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ABSTRACT
In this paper we carry out an extensive comparison of many off-the-shelf distributed semantic
vectors representations of words, for the purpose of making predictions about behavioural
results or human annotations of data. In doing this comparison we also provide a guide for how
vector similarity computations can be used to make such predictions, and introduce many
resources available both in terms of datasets and of vector representations. Finally, we discuss
the shortcomings of this approach and future research directions that might address them.
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1. Introduction

1.1. Distributed semantic representations

We are interested in one particular aspect of concep-
tual representation – the meaning of a word –
insofar as it is used in the performance of semantic
tasks. The study of concepts in general has a long
and complex history, and we will not attempt to do
it justice here (see Margolis & Laurence, 1999, and
Murphy, 2002). Researchers have approached the
problem of modelling meaning in diverse ways. One
approach is to build representations of a concept –
aword used in one specific sense – by hand, using
some combination of linguistic, ontological, and fea-
tural knowledge. Examples of this approach include
WordNet (Miller, Beckwith, Fellbaum, Gross, & Miller,
1990), Cyc (Lenat, 1995), and semantic feature norms
collected by various research groups (e.g., McRae,
Cree, Seidenberg, and McNorgan, 2005, and Vinson
& Vigliocco, 2008). An alternative approach, known
as distributional semantics, starts from the idea that
words occurring in similar linguistic contexts – sen-
tences, paragraphs, documents – are semantically
similar (see Sahlgren, 2008, for a review). A major prac-
tical advantage of distributional semantics is that it
enables automatic extraction of semantic represen-
tations by analysing large corpora of text. Since the

computational tasks we are trying to solve (and the
more general problem of concept representation in
the brain) require models that are general enough to
encompass the entire English vocabulary as well as
arbitrary linguistic combinations, our focus will be on
distributional semantic models. Existing hand-engin-
eered systems cannot yet be used to address all the
tasks that we consider.

Common to many distributional semantic models is
the idea that semantic representations can be con-
ceived as vectors in a metric space, such that proximity
in vector space captures a geometric notion of seman-
tic similarity (Turney & Pantel, 2010). This idea has
been important both for psychological theorizing
(Howard, Shankar, & Jagadisan, 2011; Landauer &
Dumais, 1997; Lund & Burgess, 1996; McNamara,
2011; Steyvers, Shiffrin, & Nelson, 2004) as well as for
building practical natural language processing
systems (Collobert & Weston, 2008; Mnih & Hinton,
2007; Turian, Ratinov, & Bengio, 2010). However,
vector space models are known to have a number of
weaknesses. The psychological structure of similarity
appears to disagree with some aspects of the geome-
try implied by vector space models, as evidenced by
asymmetry of similarity judgments and violations of
the triangle inequality (Griffiths, Steyvers, & Tenen-
baum, 2007; Tversky, 1977). Furthermore, many
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vector space models do not deal gracefully with polys-
emy or word ambiguity (but see Jones, Gruenenfelder,
& Recchia, 2011, and Turney & Pantel, 2010). Recently,
a number of different researchers have started focus-
ing on producing vector representations for specific
meanings of words (Huang, Socher, Manning, & Ng,
2012; Neelakantan, Shankar, Passos, & McCallum,
2015; Reisinger & Mooney, 2010; Yao & Van Durme,
2011), but these are still of limited use without some
degree of manual intervention to pick which mean-
ings to use in generating predictions. We discuss
these together with other available approaches in
Section 2.1. In the work reported here, we do not
attempt to address these issues directly; our goal is
to compare the effectiveness of different vector rep-
resentations of words, rather than comparing them
with other kinds of models.

1.2. Modelling human data

Ever since Landauer and Dumais (1997) demonstrated
that distributed semantic representations could be
used to make predictions about human performance
in semantic tasks, numerous researchers have used
measures of (dis)similarity between word vectors –
cosine similarity, euclidean distance, correlation – for
that purpose. There are now much larger test datasets
than the TOEFL synonym test used in Landauer and
Dumais (1997), containing hundreds to thousands of
judgments on tasks such as word association,
analogy, and semantic relatedness and similarity, as
described in Section 2.3. The availability of LSA as a
web service1 for calculating similarity between words
or documents has also allowed researchers to use it
as a means of obtaining a kind of “ground truth” for
purposes such as generating stimuli (e.g., Green,
Kraemer, Fugelsang, Gray, & Dunbar, 2010). In parallel
with all this work, researchers within the machine
learning community have developed many other dis-
tributed semantic representations, mostly used as
components of systems carrying out a variety of
natural language processing tasks, ranging from infor-
mation retrieval to sentiment classification (Wang &
Manning, 2012).

Beyond behavioural data, distributed semantic rep-
resentations have been used in cognitive neuro-
science, in the study of how semantic information is
represented in the brain. More specifically, they have
been used as components of forward models of

brain activation, as measured with functional mag-
netic resonance imaging (fMRI), in response to seman-
tic stimuli (e.g., a picture of an object together with the
word naming it, or the word alone). Such models learn
a mapping between the degree to which a dimension
in a distributed semantic representation vector is
present and its effect on the overall spatial pattern
of brain activation. These models can be inverted to
decode semantic vectors from patterns of brain acti-
vation, which allow validation of the mappings by clas-
sifying the mental state in new data; this can be done
by comparing the decoded vectors with “true” vectors
extracted from a text corpus.

Reviewing this literature is beyond the scope of this
paper, but we will highlight particularly relevant work.
The seminal publication in this area is Mitchell et al.
(2008), which showed that it was possible to build
such forward models, and use them to make predic-
tions about new imaging data. The authors rep-
resented concepts by semantic vectors where
dimensions corresponded to different verbs; the
vector for a particular concept was derived from co-
occurrence counts of the word naming the concept
and each of those verbs (e.g., the verb “run” co-
occurs more often with animate beings than inani-
mate objects). Subsequently, Just, Cherkassky, Aryal,
and Mitchell (2010) produced more elaborate
vectors from human judgments, with each dimension
corresponding to one of tens of possible semantic fea-
tures. In both cases, this allowed retrospective
interpretation of patterns of activation corresponding
to each semantic dimension (e.g., ability to manipulate
corresponded to activation in the motor cortex). Other
groups re-analysing the data fromMitchell et al. (2008)
showed that superior decoding performance could be
obtained by using distributed semantic represen-
tations rather than human postulated features (e.g.,
Pereira, Detre, & Botvinick, 2011, and Liu, Palatucci, &
Zhang, 2009). In particular, Pereira et al. (2011) used
a topic model of a small corpus of Wikipedia articles
to learn a semantic representation where each dimen-
sion corresponded to an interpretable dimension
shared by a number of related semantic categories.
Furthermore, the semantic vectors from brain
images for related concepts exhibited similarity struc-
ture that echoed the similarity structure present in
word association data, and could also be used to gen-
erate words pertaining to the mental contents at the
time the images were acquired. A systematic
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comparison of the effectiveness of various kinds of dis-
tributed semantic representations in decoding can be
found in Murphy, Talukdar, and Mitchell (2012a). This
work has led researchers to consider distributed
semantic representations as a core component of
forward models of brain activation in semantic tasks,
or even to try to incorporate brain activation in the
process of learning a representation (Fyshe, Talukdar,
Murphy, & Mitchell, 2014). The pressing question,
from that perspective, is whether representations
contain enough information about the various
aspects of meaning that might be elicited by thinking
about a concept. This question was tackled in Bulli-
naria and Levy (2013), and the authors concluded
that the representations currently in use are already
very good for decoding purposes, and that the
quality of the fMRI data is the main limit of what can
be achieved with current approaches. As this con-
clusion was drawn from datasets containing activation
images in response to a few tens of concrete concepts,
we believe that we should not look at fMRI to try to
gauge the relative information content of different
representations; rather, we should use behavioural
data to the extent possible, over words naming all
kinds of concepts that might be stimuli in exper-
iments. This was the original motivation for this paper.

Our first goal is thus to evaluate how suitable
different distributed semantic representations are for
reproducing human performance on behavioural
experiments or to predict human annotations of
data from such tasks. We restrict the comparison to
available off-the-shelf representations, because we
believe many researchers cannot, or would rather
not, go through the trouble of producing their own
from a corpus of their choice. As we will see later,
the size of the corpus used in producing a represen-
tation is a major factor in the quality of the predictions
made, and this makes such production logistically
complicated, at the very least (because of preparation
effort, running time, memory required, etc.). In the
same spirit, we would like to have our comparison
also act as a tutorial showing that such predictions
can be made and contrasted across representations.

Our second, related, goal is to determine how
appropriate vector similarity is for modelling such
data, as tasks become more varied and complex. To
that effect, we carried out comparative experiments
across a range of tasks – word association, relatedness
and similarity ratings, synonym and analogy problems

– for all the most commonly used off-the-shelf
representations.

To do this, we had to assume that the information
derived from text corpora suffices to make behav-
ioural predictions; existing literature, and our own
experience, tell us that this is the case. But is this the
same semantic information that would be contained
in semantic features elicited from human subjects,
for instance? Does it bear any resemblance to the
actual representations of stimuli created in the brain
while semantic tasks are performed? Can we even
say that there is a single representation, or could it
be mostly task dependent? Carrying out practical
tasks such as sentiment detection using a distributed
semantic representation does not require the answer
to any of these questions, and neither does decoding
from fMRI. The collection of feature norms such as
those of McRae, Cree, Seidenberg, and McNorgan
(2005) has sometimes led to semantic feature rep-
resentations being viewed as more “real” or “interpret-
able” than distributed semantic representations. It is
possible to constrain the problem of estimating a dis-
tributed semantic representation so that the resulting
dimensions look more like semantic features (e.g.,
values are positive or lie in the range [0, 1], the seman-
tic vectors are sparse), as shown by Murphy, Talukdar,
and Mitchell (2012b). Another issue stems from the
fact that most representations are derived from
word co-occurrence counts, as we shall see later. Co-
occurrence of two words in similar contexts does not
mean they are equivalent, even though their semantic
vectors might be similar (e.g., “happy” and “sad”,
which would both appear in sentences about
emotions or mental states). Hence, some behavioural
predictions may not be feasible at all. The question
of what information can be captured by semantic fea-
tures but not distributed semantic representations is
discussed at great length in Riordan and Jones
(2011), where the authors conclude that the amount
of information contained in the latter is underesti-
mated. Given that our objective is to compare the
ability to generate reasonable predictions from off-
the-shelf representations, we will sidestep these
questions.

1.3. Related work

The most closely related work is that of Baroni, Dinu,
and Kruszewski (2014), an extremely thorough
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evaluation focusing on many of the same tasks and
using many of the same representations, carried out
independently from ours. Whereas their main goal
was to compare context-counting with context-pre-
diction methods for deriving semantic vectors, our
focus is more on helping readers choose from existing
representations for use in predictions of behavioural
data, as well as showing them how this can be done
in practice. To that effect, we have included additional
datasets of psychological interest and more vector
representations in our comparison. We do rec-
ommend that the reader interested in the technical
details of the relationships between the different
types of method refer to this paper, and also to Pen-
nington, Socher, and Manning (2014), Goldberg and
Levy (2014), and Levy and Goldberg (2014). Griffiths
et al. (2007) compare LSA distributed semantic rep-
resentations with those from a different approach
where each word is represented as a vector of topic
probabilities (within a topic model of a corpus), over
word association, the TOEFL synonym test from Land-
auer and Dumais (1997), and a semantic priming
dataset. This paper is perhaps the most comprehen-
sive in terms of discussing the suitability of distributed
semantic representations for making predictions in
psychological tasks, but does not consider most
modern off-the-shelf representations or recently avail-
able datasets. Finally, Turney and Pantel (2010) pro-
vides a survey of the uses of distributed semantic
representations to carry out tasks requiring semantic
information. Both this paper and those of Bullinaria
and Levy (2007) and Rubin, Kievit-Kylar, Willits, and
Jones (2014) cover crucial aspects of processing text
corpora that affect the quality of the representations
learned.

2. Methods

2.1. Word representations

The vector space representations we consider are
word representations, i.e., they assign a vector to a
word which might name one or more concepts (e.g.,
“bank”). They have been chosen both because they
were public and easily available, and also because
they have been used to make predictions about
behavioural data or human-generated annotations,
or as the input for other procedures such as sentiment
classification. We have not included some classic

methods, such as HAL (Lund & Burgess, 1996),
COALS (Rohde, Gonnerman, & Plaut, 2006), BEAGLE
(Jones, Kintsch, & Mewhort, 2006) or PMI (Recchia &
Jones, 2009), primarily because the semantic vectors
produced are not publicly available (although the soft-
ware for producing BEAGLE2 and PMI3 models from a
given corpus is). These and other methods used
specifically to study human performance in semantic
tasks are reviewed in detail in McNamara (2011).

One observation that is often made is that word
representations are inherently flawed, in that each
vector reflects the use of the corresponding word in
multiple contexts with possibly different meanings
(see for instance Kintsch, 2007, for a discussion). It is
still possible to use the words in the light of this as,
for instance, the vector similarity measure can be
driven primarily by values in two vectors present
due to related meanings. That said, there have been
multiple attempts to solve this problem by producing
representations that comprise multiple vectors for
each word, corresponding to the different meanings
of the word, e.g., Neelakantan et al. (2015) provide
vectors and a description of existing approaches,
such as those of Reisinger and Mooney (2010), Yao
and Van Durme (2011) or Huang et al. (2012). We
have not included these because they would require
tagging each stimulus word in the evaluation tasks
we consider with the specific meaning present, if avail-
able, and this would need to be done separately for
each representation type. This is straightforward,
though time-consuming, for representations that
develop as many vectors as there are senses for a
word in WordNet, say. It becomes more complicated
when the number of senses is discovered from data,
in alternation or simultaneously with the process of
generating semantic vectors. In the latter situation,
each word-meaning vector must be interpreted in
the light of the other word-meaning vectors that it is
most similar to (e.g., “apple#1′′ might be most similar
to “computer#2′′, whereas “apple#2′′ might be most
similar to “orange#1′′).

We would like to stress that this is a comparison
between the semantic vector representations pro-
duced by each method operating on a particular
corpus, with given pre-processing andmethod-specific
options. The latter range from the dimensionality of the
vectors produced to how information about words and
their contexts in the corpus documents is collected and
transformed. The choices in all of these factors will
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affect the performance of the representations in a com-
parison. Ideally, we would be comparing the represen-
tations produced with multiple methods operating on
the same corpus, and optimizing the various factors for
each method. This, however, is a far more demanding
endeavour than the current comparison, in terms of
both computational resources and time. As we will
see later, the best performing representations have
all been trained in very large corpora, beyond the
scope of what is practical with a single desktop compu-
ter. In Section 3, we discuss when it might make sense
to learn a representation from scratch, and provide
pointers to useful resources covering pre-processing,
design choices and trade-offs, toolkits to make the
process simpler, as well as the most commonly used
corpora.

Across methods, a key distinction is often made
between local and global contexts. When we say
that “similar words occur in similar contexts”, this typi-
cally means one of two things: words are semantically
similar if they occur nearby in the same sentence (local
context) or in the same document (global context).
There are many variations on this distinction that
blur these lines (e.g., contexts that can extend across
sentence boundaries, as in N-gram models, or the
document considered is a section, or a paragraph of
a larger ensemble). The models we consider are, for
the most part, local context methods, although they
use local information in different ways. For more on
this distinction, possible variations, and impact on
the performance of representations, please refer to
Bullinaria and Levy (2007), Turney and Pantel (2010)
and Rubin et al. (2014). A second distinction that is
made is between context-counting and context-predic-
tion methods. The former consider co-occurrence
counts between words – in whatever context –
when producing vectors; the latter use some criterion
that reflects the extent to which one can use one word
in a context to predict others (or vice versa). This dis-
tinction is discussed at great length in Baroni et al.
(2014), as well as in Goldberg and Levy (2014).

Latent Semantic Analysis (LSA). Latent semantic
analysis (Landauer & Dumais, 1997) is a global
context method that models co-occurrence of words
within a document. The representation of each word
is learned from a #words× #documents word count
matrix, containing the number of times a word

appeared in each available document context. This
matrix is then transformed by replacing each count
by its log over the entropy of the word across all con-
texts. Finally, the matrix undergoes a singular value
decomposition; the left singular vectors are word rep-
resentations in a low-dimensional space, and the right
singular vectors are document representations. The
original model was trained on a relatively small
corpus of approximately 30,000 articles from an ency-
clopedia. Since we could not obtain that model, we
use a random sample of 10% of the articles from Wiki-
pedia (approximately 300,000 articles) to generate
vector representations with the same number of
dimensions (300).

Multi-task neural network embedding (CW). In the
article introducing this method (Collobert &Weston,
2008) the authors introduce a convolutional neural
network architecture to carry out a series of language
processing tasks – e.g., part-of-speech tagging, named
entity tagging, semantic role labelling – from a vector
representation of the words in a sentence. The vector
representation was learned using a local context
approach, by training a model that used it to assign
higher probability to the right word in the middle of
the window than to a random one, making this an
early instance of a “predict” model using a window
of five words in each direction. The model was
trained on a large subset of Wikipedia containing
approximately 631 million words, and distributed as
25-, 50-, 100- and 200-dimensional representations.
The vectors were obtained from a third-party website.4

Hierarchical log-bilinear model (HLBL). This and
other related local context methods were introduced
in Mnih and Hinton (2007) and further developed in
Mnih and Hinton (2008). The commonality between
them is learning vector representations for use in a
statistical model for predicting the conditional distri-
bution of a word given a window of five preceding
ones. The model was trained on a subset of the Associ-
ated Press dataset containing approximately 16
million words. The representations available are 100-
and 200-dimensional. The vectors were obtained
from the same site as those in representation CW.

Non-negative sparse embedding (NNSE). This
approach was introduced in Murphy et al. (2012b)
and aims at learning a word representation that is
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sparse (vector values are positive, and zero for most
dimensions) and disjoint (positive vector values tend
to be disjoint between word types such as abstract
nouns, verbs and function words). NNSE is a global
context model, in that it models co-occurrence of
words within a document (similarly to Landauer &
Dumais, 1997) but it combines these with word-
dependency co-occurrence counts (similarly to Lund
& Burgess, 1996). The counts were normalized by a
transformation into positive pointwise mutual infor-
mation (positive PMI) scores (Bullinaria & Levy, 2007;
Turney and Pantel, 2010). The process of generating
the vectors with the desired properties is similar to
that of Landauer and Dumais (1997), albeit with a
more complex process of factorization of word-by-
score matrices, which is beyond the scope of this
paper. It was learned from a subset of the Clueweb
dataset (approximately 10 million documents and 15
billion words). The representations available are 50-,
300-, 1000- and 2500-dimensional and the vectors
are provided by the authors.5

Word2vec (W2VN). The representations in this class
are produced with local context methods, trained on
the Google News dataset (approximately 100 billion
words) and distributed by Google.6 The continuous
bag-of-words model (Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013a) (a.k.a. CBOW or “negative
sampling”) learns to predict a word based on its
context (predict the word in the middle of a context
window based on an average of the vector represen-
tations of the otherwords in thewindow. The represen-
tation derived with this model is 300-dimensional. The
continuous skipgrammodel (Mikolov, Chen, Corrado, &
Dean, 2013b) learns to predict words in the context
window from a word in the middle of it. In the publicly
available distribution producedwith the lattermethod,
the vectors distributed do not correspond to individual
words, but rather to identifiers for entities from the
Freebase ontology for a particular meaning of each
word. Hence, we excluded this variant of the
word2vecmethod from the comparison. A good expla-
nation of the twomethods is provided in Goldberg and
Levy (2014), and Levy and Goldberg (2014) derive a
connection between the skipgram approach and the
factorization of PMI count matrices.

Global vectors (GV300, GV42B, GV840B). This
approach is described in Pennington et al. (2014). It

is a global context method, in that it models co-occur-
rence of words across a corpus, in a manner similar to
Burgess (1998) and Rohde, Gonnerman, and Plaut
(2006), but it operates by factorizing a transformed
version of the term–term co-occurrence matrix. The
factorization is similar to that used in Landauer and
Dumais (1997) but the transformation is beyond the
scope of this paper – performance asymptotes with
co-occurrence windows of 8–10 words. The model is
trained on a combination of Wikipedia 2014 and Giga-
word 5 (6 billion tokens) or Common Crawl (42 billion
and 840 billion tokens). All three versions are 300-
dimensional and made available by the authors.7

Context-counting (BDKC) and context-predicting
(BDKP) vectors. This approach is described in Baroni
et al. (2014). The vector representations were extracted
from a corpus of 2.8 billion tokens, constructed by con-
catenating ukWAC, the EnglishWikipedia and the British
National Corpus, using two different methods (“count”
and “predict”). Both methods use local context
windows, although in different ways. The “count”
models were obtained by decomposing matrices of
word co-occurrence counts within a window of size 5
using SVD, after transforming word count scores to
PMI. The “predict” models were obtained by using the
word2vec software on the same corpus, using the
CBOW approach with a window of size 5. In both cases
the authors used their own toolbox, DISSECT,8 to
produce the vector representations. For our comparison
weuse the best “predict” and “reduced count” represen-
tations made available by the authors,9 which are 400-
and 500-dimensional, respectively.

2.2. Vector similarity measures

Our underlying hypothesis is that vector similarity in the
spaceused to represent concepts reflects semantic relat-
edness. We consider three kinds of measures – eucli-
dean distance, correlation and cosine similarity – and
wewill use the term “similarity” tomeaneitherhighsimi-
larity proper or lowdistance, dependingon themeasure
used.

The euclidean distance between n-element vectors
u and v is

∥ u− v ∥2=

!!!!!!!!!!!!!!!
∑n

i=1

(ui − vi)2
√

.
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The correlation similarity between vectors u and v
is

correlation(u, v) =

∑n

i=1
(ui − mu)(vi − mv)

susv
= u∗v∗,

where mu and su are the mean and standard devi-
ation of vector u, respectively (and analogously for
vector v). If we consider the normalization, where
each vector is z-scored, i.e., u∗ = (u− mu)/su, the cor-
relation can be viewed as a product of normalized
vectors.

The cosine similarity between vectors u and v is

cosine(u, v) =

∑n

i=1
uivi

∥ u ∥2∥ v ∥2
= u′v′,

where ∥ u ∥2 is the length of vector u (and analo-
gously for vector v). If we consider the normalization
where each vector is made length 1, i.e.,
u′ = u/ ∥ u ∥2, the cosine similarity can be viewed
as a product of normalized vectors.

Given that correlation and cosine similarity are, in
essence, vector products, operating on implicitly nor-
malized versions of the original vectors, they are invar-
iant – to a degree – to the magnitude of the vector
entries or the length of the vector. This is not the
case for euclidean distance, and one of our goals is
to determine whether this is a relevant factor for the
applications we have in mind. Furthermore, values of
euclidean distance between vectors are not directly
comparable across different vector representations.
The use of evaluation tasks based on rankings,
where the score is the position of a “correct” answer,
is meant to allow a single approach that works regard-
less of the similarity measure used.

The use of rank measures allows us to avoid having
to predict directly the raw scores obtained from judge-
ments of annotations. However, it could also mask
large differences in the relationship between scores
for different items across different models (e.g., a rep-
resentation where vectors for small sets of words are
very similar to each other and dissimilar to all else,
versus one with more graded similarity values
between the same words). An alternative approach
would be to use a technique such as the Luce
choice rule, which can be used to convert both the
scores and the distances/similarities produced from
any representation into the same normalized scale.

This approach and potential pitfalls of using vector
distance/similarity are discussed in Jones et al. (2011)
(and, as described earlier, in Griffiths et al., 2007).

2.3. Datasets used in evaluation tasks

The data are available online, and pointers to the orig-
inal paper and a brief description are provided in each
section.

2.3.1. Word association
Nelson, McEvoy, and Schreiber (2004) collected free
association norms for 5000 words.10 Over 6000 partici-
pants were asked to write the first word that came to
mind that was meaningfully related or strongly associ-
ated to the presented word. The word association data
were then aggregated into a matrix form, where Sij
represents the probability that word j is the first
associate of word i. The dataset is distributed in a
reduced dimensionality version containing 400-
dimensional vectors for each word, from which we
re-assembled the entire association matrix. Our
hypothesis, following the work of Steyvers et al.
(2004), is that word association can be predicted by
vector similarity. Prediction accuracy is measured as
the proportion of the top 1% associates for a particular
word that are also in the top 1% of words ranked
closest in vector space to that word, averaged over
all words. This criterion is different from but related
to the one in Griffiths et al. (2007), where the
authors considered the probability of the first associ-
ate being present when considering the top m
words, for varying values of m; hence the results are
not directly comparably for LSA300, and neither
would they be on the grounds of our having used a
different corpus (and settings) to learn the represen-
tation. We chose our criterion to allow comparison
across representations of multiple dimensionalities,
and because the top 1% of associates contains most
of the probability mass for almost all concepts.

2.3.2. Similarity and relatedness judgments
MEN. The MEN dataset11 consists of human similarity
judgments for 3000 word pairs, randomly selected
from words that occur at least 700 times in a large
corpus of English text, and at least 50 times (as
tags) in a subset of the ESP game dataset. It was col-
lected and made public by the University of Trento
for testing algorithms implementing semantic
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similarity and relatedness measures, and introduced
in Bruni, Tran, and Baroni (2014). Each pair was ran-
domly matched with a comparison pair, and partici-
pants were asked to rate whether the target pair was
more or less related than the comparison pair. Each
pair was rated against 50 comparison pairs, produ-
cing a final score on a 50-point scale. Participants
were requested to be native English speakers.

SimLex-999. The SimLex-999 dataset12 was collected
to measure the similarity of words specifically, rather
than just their relatedness or association (e.g., “coast”
and “shore” are similar, whereas “clothes” and
“closet” are not; both pairs are related). It contains a
selection of adjective, verb and noun words pairs,
with varying degrees of concreteness. The similarity
ratings were produced by 500 native English speakers,
recruited via Amazon Mechanical Turk, on a scale
going from 0 to 6. The methodology and motivation
are further described in Hill, Reichart, and Korhonen
(2014).

WordSim-353. The WordSimilarity-353 dataset13 was
introduced in Finkelstein et al. (2001). It contains a
set of 353 noun pairs representing various degrees
of similarity. Sixteen near-native English speaking sub-
jects were instructed to estimate the relatedness of
the words in each pair on a scale from 0 (totally unre-
lated words) to 10 (very much related or having iden-
tical meaning).

2.3.3. Synonyms and analogy problems
TOEFL. This dataset was originally described in Land-
auer and Dumais (1997), and consists of 80 retired
items from the synonym portion of the Test of
English as a Foreign Language (TOEFL), produced by
the Educational Testing Service. Each item consists
of a probe word and four candidate synonym words;
the subject then picks the candidate whose meaning
is most similar to that of the probe. The test items
are available upon request from the authors.14

Google analogy. This dataset was originally intro-
duced in Mikolov et al. (2013b) and described in
more detail in Mnih and Kavukcuoglu (2013). It con-
tains several sets of analogy problems, of the form “A
is to B as C is to ?”. They are divided into semantic
problems(where A and B are semantically related)
and syntactic problems (where A and B are in a

grammatical relation). The five semantic analogies
come from various topical domains, e.g., cities and
countries, currencies and family; the nine syntactic
analogies use adjective-to-adverb formation, oppo-
sites, comparatives, superlatives, tense, and
pluralization.

2.4. Prediction of behavioural data or human
annotations

Each of the evaluation tasks consists of generating a
prediction from words or pairs of words, and their cor-
responding vectors, which is matched to behavioural
or human-annotated data in a task-dependent way
described in the rest of this section. The datasets
used are as described in Section 2.3. The vector rep-
resentations used are those introduced in Section
2.1, Latent Semantic Analysis (LSA), Multi-task neural
network embedding (CW), Hierarchical log-bilinear
model (HLBL), Non-negative sparse embedding
(NNSE), Global vectors for word representation (GV),
Word2vec (W2VS) and context-counting (BDKC) and
context-predicting (BDKP); in each graph, the
method abbreviations are followed by a number indi-
cating dimensionality. If a particular word is not in the
vocabulary of a representation, the corresponding
fragments of dataare ignored in tests (this happens
for a tiny fraction of each representation, if at all).
The results on all tasks are shown in Figure 1, with
all performance scores in the range [0, 1] (1 best);
the specific performance measure is task-dependent,
as described below. Given that results are very
similar for cosine and correlation vector similarities,
we omit the latter.

2.4.1. Word association
For each word in the dataset, we rank all others by the
similarity of their vectors to its vector. The score is the
overlap between the top 50 associates of the word
and the top 50 most similar vectors. This number
was chosen because it is approximately 1% of the
total number of words for which data is available;
the exact number depends on which words are in
the vocabulary associated with a particular vector rep-
resentation. We chose to consider overlap fraction
over the top words, as opposed to a measure like
rank correlation, because most of the ranking is of
little interest to us (the vast majority of words are
barely used as associates, if at all).

182 F. PEREIRA ET AL.



2.4.2. Similarity and relatedness judgments
These tasks rely on similarity and relatedness judg-
ments between pairs of words. All tasks share the
same evaluation procedure:

(1) rank all test word pairs from most to least similar
judgement value (“true ranking”);

(2) for each test word pair, compute the similarity
between their respective vectors, and produce a
second ranking from most to least similar (“pre-
dicted ranking”);

(3) the prediction “accuracy” is measured by Spear-
man rank correlation between the true and pre-
dicted rankings positions of all word pairs.

The use of Spearman rank correlation allows the
results to be comparable across representations and
tasks, irrespective of dimensionality or vector similarity
measure.

2.4.3. Synonyms and analogy problems
TOEFL. For each of the 80 test items, we calculated the
similarity between the vector for the probe word and
the vectors for the four candidate synonyms, picking
themost similar. The prediction accuracy is the fraction
of test items for which the correct word was selected.

Google analogy. The task is carried out by creating a
composite of the vectors for the words in the problem
(A−B+C) and then finding the vocabulary word with

the most similar vector (using cosine similarity, exclud-
ing the vectors for A, B, and C). The prediction accu-
racy is the fraction of test items for which the
correct word was selected.

2.5. Experiments aggregating results on
individual tasks

Given all the experiments described above, are there
broad trends across the results? The first area we con-
sidered was the performance of representations
across tasks. We quantify the similarity in performance
by computing, for each pair of tasks, the correlation
between the scores for all representations in each of
them. These results are shown in Table 1, and
suggest that the relative performance of the models
is very similar across all the tasks.

As discussed earlier, we are comparing represen-
tations obtained by applying a given method to a
given corpus. Our intent is not to compare the
methods in isolation, which would require applying
them to a benchmark corpus and using the resulting
representations. It is, however, still possible to ask
whether certain properties of the method or the
corpus affect performance in general, across represen-
tations. To that effect, we carried out two separate
experiments. In the first, we correlated log10 of the
corpus size for each representation with the result of
using it in each task. In the second, we did the same
for the dimensionality of the representation. The
results are shown in the first and second row of

Figure 1. Performance of predictions generated from various vector representations across all tasks available, using cosine similarity
(left) or euclidean distance (right). The performance measure is task dependent, but always in the range [0, 1] (1 best). For Google
Analogy only cosine results were obtained, because of computational constraints. [To view this figure in colour, please see the
online version of this journal.]
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Table 2. Increases in corpus size do appear to lead to
consistently better performance. Our conjecture is
that this is due to exposure both to more instances of
each context where two words could conceivably co-
occur, and also to a greater variation of types of
context; these large corpora combine many types of
text found on the web – from blogs to news or tran-
scripts – as well as books and encyclopaedia articles.
It is less clear that increases in dimensionality are
advantageous beyond a certain point. NNSE and
“count” vectors do not perform better than other rep-
resentationswith 300 dimensions, and there are under-
performing representations with that dimensionality
as well.

2.6. Relation between representations

As seen earlier, the performance of representations is
strongly related to the size of the corpus from which
they were learned. With that in mind, the best per-
forming representations have comparable perform-
ance across tasks, so the question arises of whether
they are, in fact, redundant and contain similar infor-
mation. In practice, this would mean that it would
be possible to express each dimension of one rep-
resentation in terms of the dimensions of another
one. We have implemented a simple version of this
approach by training ridge regression models to
predict each dimension in one representation
(target) as a linear combination of the dimensions of
another (source). The predictability of the target rep-
resentation from the source representation can then
be summarized as the median R2 across all its
dimensions.

The predictions are obtained with an even–odd
word split-half cross-validation, in order to remove
the confound of having a better result by having
more dimensions in the source representation. Fur-
thermore, in order to ensure that the vocabularies
used are comparable across representations, and
the results pertain primarily to the basic vocabulary
used in our evaluation tasks, we restricted the
words considered in two ways. The first is that they
come from a list of 40 K lemmas published by Brys-
baert, Warriner, and Kuperman (2014); around 30 K
of these are words or two-word compounds that cor-
respond to a lemma in WordNet. Beyond that, we
used the words in common across the vocabularies
of each source and target representation (this
ranged from 15 K for the smallest representations
to close to 30 K for those with the largest vocabul-
aries). The results shown in in Figure 2 use l = 1 in
the ridge regression models, but results are relatively
similar for other values of l a few orders of magni-
tude above or below.

As expected, median R2 is high within each rep-
resentation type, and higher when using the represen-
tations with more dimensions to predict those with
fewer. It is harder to predict from NNSE than from
other representations, because the positivity and spar-
sity constraints are not enforced in our regression
model; therefore, results should not be interpreted
as meaning that NNSE has information that other
methods cannot predict. Across the representations
trained on very large corpora, the median R2 appears
to converge around 0.5. This suggests that there is a
residual inability to predict, and possibly nonlinear
relationships between dimensions.

Table 1. Correlation between the scores for all representations in each pair of tasks.
Task TOFEL WAS MEN wordsim simlex GAsemantic GAsyntactic

TOFEL – 0.98 0.97 0.96 0.94 0.91 0.90
WAS – – 0.99 0.96 0.96 0.88 0.88
MEN – – – 0.97 0.95 0.87 0.88
wordsim – – – – 0.94 0.84 0.86
simlex – – – – – 0.75 0.76
GAsemantic – – – – – – 0.99
GAsyntactic – – – – – – –

Table 2. Correlation between representation performance and characteristics (log10 of the corpus size – row 1 – and dimensionality –
row 2), across all tasks considered.
Task TOFEL WAS MEN wordsim simlex GAsemantic GAsyntactic

log10 corpus size 0.68 0.75 0.68 0.61 0.66 0.67 0.61
Dimensionality 0.42 0.41 0.41 0.46 0.55 0.06 0.03
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3. Discussion

In light of the results presented in the previous
section, we conclude that there are representations
which perform better across all of our evaluation
tasks, namely GloVe and word2vec (and context-pre-
dicting vectors, which use the same method as
word2vec, on a different corpus). Given our reliance
on measures of vector similarity to generate predic-
tions in each task, it appears correlation and cosine
similarity are somewhat better than euclidean dis-
tance for this purpose. NNSE at higher dimensionality
also performs well across word association and simi-
larity/relatedness tasks, but less so in analogy tasks.
Given that this is the only task that requires identifying
a correct analogy answer out of a range of 10–100 K
possibilities, and the fact that vectors are positive
and sparse, it is possible that the vector similarity
measures we use are not the most appropriate to
allow fine distinctions between closely related words.

From the practical standpoint of a researcher in need
of an off-the-shelf word representation, we would thus
recommend using word2vec (in its context-predicting
vector version) or GloVe. This is because their perform-
ance is roughly equivalent and it is straightforward to
obtain vectors in a convenient format (word2vec itself
requires extracting them from a binary distribution).
Both options come with a reasonably sized vocabulary;
this matters because too large a vocabulary will lead to
intense use of memory for no particular gain, as the

wordsof interest inpsychological studies tend tobe rela-
tively frequent. Both representations are good for
nearest neighbour computations, and simple vector
differences capture the meaning of combinations of
two words(as suggested by the analogy results). GloVe,
in addition, has mostly uncorrelated dimensions. This
makes it especially suitable for building other prediction
models that work with vectors as inputs, such as
regression models of subject ratings. Both represen-
tations have very dense vectors. If the target application
requires some degree of interpretability, e.g., by
identifying which dimensions have the most impact in
the prediction, or treating each dimension as a
“magnitude” score, it may make more sense to use a
representation like NNSE. The vectors are sparse and
dimensions are positive and shared by a relatively
small set of words.

These conclusions are largely consistent with those
of Baroni et al. (2014), who found that prediction-
based, local context methods outperformed co-occur-
rence count-based methods. The authors compared
both classes of approach over the same corpus, sys-
tematically varying parameters such as the transform-
ation of the count data or the width of context
windows. Although GloVe was not part of that com-
parison, we do include both the best performing
count and predict models from that study (BDKC500
and BDKP400) and a variant of GloVe (GV300)
obtained from a corpus of comparable size. From
this particular contrast, and given that BDKP400 was
the best model in that study, we believe that
word2vec-related models may have a slight edge in
performance relative to GloVe. This is compensated
by increasing the GloVe corpus size; since the large
corpus versions are now available off the shelf, it’s
not clear that there is any advantage in choosing
one over the other. Interestingly, both CW and HLBL
are local context, prediction-based methods, and
perform rather poorly despite being in widespread
use. This suggests that the specific local context pre-
diction method and optimization objective do
matter, as does the size of the corpus used in training.
Given the robust correlation between this and the per-
formance of a representation across tasks, it is prob-
ably a key factor if considering a representation for
“general purpose” use. Increases in dimensionality
do not appear to have the same effect on perform-
ance. Ultimately, all the methods considered use
word co-ocurrence statistics, in what may be a more

Figure 2. The median R2 across all dimensions for a regression
model predicting each representation (target) from each of the
others (source). The R2 is obtained in split-half cross-validation.
[To view this figure in colour, please see the online version of
this journal.]
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or less direct fashion. Pennington et al. (2014) helpfully
provide a perspective that connects their model to
others, in particular the skipgram version of
word2vec introduced in Mnih and Kavukcuoglu
(2013); a detailed explanation of the two word2vec
versions is given in Goldberg and Levy (2014).

As mentioned earlier, this is a comparison of off-
the-shelf representations, obtained as the result of
applying a specific method to a specific corpus. Even
though certain representations are superior across all
the tasks considered, this does not mean that the
methods used to produce them are necessarily
superior. However, the methods that performed best
are easily deployable, with well-documented code
that allows tuning of parameters such as the context
considered for co-occurrence. On that count alone,
they are likely to be the best options available.

A separate question is that of when would a
researcher want to depart from using an off-the-
shelf representation. One situation would be the
need for a specialized corpus, from a given technical
(e.g., biomedical texts) or otherwise restricted
domain (e.g., educational texts for particular grades).
Across methods, it would still be the case that words
appearing in similar contexts would have similar rep-
resentations. Given the restricted corpus size, and
increased influence of every word co-occurrence, it
would be even more important to define context
appropriately (e.g., co-occurrence within the same
document might make sense for information retrieval
applications, but within the same passage or sentence
would likely make more sense for applications where
one wants to represent an individual word). In the
absence of a rationale for picking a specific corpus,
the ones most commonly used are Wikipedia,15

ClueWeb12,16 Common Crawl,17 and Gigaword18

(not freely available, unlike the others). We would
recommend starting with the Wikipedia corpus, as
there are many tools specifically designed to pre-
process or subset it, in a variety of programming
languages; furthermore, the case may be made that
Wikipedia is especially able to provide contexts cover-
ing a “cognitive space” shared by all humans (Olney,
Dale, & D’Mello, 2012). In this situation, it would be
worthwhile to consider using gensim,19 as it provides
support for some of the corpus processing required
and implementations of not just word2vec but also
its extensions for representing small text passages
(Le & Mikolov, 2014); the DISSECT20 toolkit provides

much overlapping functionality, and may be prefer-
rable to operations relying directly on (transformed)
co-occurrence counts (such as SVD or non-negative
matrix factorization). The reader interested in doing
this should also consult Bullinaria and Levy (2007),
Turney and Pantel (2010), Bullinaria and Levy (2012),
and Rubin et al. (2014) for a discussion of the types
of context, transformations of counts and several
other pre-processing steps and factors that can
affect performance of representations.

Overall, the results confirm that vector similarity
allows us to make reasonable predictions, and that
certain representations are better for this purpose
across all tasks considered. More specifically, though,
results are good for semantic relatedness, less good
for controlled semantic similarity, and even less so
for word association. The question is, then, whether
this progression reflects a corresponding psychologi-
cal process increasingly different from something
like a nearest neighbour operation insemantic space;
many other examples of such issues may be found
in Griffiths et al. (2007) and Turney and Pantel
(2010). More recently, Recchia and Jones (2009)
showed that the use of an appropriate choice rule,
when combined with vector space operations, could
make it possible for such models to overcome at
least some of those issues.

Our goal, however, is not to provide a state-of-the-
art approach to making each type of prediction. Our
main intention was to see whether certain off-the-
shelf representations were preferable, across a wide
range of tasks and using a simple, robust prediction
approach that yielded results comparable across
them. In doing so, we realized this work could also
serve as an introduction to this area, and provide a
guide to the publicly available resources used for our
evaluation tasks. We can, however, still consider the
question of what can or should be predicted. For the
purposes discussed in the introduction, such as mod-
elling “generic” semantic activation in brain imaging
experiments, these representations provide a clear
advantage over human-generated semantic features
(Pereira, Detre, & Botvinick, 2011). Further improve-
ment in this area will probably come from moving to
concept rather than word vectors and representing
sentences or passages using methods such as para-
graph vector(Le & Mikolov, 2014) or skip-thought
(Kiros et al., 2015). For modelling of human perform-
ance in behavioural tasks, or annotations, the picture
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is more complicated. First, it is not even clear that
there would be a single representation at work
across all tasks. Even if this were the case, it is still poss-
ible that the task or the context of use would modu-
late the use (e.g., by attending to different semantic
features of stimuli, one might correspondingly use
different dimensions of a semantic space, or a differ-
ent similarity function). In light of this, we hypothesize
that further progress will come from modelling what
happens in the process of making a judgment. Seman-
tic vectors can still be at the root of this, e.g., as inputs
to a model that predicts probability of choosing an
associate for a probe word, or which sense of the
probe word to use. Other practical issues that are gen-
erally ignored – such as instructions given to subjects
changing how they produce a judgment – may still
allow for the use of vector similarity. One possible
approach here would be to use metric learning
(Yang & Jin, 2006; Kulis, 2012). More precisely, this
would entail weighting each dimension differently
when computing a vector similarity, rather than all
dimensions equally, essentially changing how vector
similarity operates. The weights for the metric would
be learned on data from a number of “training” sub-
jects given each of the possible sets of instructions.
The learned metrics could then be used to generate
predictions on left-out “test” subjects and, if success-
ful, their respective dimension weights analysed to
understand which semantic dimensions played a
role in each prediction (and which words, in turn,
had loadings in those dimensions).

Notes

1. http://lsa.colorado.edu
2. https://github.com/mike-lawrence/wikiBEAGLE
3. http://www.twonewthings.com/lmoss.html
4. http://web.archive.org/web/20160326092344/http://

metaoptimize.com/projects/wordreprs/
5. http://www.cs.cmu.edu/bmurphy/NNSE/
6. https://code.google.com/p/word2vec/
7. http://nlp.stanford.edu/projects/glove
8. http://clic.cimec.unitn.it/composes/toolkit
9. http://clic.cimec.unitn.it/composes/semantic-vectors.

html
10. http://psiexp.ss.uci.edu/research/software.htm
11. http://clic.cimec.unitn.it/elia.bruni/MEN
12. http://www.cl.cam.ac.uk/fh295/simlex.html
13. http://www.cs.technion.ac.il/gabr/resources/data/

wordsim353
14. http://lsa.colorado.edu

15. https://dumps.wikimedia.org/enwiki
16. http://www.lemurproject.org/clueweb12.php
17. https://commoncrawl.org
18. http://catalog.ldc.upenn.edu/LDC2003T05
19. https://radimrehurek.com/gensim
20. http://clic.cimec.unitn.it/composes/toolkit/index.html
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