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We present an integrated view of interval timing and reinforcement learning (RL)
in the brain. The computational goal of RL is to maximize future rewards, and
this depends crucially on a representation of time. Different RL systems in the
brain process time in distinct ways. A model-based system learns ‘what
happens when’, employing this internal model to generate action plans, while
a model-free system learns to predict reward directly from a set of temporal
basis functions. We describe how these systems are subserved by a
computational division of labor between several brain regions, with a focus
on the basal ganglia and the hippocampus, as well as how these regions are
influenced by the neuromodulator dopamine.

Reinforcement Learning Depends on Temporal Processing
To predict and maximize future reward, an agent must have a sense of time. Many tasks require
precisely timed actions, generalization of reward predictions across different intervals, or an
accurate representation of the temporal order of events. Consider, for example, the problem of
learning to swing a baseball bat. The batter must coordinate a temporally precise sequence of
motor commands, but this sequence must be flexible enough so that it can adapt to different
pitchers without learning from scratch. The batter can also take advantage of his/her expecta-
tions about what happens when, by making anticipatory adjustments to his/her posture as
he/she collects information about the ball’s trajectory. To be effective, interval timing (IT; see
Glossary) mechanisms have to be flexible in terms of the range of durations that can be timed,
and how quickly new temporal criteria can be incorporated into decision-making processes
[1,2].

Computational theories of reinforcement learning (RL) have begun to incorporate a precise
sense of time by building a bridge with theories of temporal processing [3–6]. Guided by Marr’s
three levels of analysis [7,8] this review will discuss the integration of RL with temporal
processing at computational, algorithmic, and neural levels of analysis. We first outline the
computational goal of RL, and how this relies critically on IT, particularly in the seconds-to-
minutes range. We then discuss how different algorithmic solutions to the RL problem use
temporal information. Finally, we relate these algorithms to their underlying neural systems,
showing how consideration of temporal processing can resolve a number of limitations and
lacunae in our understanding of RL.

The Problem of Time in Reinforcement Learning
The goal of RL is to maximize expected cumulative future reward (i.e., value). This requires the
agent to solve a ‘prediction problem’, which requires estimating the value of each possible
action, and an ‘optimization problem’, which involves balancing exploration and exploitation to
select the optimal action. More formally, the prediction problem is to compute the value of each
state–action pair, where the state distills those aspects of the environment necessary for
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Glossary
Belief state: the posterior
distribution over hidden states
conditional on sensory data.
Bias–variance trade-off: bias is the
degree to which a model
systematically underfits the training
data; variance is the degree to which
a model overfits noise in the data.
The two forms of error trade-off
against each other, such that
reducing bias can lead to greater
variance.
Clock speed: the speed at which
internal time progresses. Changes in
clock speed result in altered
temporal perception. Faster clock
speed results in earlier temporal
reproduction, whereas slower clock
speeds lead to later temporal
reproduction.
Interval timing: the study of
temporal processing and the scaling
of durations from any sensory
modality in the range of hundreds of
milliseconds to minutes. See [85] for
additional details.
Markov decision process (MDP):
a mathematical framework for
describing environments in
reinforcement learning. An MDP
consists of states (s), actions (a), a
reward function that probabilistically
maps state–action pairs to reward,
and a state transition function that
probabilistically maps state–action
pairs to the next state. This definition
implies that rewards and transitions
are conditionally independent of the
agent’s history given the current
state and action [86].
Model-based learning: a class of
algorithms that learn an internal
model of the environment, consisting
of a reward function and a state
transition function.
Model-free learning: a class of
algorithms that learn reward
predictions from direct interactions
with the environment.
Peak-interval procedure: the
peak-interval procedure is a discrete-
trial duration re-production
procedure. A percentage of trials are
fixed-interval trials, where the
subject’s first response after a target
duration (e.g., 30 s) is reinforced.
There are also unreinforced probe
trials interleaved with the fixed-
interval trials. The omission of reward
allows timing behavior to be
assessed without the interruption of
predicting rewards. A classical assumption is that the time evolution of states and rewards can
be described by a Markov decision process (MDP), according to which state transitions and
reward depend only on the current state (Box 1). This Markov assumption enables the use of
efficient RL algorithms, as we discuss in the following section.

The Markov assumption also makes explicit the requirements for temporal representation. All
temporal dynamics must be captured by the state-transition function, which means that the
state representation must encode the time-invariant structure of the environment. Consider, for
example, a simple Pavlovian conditioning protocol in which a conditioned stimulus (CS; e.g.,
tone) is followed by a fixed interstimulus interval (ISI) that terminates with the delivery of an
unconditioned stimulus (US; e.g., food). The US is then followed by a fixed intertrial interval (ITI).
In discrete time, the temporal dynamics can be approximated by breaking the intervals into
short ‘substates’ that are activated sequentially after stimulus onset (see [3] for an alternative
continuous time approach). This framework can be generalized to random ISIs and ITIs by
assigning transition probabilities between substates such that the Markov process approx-
imates the corresponding interval distribution. The substates encode a time-invariant structure
in the sense that the state transition function does not change as the agent proceeds through
the task; only the activated substate changes over time.

This example illustrates how an agent needs to anticipate when the reward will be delivered to
solve the RL problem. In this case, the agent must explicitly encode time intervals as part of its
state representation. Thus, IT is an integral part of RL, cutting across different algorithmic
solutions. By contrast, different algorithms make use of time representation in different ways.
Model-free algorithms use the time representation as a basis set for approximating the value
function. Most commonly, this means approximating values as linear combinations of basis
functions defined over time. In some instances, however, nonlinear function approximators,
such as recurrent neural networks [9], may be more effective and biologically realistic
representations of time. Model-based algorithms use the time representation to compute
values by simulating the environmental dynamics. This is more computationally intensive than
model-free algorithms, but endows model-based algorithms with more flexibility, because
parameter changes in the internal model of temporal structure will immediately change the
value estimates. Yet another class of algorithms learns a ‘predictive map’ that encodes long-
range temporal relationships between states [10–13]. This can be combined with reward
expectations to form a semiflexible value estimate. For the sake of brevity, however, we will
focus on IT in model-based and model-free algorithms.

Timing in Model-Free Reinforcement Learning
Model-free algorithms directly estimate the value function by interacting with the environment.
The canonical example is temporal difference (TD) learning [14], which uses the discrepancy
between received and expected reward (the TD error) to update its value estimates (see Box 1
for technical details). This algorithm has been influential in neuroscience due to the correspon-
dence between the TD error and the firing of midbrain dopamine neurons [15,16]. The value
function is thought to be encoded at corticostriatal synapses, where plasticity is modulated by
dopamine release similar to the circuits subserving IT [17–21]. This dopamine-dependent
plasticity functions within a precise time window (i.e., 0.3–2.0 s), which has been demonstrated
using optical activation of dopaminergic and glutamatergic afferents [22].

TD learning can be generically applied to any state representation; the first generation of models
[15,23] adopted the substate representation described above, also known as ‘complete serial
compound’. However, later work highlighted a number of empirical problems with this
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reward, allowing for the individual
trials analysis of ‘stop’ and ‘start’
responses [87].
Recurrent neural network: a
network in which neurons are
connected sequentially, giving rise to
temporal dynamics.
Reinforcement learning: the
problem of learning to maximize
cumulative future rewards [88].
Reward prediction error: the
discrepancy between received and
expected reward. This error is often
attributed to the firing patterns of
midbrain dopamine neurons (e.g.,
[89]). Recent findings, however, have
challenged this long-held view by
attributing the role of striatal
dopamine to movement kinematics
(e.g., head velocity) in unrestrained
subjects performing in behavioral
tasks involving the delivery of reward
[90].
Scalar-timing noise: variance of
responses increases in proportion to
the duration that is being timed. Time
cells also demonstrate scalar noise,
with larger temporal receptive fields
for longer durations.
State: the information about the
current environment sufficient to
predict future reward.
Structure learning: the problem of
discovering the state space
underlying sensory data.
Temporal bisection procedure:
this is a duration classification task in
which subjects are presented with
either a ‘short’ or a ‘long’ signal
duration after which a response (e.g.,
left button) will be reinforced if the
‘short duration’ had been presented,
whereas a different response (e.g.,
right button) will be reinforced if the
‘long’ duration had been presented.
Once subjects acquire this
discrimination, they are presented
with a range of intermediate
durations distributed between the
‘short’ and ‘long’ durations. Analysis
is generally performed on the
normalized slope of the function (i.e.,
Weber fraction), and the duration at
which subjects have a 50%
probability of responding ‘long’ (i.e.,
the point of subjective equality).
Time cells: neurons that peak in
activation at a characteristic delay
from a salient event. These have
been found in the striatum,
hippocampus, and cortical regions,
among others.
representation [3,4,24,25]. From a computational perspective, the discrete and bounded
nature of substates is disadvantageous because it does not allow values learned for one
substate to gracefully generalize across time except by the slow transfer of value between
adjacent substates that is built into the TD algorithm. Intuitively, information about the value of
one substate should be informative about the value of an adjacent substate, even in the
absence of new learning.

This issue highlights the tension between representational constraints and learning constraints.
Specifically, an agent requires a state representation that can represent the correct value
function, but it is necessary to restrict the function class when an agent needs to generalize
from limited experience. The bias–variance trade-off [26,27] provides a formal lens through
which to view this issue: an RL agent can reduce bias (the difference between the learned and
true value function) by finely decomposing the state space, but only at the expense of
increasing variance (sensitivity to noise in the training data). Balancing bias and variance
requires state representations that permit some degree of generalization. In the context of
timing, this balance can be achieved using state representations that change smoothly over
time. Temporal smoothness acts as a soft constraint on the function class, effectively low-pass
filtering the value function and thereby suppressing noise.

We can think about the bias–variance trade-off in neurobiological terms by imagining a set of
neurons whose firing represents the activation of particular substates. If the neurons are
narrowly tuned, and only respond during the interval corresponding to their preferred substate,
then bias will be low and variance will be high: the value function can be precisely represented at
each time interval, but the estimated values will be unreliable. If the neurons are broadly tuned,
and thus respond partially to neighboring time intervals, then bias will increase and variance will
be reduced: the value function can only be imprecisely represented at each time interval, but the
estimated values will be more reliable because the neurons collect partial credit for rewards
received outside their preferred time interval, effectively increasing the amount of data available
to each neuron.

This logic can be extended one step further by considering the fact that most tasks only need
accurate IT over a particular range of durations. Moreover, many studies have found that timing
noise increases with interval duration in a proportional manner (scalar property – e.g., [28]),
which means that there is a limit on the accuracy with which value functions can be represented
for very long durations. Thus, neurons tuned to longer durations are not useful for predicting
future reward. This suggests that the temporal precision of the state representation should be
concentrated around shorter durations. One implementation of this idea uses ‘microstimuli’
(Figure 1) having Gaussian temporal receptive fields whose width increases and amplitude
decreases with the preferred duration [24,25; see also 29]. Recent experiments have presented
evidence for microstimulus-like temporal receptive fields, also known as ‘time cells’, in several
areas, including the striatum [30,31], hippocampus [32–35], and prefrontal cortex [36]. These
neural representations can in some cases quantitatively predict variation in timing behavior [37].

A striking feature of ‘time cells’ noted in several reports [33,30,38] is their ability to rescale when
the intervals are changed dramatically. For example, striatal neurons encode a range of
intervals when a subject is trained on a fixed-interval schedule, and these same neurons
expand the range of intervals when the fixed interval is increased. Further, this rescaling of
neurons has been observed on a trial-by-trial basis in both the caudate and the medial frontal
cortex of a monkey performing a two-interval reproduction task [39]. This ability to display time-
invariant neural activity for multiple durations can be modeled using a recurrent neural network
Trends in Cognitive Sciences, October 2018, Vol. 22, No. 10 913



Box 1. Markov Decision Processes

An MDP is defined by reward function R(s,a) mapping state–action pairs to scalar rewards, a state transition function T
(s0 |s,a) mapping state–action pairs to a probability distribution over the next state, and a discount factor g specifying the
agent’s time preference (weighing proximal rewards greater than distal rewards; Figure I). The Markovian (history-
independent) structure allows the value function to be expressed in an algorithmically convenient form known as the
Bellman equation [88]:

Qp st; atð Þ ¼ R st; atð Þ þ g
X

stþ1

T stþ1jst; atð ÞQp stþ1;p stþ1ð Þ� �

where t indexes time, s denotes the state, a denotes the action, and p is a policy mapping from states to actions (taken
here to be deterministic for simplicity).

Model-based algorithms use the reward and state transition functions to iteratively compute an estimate Q̂p of the value
function. Intuitively, the Bellman equation specifies a self-consistency relation between values of adjacent states, so
we can use the discrepancy between these (estimated) values (i.e., the difference between the right- and left-hand
sides of the Bellman equation) to adjust them in the right direction:

DQ̂p st; atð Þ / R st; atð Þ þ g
X

stþ1

T stþ1jst; atð ÞQ̂p stþ1;p stþ1ð Þ� �� Q̂p st; atð Þ

where the proportional symbol indicates that the change in value may be incremental, as determined by a learning rate
(not shown here). This equation is an incremental version of the classical value iteration algorithm [88].

In practice, some state transitions are low probability, so it is computationally wasteful to sum over all possible
transitions. An alternative is to simulate (take random samples) from the state transition function, thereby constructing a
Monte Carlo approximation whose accuracy increases as more samples are simulated. Even drawing a single sample st
+1 will lead to an update that eventually converges to the true value function:

DQ̂p st; atð Þ / R st; atð Þ þ gQ̂p stþ1;p stþ1ð Þ� �� Q̂p st; atð Þ

If the agent does not have access to an internal model of the state transition function, this update rule can still be applied,
simply by interacting with the environment. That is, an agent can take actions in the environment and experience state
transitions, plugging them into the update rule. This corresponds to the TD algorithm [14], the celebrated ‘model-free’
learning algorithm, where the update is known as the TD error. The intimate relationship between model-based and
model-free algorithms via the Bellman equation suggests that they can be productively combined (see [91]). For
example, a model-free agent can update value estimates based on both simulated and experienced transitions [4,92].
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Figure I. The Interaction of Agent and Environment. An agent interacts with the environment through selecting
actions, resulting in state transitions, rewards, and sensory evidence, which the agent uses to infer the hidden state.
Feedback from the environment is used to update the agent’s action selection policy.
that exhibits stereotyped neural trajectories that vary speed based on a gain input (see also
[40]). Consequently, it appears as though the transition through neural state space does not
change when the temporal criteria are altered, but just the rate at which the trajectory
progresses (i.e., clock speed).
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Figure 1. Predicting Reward with Temporal Representations. (A) Learning to anticipate a reward that follows a
predictive cue can be accomplished by using a set of ‘microstimulus’ representations (temporal basis functions; see
[24,25]). (B) These basis functions are activated by salient events (e.g., a tone signaling trial start), and peak at a
characteristic delay from event onset. They have the benefit of naturally allowing for generalization of value across time.
Specifically, the overlapping nature of the basis functions allows partial credit when rewards are received at times of less
than maximal activation. Here the width of each basis function scales in proportion to its preferred duration, thus increasing
the amount of generalization with longer durations. ISI, interstimulus interval; ITI, intertrial interval.
At least in some cases [33], the emergence of rescaling is gradual, which could reflect slow
reinforcement-driven adaptation. The mechanisms underlying this adaptation are still poorly
understood. One possibility is that dopamine itself is the teaching signal for adaptation.
Extensive pharmacological work has shown that reductions in tonic levels of dopamine cause
intervals to be perceived as proportionally longer, in effect causing the IT mechanisms to run
faster [41,42]. Further, tonic dopamine changes affect intertemporal choice, where subjects
choose between rewards available at different points in time. Dissociations have been shown
between IT and intertemporal choice following the administration of dopaminergic and seroto-
nergic drugs. In these experiments, variations in timing (clock speed) were able to mediate
intertemporal choice via dopaminergic inputs. By contrast, a separate serotonergic system was
able to affect intertemporal choice without affecting IT directly [43].
Trends in Cognitive Sciences, October 2018, Vol. 22, No. 10 915



Recent optogenetic manipulations of dopamine neurons during a temporal bisection pro-
cedure [44] appear to paint a different picture, with decreases in phasic dopamine activity
causing intervals to be perceived as shorter under some conditions. Interestingly, the strongest
effects were shown around the point of subjective equality (PSE), or where rats had a 50%
chance of classifying the duration as either long or short. The PSE can be thought of as the
duration that has the highest level of uncertainty, and as a consequence, might be most
affected by increased phasic dopamine activity.

Some RL theories have posited different computational roles for tonic and phasic dopamine,
with phasic activity reporting reward prediction errors and tonic activity reporting average
reward [45], but it remains unclear how this division of labor resolves the discrepancy between
pharmacological and optogenetic dopamine manipulations. Another possibility is that tonic
dopamine controls the precision (inverse variance) of sensory measurements [46–48]. This
could explain why decreasing tonic dopamine shortens subjective duration relative to physical
time: when precision is low, the duration estimate is regularized towards the prior (see below for
a discussion of central tendency effects), which will be downward when intervals tend to be
short. However, this does not explain the effects of phasic dopamine manipulations – an
important open problem for experimental and theoretical research.

Timing in Model-Based Reinforcement Learning
In contrast to the relative inflexibility of model-free algorithms, which must incrementally relearn
value estimates when the environment changes, model-based algorithms are capable of rapid
and dramatic changes in value estimates. This flexibility derives from the fact that changes in the
environment (assuming it is modeled as an MDP) can be captured by local modifications of the
transition function, in contrast to the value function which encodes long-term dependencies
(Box 1).

Studies of IT have provided evidence for such flexibility. For example, subjects trained in a
peak-interval procedure show rapid acquisition in response to abrupt changes in the
criterion duration [49,50]. Similarly, rapid acquisition of timing behavior has been reported
in Pavlovian delay conditioning experiments [51].

The rapid nature of this learning is further apparent in experiments that used a hopper-switch
task [52–54] in which reward is probabilistically assigned on each trial to one of two hoppers. If
reward is assigned to the ‘short’ hopper, the mouse receives a food pellet by poking the hopper
after 3 s have elapsed. If reward is assigned to the ‘long’ hopper, the mouse receives a pellet by
poking the hopper after 9 s have elapsed. The optimal policy depends on the probability
distribution over hoppers. Occasionally, this distribution was changed, and the authors esti-
mated that mice took approximately 10 trials to detect the change, after which there was an
abrupt shift in their behavior. Thus, temporal information appears to be used to update
parameters in an internal model to achieve change detection, rather than the gradual adjust-
ment of behavior anticipated by standard model-free algorithms.

Even more decisive evidence for the flexibility of timing has been provided using a variant of the
hopper-switch task in which mice are first trained on each hopper separately (i.e., no switching)
and then in the test phase given a choice between hoppers [55]. Despite never having been
trained on the two-hopper task, mice almost immediately and stably adopted the optimal policy
in the test phase, going first to the ‘short’ hopper and then, if not rewarded, to the ‘long’ hopper.
Moreover, mice calibrated their switch latency to the probability of reward, staying longer at the
‘short’ hopper when its reward frequency was higher during the training phase.
916 Trends in Cognitive Sciences, October 2018, Vol. 22, No. 10



Similarly, subjects are capable of spontaneous averaging of intervals. On separate trials rats
were trained to associate an auditory stimulus with a short delay to food availability, and a visual
stimulus with a long delay. When both modalities were presented simultaneously, subjects
averaged the two separate reinforcement times [56].

Internal models of timing can also be exposed by manipulating the distribution of intervals.
These manipulations have been performed with an operant conditioning task in which the
CS–US interval was drawn from a Gaussian whose mean was held fixed across blocks of trials
within a session, but whose variance was varied across blocks [57]. Mice waited longer before
approaching the water port when the variance was larger, consistent with the optimal model-
based policy. Intuitively, when variance is large, and thus mice are more uncertain, they will wait
longer to increase their confidence that the criterion interval has elapsed.

Another source of evidence for model-based learning comes from studies of temporal inte-
gration (see [58]; or [59] for a review; see [60] for a modeling approach to some of these
phenomenon). In these experiments, subjects are separately trained on different stimulus
arrangements, and then are tested on their ability to integrate the temporal relationships
between events to form expectations about stimulus arrangements that they have not directly
experienced. One example comes from when subjects were initially trained using a backward
conditioning arrangement in which a US occurred 5 s before a CS (denoted S1) [61]. The
animals then learned about a stimulus arrangement in which S1 was preceded by another CS
(S2) such that S2 coterminated with the hypothetical onset of the US, which was omitted.
Subjects demonstrated a significant conditioned response to S2 in a final test phase, even
though they had never been reinforced following presentation of S2, suggesting that they had
formed a temporal representation of the event structure.

In summary, a number of experimental paradigms have shown that subjects learn internal
models of timing, which they employ in flexible ways – rapidly adjusting behavior to changes in
the internal model, and integrating separately trained fragments of event knowledge. These
findings are broadly consistent with computational models of model-based RL (e.g., [62]), but
do not strongly favor specific algorithms (though see [63] for a recent attempt at empirically
identifying stronger algorithmic assumptions).

State Uncertainty
The algorithms discussed above all assume that the agent has access to the state of the
environment. However, state uncertainty is inevitable because we can only make inferences
about our environment based on noisy sensory data [64]. In IT, these noisy estimates are
apparent from scalar-timing noise [28]. State uncertainty can also arise from dynamic
environments; for example, if the US is occasionally omitted in a Pavlovian conditioning task
with random ISIs (Figure 2), the subject will be unsure whether the US is late (and hence the
subject is still in the ISI state) or if it is omitted (and hence the subject has transitioned to the ITI
state).

One way to handle state uncertainty in RL is to define value functions over belief states, or
probability distributions over states (Box 2). The same RL algorithms can be applied to this
belief state, which is updated according to Bayes’ rule after each new sensory observation [65].
The belief state model leads to the hypothesis that TD errors signaled by dopamine will reflect
the evolution of state uncertainty over time [3]. Two recent studies [5,6] have tested this
hypothesis in mice (see also [66]).
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Figure 2. Interval Timing and Belief
States. Interactions between interval
timing and belief states (probability distri-
butions over states) can be understood
through a comparison of Pavlovian tasks
with and without state uncertainty. When
a reward follows a tone with 100% prob-
ability (A), the animal always knows that it
is in the interstimulus interval (ISI) state
before reward [p(ITI) = 1] and in the
intertrial interval (ITI) state after reward
[p(ITI) = 0]. As time progresses in the ISI
state, the reward becomes more likely,
and subjects are less surprised when it
is delivered. This corresponds to a mono-
tonic decline in the dopamine reward pre-
diction error signal as a function of ISI
(Starkweather et al. [5,6]). When rewards
are occasionally omitted (B), subjects
have uncertainty about whether they are
in the ISI or the ITI state. This uncertainty
can be captured by a dynamic belief
state. As time progresses without a
reward, subjects become increasingly
confident that the state has silently transi-
tioned to the ITI, and thus their reward
expectations will eventually decrease. In
this case, reward prediction errors should
increase as a function of time, consistent
with experimental findings (Starkweather
et al. [5,6]).
Using a Pavlovian conditioning task with random ISIs, researchers showed that the response of
dopamine neurons to reward delivery was sensitive to both the ISI and the probability of reward
omission. When the omission probability was 0, and hence the subject had timing uncertainty
but not uncertainty about whether it was in the ISI or ITI, dopamine reward responses declined
with the ISI. This agrees with previous findings [67] as well as with the TD theory: as time
elapses, the subject becomes increasingly confident that the reward will be delivered, and
hence the reward is less surprising (lower prediction error). By contrast, when reward was
omitted on 10% of the trials the dopamine reward response increased over time. Because of
ISI/ITI uncertainty, the TD algorithm operating on belief states predicts this increase. Intuitively,
the more time that elapses, the more confident the subject becomes that the hidden state has
silently transitioned from the ISI to the ITI.

What are the origins of the belief state inputs to dopamine neurons? Research aimed at
addressing this question [6] reversibly inactivated the medial prefrontal cortex (mPFC) while
simultaneously recording dopamine neurons. Somewhat surprisingly, inactivation did not alter
the temporal modulation of dopamine reward responses in the no-omission, indicating that
temporal information from the mPFC was not required for timing in dopamine neurons. By
contrast, inactivation in the omission condition largely eliminated the temporal modulation of
dopamine responses. Computational modeling using belief state RL indicated that this effect
could be understood as an impairment of the belief state representation rather than of IT. In
particular, mPFC inactivation appeared to ‘freeze’ the belief state, preventing it from changing
in response to reward omission.
918 Trends in Cognitive Sciences, October 2018, Vol. 22, No. 10



Box 2. Reinforcement Learning under State Uncertainty

The algorithms reviewed in Box 1 rely crucially on the agent having access to the state of the environment, but in many
real-world scenarios the agent may only receive noisy sensory data about the state. The agent cannot simply learn
values for the sensory data, because transitions in the sensory space do not obey the Markov property and hence the
Bellman equation is violated. One elegant solution to this problem is to define a belief state, bt sð Þ ¼ Pðst ¼ sjotÞ, the
posterior probability distribution over hidden states conditional on the sensory data ot. We can then define a value
function over belief states that is Markovian, obeying the following Bellman equation:

Qp bt; atð Þ ¼ R bt; atð Þ þ g
X

btþ1

T btþ1jbt; atð ÞQp btþ1;p btþ1ð Þ� �

where the reward and state transition functions are now defined as ‘marginals’ over the hidden state (see [93] for more
details). The algorithms in Box 1 can be applied to this belief state MDP.

This formalism can be applied to various classes of state uncertainty. For example, in reversal learning, the environment
consists of two possible hidden states (A and B) distinguished by their reward functions, so the belief state can be
represented by a scalar, bt = P(st = A|ot). In a change detection paradigm, the environment consists of a stochastic
sequence of states (A, B, C, D, . . . ) that never repeat. In this case, the belief state is in theory infinitely long, but can be
efficiently approximated by considering only the probability of a state change on each trial [94], in which case the belief
state is again scalar, bt = P(st 6¼ st�1|ot). In Pavlovian conditioning paradigms with reward omissions, the environment
consists of two hidden states: the ITI and the ISI. Depending on whether these epochs are modeled in continuous time
[3] or broken into discrete temporal substates [5,6], the belief state is thus either scalar, bt = P(st = ITI|ot), or vector
valued bt sð Þ ¼ Pðst ¼ ITI sð ÞjotÞ, where ITI(s) denotes substate s of the ITI, corresponding to a relatively small
duration within the ITI.
Taken together, these findings indicate the importance of considering state uncertainty when
studying timing. State uncertainty requires individuals to rely on an internal perception of time
that is heavily influenced by belief states. In times of low uncertainty (e.g., significant cues) our
perception of time is synchronized to external events. Further, time modulates many down-
stream computations, such as TD errors and belief states, so it is necessary to consider them
jointly to disentangle their neural correlates.

Structure Learning
In many environments, agents might not only be uncertain about the hidden state, but also be
uncertain about the state space. This means agents must solve a structure learning problem
simultaneously with the RL problem of maximizing rewards [68]. The formal framework of belief
state RL (Box 2) can be naturally extended to the problem of structure learning.

The aforementioned change detection (hopper-switch) paradigms [53,52,63] can be viewed as
a form of structure learning. In these paradigms, the environment never returns to exactly the
same state, so the belief state is in theory infinite dimensional. However, real-world environ-
ments often have recurring structure, where old states can reoccur in addition to the occur-
rence of new states. The computational problem facing the brain in these environments is
therefore somewhat different from change detection. Instead of detecting whether the current
observation is generated by either the same state as the previous observation or a new state,
structure learning in recurrent environments needs to consider whether a previously encoun-
tered state has reoccurred [4,69].

A simple example of this is the transition from a fixed interval to a peak-interval procedure.
Initially, the subject is rewarded 100% of the time for a response occurring after a fixed delay
from signal onset. Subjects are then transferred to partial reinforcement schedules, and must
learn that in addition to the rewarded state, there is a new state where reward is not available.

A recent work [70] provides another example of structure learning in a temporal reproduction
task. Human observers were tasked with reproducing the duration of a visual stimulus by
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Outstanding Questions
How can theoretical accounts of timing
and reward processing be integrated
into a more general model?

How do distributed networks involved
in RL and IT cooperate and compete to
form a unified perception of time?

How can the effects of tonic and pha-
sic dopamine on RL and IT be recon-
ciled into a cohesive story?

As recurrent neural networks are capa-
ble of timing behavior without rein-
forcement learning, how can they be
integrated into the framework articu-
lated here?

How does the interaction between IT
and RL translate from the laboratory to
real-world settings?
holding down a key for an equivalent duration. Consistent with a large experimental literature
(e.g., [71–73]), observers exhibited a central tendency effect: relative to the mean duration, long
durations were underestimated, and short durations were overestimated [5]. This effect can be
understood in terms of a Bayesian analysis [47,71,72,74], according to which noisy timing
signals are combined with a prior over duration to form a posterior (i.e., the belief state). The
expected duration under this belief state will be intermediate between the observed timing
signal and the mean of the prior.

Further, this research [70] asked whether the central tendency effect reflects a single prior learned
across environments, or instead reflects separate priors learned for different environments. To
answer this question, they interleaved stimuli from different distributions (e.g., sensory modality),
and found that the reproduction bias reflected a single combined prior, even when stimuli for the
two distributions were presented in distinct spatial locations. By contrast, when distinct motor
responses were required for the two distributions the reproduction bias reflected separate priors,
indicating no generalization. These results suggest that motor information exerts a stronger
influence on structure learning than sensory information (see also [75]).

Discovering the structure of the environment can provide powerful generalization abilities. For
example, subjects trained in the peak-interval procedure exhibit a slower acquisition of the peak
time for the first criterion change, and more abrupt acquisitions for subsequent changes ([49] –

a form of ‘learning to learn’ [76]). Once subjects have discovered the underlying structure of
temporal criterion changes in the task, they become more adept at adapting to these changes.

Another instance of structure learning is the retention that is present when generalizing a
previously learned duration across stimulus modality, location, and task demands. This can be
demonstrated when learning a visual duration, and then retaining a degree of performance
when the stimulus is switched to the auditory modality. Importantly this does not happen
immediately, but takes some time for the new modality to resemble the same interval in a
different modality [77–80].

Concluding Remarks and Future Directions
Computational theories of RL and IT have matured independently, and only recently have they
begun to intersect [4]. This review has highlighted several ways in which RL algorithms use
temporal representations, which go beyond the traditional function approximation with a temporal
basis set seen in model-free RL theories. Modern RL embraces a broader range of algorithms,
including model-based algorithms that use IT to support flexible and rapid changes in behavior.

Many open questions remain. One concerns our assumption that the environment can be
modeled as an MDP. Markov dynamics are algorithmically useful, but they are also restrictive.
Several lines of research suggest ways to get around the Markov assumption without entirely
abandoning algorithmic efficiency, for example, using episodic memory [69] or a collection of
timing elements that support learning at multiple scales [81,82].

Another issue concerns the neural integration of IT and RL mechanisms. Specifically, there are
distributed brain regions that support the processing of both IT and RL, yet information is
integrated across different algorithmic learning systems to form a perceptual whole [83]. One
useful way to better understand the interaction of these two fields is through the use of
biologically plausible neural networks. Recent work has shown how biologically plausible
recurrent neural networks can be used to implement flexible timing [40,84]. These networks
are trained using Hebbian rules [84] or supervised learning [40], rather than RL. However, the
920 Trends in Cognitive Sciences, October 2018, Vol. 22, No. 10



insights from these network models may prove useful in constructing more biologically
plausible and powerful implementations of RL algorithms (see [9] for a step in this direction).
Overall, we encourage a more unified approach to the study of IT and RL going forward. It
becomes clear the two disciplines are overlapping as they are traced across Marr’s three levels
of analysis (see Outstanding Questions).
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