these
algorithms and their fitted values.

Algorithm 1 shows the central planning loop used by all four agents, wherein the
agents selected actions based on the current task state and then updated their internal
model according to the outcomes of that action. Here, the GetState function returned
the appropriate state representation for each model. Some actions lead to multi-step
animations, as in the Object Composition Variation Task where touching a conveyor belt
caused the agent to move along a fixed path. While on this path, the HasAnimation
function would return TRUE, and the GetNextAnimationAction could be used to iden-
tify the next animated action. After completing the appropriate action, agents attempted
to update their task representation based on the new state and any reward earned. For
tabular agents, UpdateModel added (CS(s), CA(a), CS(s

′)) to the agent’s tabular transi-
tion function and (CS(s), CA(a), r) to the tabular reward function. For rule-based agents,
there was no update step, as the rules of the task did not change during play.

Algorithm 1 Planning with MCTS and Sarsa(λ)
Initialize Mc, wc
s← GetState()
i← 0
while GetGameState(s) = 0 and i < Mc do
i← i+ 1
if HasAnimation(s) = TRUE then
a← GetNextAnimationAction(s)

else
a← GetNextMove(s)

end if
s′ ← GetState()
r ← GetReward(wc)
UpdateModel(s, a, s′, r)
s← s′

end while

Algorithm 2 shows the action selection process, which involved running simulations,
using those simulations to produce value estimates, and then stochastically selecting

4



actions based on their estimated values. To find the set of currently available actions,
GetAction used a BFS algorithm to find the set of all objects that could be currently
reached by the agent without passing through any other objects. Actions were randomly
selected using a softmax function, parameterized by τ .

Algorithm 2 GetNextMove(s0)
Initialize τ
a0 ← GetActions(s)
V← RunSimulations(a0, s0)
w← []
for a ∈ a0 do
w[a]← exp(V [s0,a]

τ
)

end for
w← w∑

w

a← Random(a0,w)
return a

Finally, Algorithm 3 produced value estimates for all currently available actions by
using MCTS and internal transition and reward functions to generate simulated episodes
and Sarsa(λ) to estimate values based on these episodes. Here GetNextStates used the
model’s internal transition and reward functions to simulate the effect of taking each
action in a from state s, while NormalizeRewards normalized the rewards from each
state to a 0-1 range (see Vodopivec, Samothrakis, and Ster (2017) for more details about
why normalizing the rewards within each state helps the value estimation process converge
more quickly). After normalization, an the algorithm calculated upper confidence bounds
for all available actions based on the current number of times that each state/action pair
has been visited during simulation. These visitation counts were reset at the beginning of
each value estimation process by the ResetV isits function. Each agent then selected an
action based on this upper confidence bound and simulated the effect of that action using
its internal transition and reward functions. For tabular agents, TransitionFunction
and RewardFunction looked up compressed representations s and a and then drew a
predicted next state or reward with probability related to the proportion of times that
next state had been visited (or reward had been obtained) from (CS(s), CA(a)) in the
past. For the rule based agent, the agent’s logic engine was used to sequentially apply
all known rules to the current state and action and produce a new state, which included
reward information as part of the state description. Once all episodes had been generated,
value estimates were produced using typical Sarsa(λ) update rules.

5



Algorithm 3 RunSimulations(a0, s0)
Initialize α, γ, λ,Ds, Ns, V0, wc
ResetV isits()
V← []
for n = 1→ n = Ns do
E← []
s← s0
a← a0

for d = 1→ d = Ds do
s, r← GetNextStates(s, a)
r← NormalizeRewards(r, s)

UCB← r+
√

2 ∗ log(
∑

aNv

Nv
)

if Nv,a = 0 for any a then
a← Random(UnvisitedActions(s))

else
a← ArgMax(UCB)

end if
if (s, a) /∈ V then
V[s, a]← V0

end if
s′ ← TransitionFunction(s, a)
r ← RewardFunction(s, a, wc)
UpdateEpisode(E, (s, a, r, s′))
s← s′

a← GetActions(s)
end for
δsum ← 0
Vnext ← 0
for s, a, r, s′ ∈ Reversed(E) do
δ ← r + γ ∗ Vnext −V[s, a]
δsum ← λ ∗ γ ∗ δsum + δ
if (s, a) ∈ V then
V[s, a]← α ∗ δsum +V[s, a]
Vnext ← V[s, a]

else
Vnext ← V0

end if
end for

end for
return V

6



Parameter Description Range Baseline Inf.-obj.-
features

Rel.-
categories

Rule-
based

α Learning
rate

0.001 -
1.0

0.001 0.001 0.5 0.001

γ Discount
rate

0.001 -
1.0

1.0 1.0 0.5 1.0

λ Trace
decay
rate

0.001 -
1.0

0.001 0.5 1.0 0.5

Ds Max.
action
depth

N/A 5 5 5 5

Mc Max.
actions
per task

N/A 325 (di-
rectional
actions)

15
(target
objects)

15 15

Ns Number
of simu-
lations

5 - 30 10 10 10 20

τ Action
selection
tempera-

ture

-8.0 - 0.0 0.0 0.0 0.0 0.0

V0 Initial
value

estimate
for unex-
plored
actions

N/A 0 0 0 0

wc Rel.
weight
of addi-
tional
actions

0.001 -
1.0

0.001 0.001 0.5 0.001

Table 1: Summary of key model parameters for Algorithms 1-3. Range column shows
ranges used during performance and LL fitting processes. Variables marked N/A were
not fit. Right-most four columns represent performance-maximizing values for each of
the four model classes.

References
Vodopivec, T., Samothrakis, S., & Ster, B. (2017). On monte carlo tree search and

reinforcement learning. Journal of Artificial Intelligence Research, 60 , 881-936.

7


	Appendix A: Task representation implementation details
	Appendix B: Task generation
	Appendix C: Model specification and simulation

