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Abstract

This paper reviews progress in the application of computational models to personality,
developmental, and clinical neuroscience. We first describe the concept of a computational
phenotype, a collection of parameters derived from computational models fit to behavioral
and neural data. This approach represents individuals as points in a continuous parameter
space, complementing traditional trait and symptom measures. One key advantage of this
representation is that it is mechanistic: The parameters have interpretations in terms of cognitive
processes, which can be translated into quantitative predictions about future behavior and brain
activity. We illustrate with several examples how this approach has led to new scientific insights
into individual differences, developmental trajectories, and psychopathology. We then survey
some of the challenges that lay ahead.

The study of personality has a rich history examining individual differences in how we behave,
relate to ourselves and each other, and understand our experiences and environment. This
work has had the significant challenge of linking multiple levels of analysis spanning complex
neural and cognitive processes. Recently, computational models have provided a powerful tool
to mathematically formalize this complexity, and provide rich descriptions of the processes
underlying human behavior. In the present review, we discuss the concept and promise of a
computational phenotype—a collection of mathematically derived parameters that precisely
describe individual differences in personality, development, and psychiatric illness.

Traditional approaches to personality are grounded in the study of individuals and how they
differ across a range of psychological characteristics that are indexed via measures of traits or
symptoms. The most widespread example of this is “general intelligence” (Spearman, 1904).
Individuals higher on general intelligence experience better educational (Deary, Strand, Smith, &
Fernandes, 2007) and job-related outcomes (Ree, Earles, & Teachout, 1994; Schmidt & Hunter,
2004). However, this research is largely descriptive; general intelligence is a composite measure of
several underlying cognitive processes including, but not limited to, working memory (Alloway &
Alloway, 2010), verbal and spatial ability, reasoning and processing speed (Deary, Penke, &
Johnson, 2010; Hunt, 2011; Lubinski, 2004). This composition of processes has been examined
experimentally, but rarely formalized mechanistically. A formal mechanistic definition describes
how and why the composition of processes leads to the observable outcome or behavior.

Computational applications to psychiatry have been widely advocated in recent literature
(Adams, Huys, & Roiser, 2015; Friston, Stephan, Montague, & Dolan, 2014; Huys, Maia, & Frank,
2016; Huys, Moutoussis, & Williams, 2011; Maia & Frank, 2011; Montague, Dolan, Friston, &
Dayan, 2012; Paulus, Huys, & Maia, 2016; Petzschner, Weber, Gard, & Stephan, 2017;
Schwartenbeck & Friston, 2016; Stephan, Iglesias, Heinzle, & Diaconescu, 2015; Stephan &
Mathys, 2014; Wang & Krystal, 2014; Wiecki, Poland, & Frank, 2015). In particular, the process
of computational phenotyping has been described in considerable depth using real and simulated
data (Schwartenbeck & Friston, 2016; Wiecki, Poland, & Frank, 2015). Yet, computational
perspectives in the fields of personality and development have been relatively limited. Thus, the
current review has three goals. First, we broadly outline how computational phenotypes work,
and why individuals differ in their phenotype. Second, we review recent work that illustrates the
benefits of using computational phenotypes to investigate individual differences. Third, we look
forward to challenges in the practical application of computational phenotypes.

1. Computational phenotypes: How and why

A computational phenotype is a set of parameters, derived from neural and behavioral
data, which characterizes an individual’s cognitive mechanisms. We broadly schematize the
process of deriving individual phenotypes in Figure 1a. This more explicit mechanistic
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characterization complements traditionally descriptive trait and
symptom measures in several ways: It formalizes cognitive pro-
cesses quantitatively, and reduces dimensionality by compressing
the target process into a parameter or set of parameters. More-
over, these parameters vary within and between individuals,
providing an opportunity to examine individual differences in
computational mechanisms. The parameters are also sometimes
linked to underlying neurobiological mechanisms.

To illustrate how computational models can provide a
mechanistic understanding of behavior, Figure 1b shows a case
study of Pavlovian conditioning (Rescorla & Wagner, 1972; Sutton
& Barto, 1998). In this experimental paradigm, a light signals the
receipt of reward. The Rescorla–Wagner model (Rescorla &
Wagner, 1972) explains how the light comes to acquire an asso-
ciation with reward (the “cue value,” denoted by V) over the course
of conditioning. The learning equation uses the cue value on the
current trial t (Vt) to calculate the cue value for the next trial (Vt+1):

Vt + 1 =Vt + αδt

where α is a learning rate parameter (governing how quickly an
individual learns) and the reward prediction error δt is defined as the
cue value from the last trial subtracted from the observed reward rt.

δt = rt�Vt

These equations are formal definitions and serve as mechanistic
hypotheses about a wide range of learning and decision-making
processes with intricate ties to neurobiology. For example, reward
prediction error signals have been found in midbrain dopamine
neurons and functional activation in the ventral striatum (Glimcher,
2011; O’Doherty et al., 2004; Pessiglione, Seymour, Flandin, Dolan,

& Frith, 2006; Schultz, Dayan, & Montague, 1997). In this simple
model, the computational phenotype typically corresponds to the
learning rate (Figure 1c), which has been linked to genetic (Frank,
Moustafa, Haughey, Curran, & Hutchison, 2007) and developmental
differences (Christakou et al., 2013; van den Bos, Cohen, Kahnt, &
Crone, 2012) between individuals. The prediction error signal itself
has sometimes been used as a computational phenotype, distin-
guishing learners from non-learners (Schönberg, Daw, Joel, &
O’Doherty, 2007) and tracking individual differences in the
relationship between fluid intelligence and dopamine synthesis
(Schlagenhauf et al., 2013). We return to the latter study in depth,
within the section on computational phenotyping in personality.

Another key advantage of computational phenotypes, such as
learning rate, is dimensionality reduction. Describing a behavioral
phenotype without a computational model requires a collection of
parameters (e.g., accuracy, reaction time, choice preference) that
roughly approximate the process of interest. Computational
model parameters compress this information into a single para-
meter (e.g., learning rate) or set of parameters that specify how
cognitive mechanisms produce behavior and neural activity.

In sum, computational phenotypes define how the cognitive
process works mechanistically and provides rich descriptions
about why individual variation in phenotypes (e.g., learning rate)
produces different behavioral outcomes and neural activity.

2. Model selection and parameter estimation

Any study of computational phenotypes faces two methodological
questions: How to select the appropriate model, and how to

$0.00

$0.25

$0.50

$0.75

$1.00

0 5 10 15 20 25

Trial

C
ue

 V
al

ue Learning Rate
High
Medium
Low

Person 1

Person 2

Person 3

Parameter Distributions

Learning Rate
High
Medium
Low

Brain &
Behavioral Data

Computational Phenotype
Cognitive or
Biological
Process

Computational Model

(b)

(c)

Cue Valuet = cue valuet-1 + learning rate * (observed rewardt - cue valuet-1)

(d)

(a)

Vt1 = $0 + 0.3 * ($1-$0)
Cue=$0.30

$1
Value Decreases Value IncreasesValue Increases Value Increases

Trial 1 Trial 2 Trial 3 Trial 4

$1 $0 $1
Vt2 = $.30 + 0.3 * ($1 - $0.30)

Cue = $0.51
Vt3 = $.51 + 0.3 * ($0 - $0.51)

Cue = $0.36
Vt4 = $.36 + 0.3 * ($1 - $0.36)

Cue = $0.55

Figure 1. (a) Computational phenotyping pipeline. Underlying cognitive or biological processes give rise to brain or behavioral data. The data are entered into the
computational model, which produces a set of parameters representing the phenotype. (b) Process represented by computational phenotype. In this example, the light
represents a cue that indicates a monetary reward. The value of the cue changes on each trial as a function of the value of the cue on the last trial (Vt-1), the learning rate (i.e.,
computational phenotype; 0.3 in the illustration), and the prediction error (observed reward—cue valuet-1) (Rescorla & Wagner, 1972). (c) Learning rate is the computational
phenotype. It varies between individuals, which is why the cue value changes at different rates for each person. (d) Learning rates are estimated using Bayesian analysis,
increasing parameter sensitivity by using posterior distributions that incorporate uncertainty about the phenotype within and between individuals.
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estimate the parameters of that model. Here we will briefly review
the main approaches to these questions.

Models are typically evaluated in one of two ways. Goodness-
of-fit criteria, such as the likelihood ratio test, the Bayesian
information criterion, and the Akaike information criterion,
evaluate how well the model fits the data, while penalizing for
model complexity. Bayesian model selection criteria are similarly
motivated, but place a full distribution over models. Each of these
criteria is grounded in different theoretical foundations, so it is
often useful to calculate multiple criteria. Predictive criteria
evaluate how well a model predicts held-out data. For example,
cross-validation uses a model fit to one subset of the data to
predict another subset of the data.

Parameter estimation methods fall into one of two categories.
Point estimation methods are based on fitting a single set of
parameters for each individual. Bayesian methods are based on
estimating a posterior distribution over parameters, which allows
the researcher to quantify parameter uncertainty (Figure 1d).
Hierarchical Bayesian models (see Gelman et al., 2013; Wiecki,
Poland, & Frank, 2015) take this one step further, estimating
distributions over both group-level and individual-level para-
meter estimates. Researchers can also incorporate prior beliefs
about parameter estimates from other data sets, thereby increas-
ing parameter reliability, identifiability, predictive validity, and
sensitivity to individual differences (Gershman, 2016).

3. Computational phenotyping: Personality, development,
and psychiatric illness

Next, we will illustrate the value of computational phenotypes
from several different perspectives. Given the scientific breadth of
this review, for each perspective we will focus on specific case
studies rather than providing exhaustive coverage of the literature.
We will show how this approach can reveal new insights into
individual differences in personality and examine how the com-
putational phenotype changes over the course of development
and aging. Finally, we will show how differences between healthy
and disordered brain function can be mapped onto systematic
changes in the computational phenotype.

4. The computational structure of personality

Traditional approaches to the study of personality, such as factor
analysis, have been particularly effective in reducing the high-
dimensional space of personality to latent constructs such as the
Big Five (openness, conscientiousness, extraversion, agreeable-
ness, neuroticism) (Tupes & Christal, 1992). These personality
dimensions are largely stable across the lifetime and predict a
number of individual differences (e.g., religiosity, dating fre-
quency, and alcohol use among many others; Paunonen, 2003).
Despite this predictive validity, traditional personality constructs
are largely agnostic as to the cognitive mechanisms by which
differences in personality lead to differences in behavior.

For example, conscientiousness is associated with a wide range
of adaptive behaviors and outcomes such as greater health and
longevity (Bogg & Roberts, 2013), and increased reliability and goal-
directed behavior (Jackson et al., 2010). Indeed, how people differ in
conscientiousness has been well documented, but it is still relatively
unclear as to why people differ in conscientiousness (Abram &
DeYoung, 2017). In part, this is due to the fact that con-
scientiousness is comprised of a heterogenous composition of

underlying processes. Disentangling these processes is a task for
which computational phenotyping can be uniquely useful. The
specific processes can be operationalized, such as why people higher
in conscientious seek more goal-directed behavior. Identifying the
computational phenotypes associated with these personality con-
structs offers the opportunity to link the predictive validity of the
construct to its underlying mechanisms. In this section, we examine
a set of examples that illustrate what computational models have to
offer as a complement to these traditional constructs.

4.1. Personality: Goals and habits

Computational modeling has had an enormous impact on our
understanding of decision-making. Here we focus on one parti-
cular aspect of this research area: The distinction between two
forms of action selection, one based on goals and one based on
habits. Initial studies theorized that goal-directed behavior (as
studied in rats) was subserved by a “cognitive map” of the
environment that supported flexible pursuit of goals (Tolman,
1948). Tolman hypothesized the use of latent learning and
planning processes that went far beyond the stimulus–response
habits posited by the behaviorists (Thorndike, 1911). Despite the
intuitive link to our everyday experience, researchers had only
glimpses into the underlying processes. It took more than 50 years
to integrate advances in engineering (Bellman, 1957), computer
science (Sutton & Barto, 1998), neuroscience (Schultz, Dayan, &
Montague, 1997), and psychology (Daw, Gershman, Seymour,
Dayan, & Dolan, 2011; Dickinson, 1985) into a synthetic theo-
retical framework for understanding how the human brain carries
out goal-directed and habitual action. This modern computa-
tional synthesis conceptualizes goal-directed action arises from
using an internal model (“model-based” control) of potential
actions and their consequences in the environment, whereas
habits arise from a trial-and-error learning system that does not
exploit an internal model (“model-free” control).

By constructing explicit computational models of these two
systems and their interplay, researchers have been able to capture
individual differences in the degree of reliance on model-based vs.
model-free control using a single parameter estimated from a
canonical task (Daw et al., 2011). This line of work has led to the
study of how stress (Otto, Raio, Chiang, Phelps, & Daw, 2013),
age (Decker, Otto, Daw, & Hartley, 2016; Eppinger, Walter,
Heekeren, & Li, 2013), and psychiatric illness (Gillan, Kosinski,
Whelan, Phelps, & Daw, 2016; Sebold et al., 2014, 2017; Voon
et al., 2015) affect, or fail to affect (Nebe et al., 2018), the delicate
balance between model-based and model-free control.

Individual variation in model-based control was recently
captured by Otto et al. (2013) when they examined how model-
based control is affected by individual differences in stress
response. Participants submerged their arms in ice-cold water (a
commonly used acute stress manipulation) and their cortisol
levels were measured. Subsequently, they completed a two-step
sequential decision task (Daw et al., 2011), that we will refer to as
the “two-step task.” Computational parameters fit to this task
characterize several aspects of learning and decision-making,
including the relative contribution of model-free and model-
based control for each individual. Otto et al. found that partici-
pants with higher cortisol levels (greater stress response) exhibited
less model-based control. In turn, this effect was modulated by
working memory capacity such that greater working memory
attenuated stress-induced reductions in model-based control. The
key insight from this study is that the precise characterization of
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how stress and working memory affect individual variation in the
computational phenotype (i.e., model-based control), thereby
shifting the balance between goal-directed and habitual action.
Future work could seek to understand how model-based control
does, or does not, covary with conscientiousness and stress.

4.2. Personality: Social cognition

Personality measures such as extraversion and agreeableness are
composed of questions about social interaction, including how we
relate to ourselves and others. Computational phenotyping
increases our understanding of social interaction by specifying the
mechanisms underlying social cognition. For example, compu-
tational models of social cognition include parameters repre-
senting how quickly we change our view of others, beliefs about
the motivations driving their behavior, and a host of other
features of social interaction. A recent study (Diaconescu et al.,
2014) provides a nice example of computational phenotyping of
social cognition in an economic decision-making game.

Diaconescu et al. (2014) used a paradigm where participants
were asked to predict the outcome of a lottery. Each participant
was paired with an advisor who provided information to aid in
the participant’s lottery prediction. Importantly, the advisor was
incentivized to provide misleading or helpful information, and
this varied over time. The critical question for the participant was
whether or not to trust the advice of the advisor. Two key
parameters from the computational model were (1) a parameter
representing the perceived volatility of the advisor’s intentions
(i.e., how quickly the advice shifted between misleading or
helpful), and (2) a parameter representing the perceived advice
correctness. When the perceived volatility of the advisor’s intentions
was high, players weighted their advice lower. Strikingly, players
with higher self-reported perspective-taking proficiency had more
stable representations of their advisor. This was indicated by slower
changes in their belief about advice correctness. Thus, a personality
trait (perspective-taking proficiency) directly corresponded to a
parameter representing the participant’s estimate of another
person’s trustworthiness. In this example, we have a computational
phenotype with parameters for each individual describing how and
why they ultimately decide to take the advice of another person.
This computational approach was subsequently extended to the
relationship between social cognition and a personality ques-
tionnaire measuring autism traits in a healthy population (Sevgi,
Diaconescu, Tittgemeyer, & Schilbach, 2016).

Autism is characterized by impairment in social communica-
tion and social interaction leading to great difficulty maintaining
interpersonal relationships. Moreover, autism traits are con-
tinuously distributed in the general population (Robinson et al.,
2011).To investigate the processes that underlie these traits, Sevgi
et al. (2016) employed a computational approach in a social
decision-making task while measuring a score on the autism
spectrum in a healthy population. They used a game in which
using social cue information (indicated by the directional “gaze”
of a human avatar) resulted in higher task performance. A
computational parameter that represented the weighting of this
information in subsequent decisions was correlated with autism
score such that higher autism traits were associated with less
reliance on social information during decision-making. Moreover,
the study showed that individuals high on the autism spectrum
showed particular difficulty integrating social advice under more
volatile task conditions. Thus, a computational phenotype char-
acterizing a social decision-making process provides a specific

mechanism whereby elevations in autism traits are associated
with a decreased ability to effectively learn from social informa-
tion. Next, we turn to the use of computational phenotyping to
identify mechanisms underlying individual differences in how
people process threatening situations. This is particularly relevant
to the construct neuroticism, whereby people higher in this trait
experience greater levels of anxiety and worry.

4.3. Personality: The spontaneous recovery of fear

A core feature of adaptive behavior is the ability to update our
beliefs about threatening situations once they no longer pose a
threat. However, some individuals continue to feel fear in
apparently safe situations, whereas others seem to learn that a
situation no longer poses a threat. In accordance with this idea, a
recent paper by Gershman and Hartley (2015) demonstrated how
a computational phenotype helps explain why some people seem
to have persistent fears, while others do not.

Gershman and Hartley measured skin conductance response
during Pavlovian conditioning. The experiment consisted of three
phases: (1) acquisition of the initial fear association by pairing cues
with shock, (2) extinction of the fear association by presenting the
cues repeatedly without shock, and (3) testing of fear response one
day later. Spontaneous recovery of fear was measured as the
difference between skin conductance response on the first block of
test relative to the last block of extinction (i.e., how much did an
individual’s fear response to the cue re-emerge, despite having
extinguished this fear response on the previous day). Gershman and
Hartley fit a computational model of learning to the acquisition and
extinction skin conductance data. This model posited that partici-
pants make inferences about the “latent causes” underlying
the cue-shock pairs. When the contingencies change sufficiently, the
participants should infer that a new latent cause is active. A single
parameter controls the sensitivity of latent cause inferences to
contingency change. For small values of this parameter, the
acquisition and extinction phases are clustered together into a single
cause, producing unlearning of the acquired fear and hence no
possibility of recovery at test. For large values of this parameter, the
acquisition and extinction phases are separated into separate latent
causes, thereby protecting the acquired fear from extinction, thus
making spontaneous recovery possible.

Using the computational model, Gershman and Hartley
clustered participants into two groups on the basis of the sensi-
tivity parameter. As predicted, participants with small sensitivity
values apparently unlearned the fear association, showing no
evidence of spontaneous recovery. In contrast, participants with
larger sensitivity values inferred separate acquisition and extinc-
tion latent causes, and accordingly showed spontaneous recovery.
Thus, this study demonstrated how a computational phenotyping
approach can explain why some individuals may continue to feel
threatened in environments that no longer pose a threat.

4.4. Personality: The mechanisms of fluid intelligence

As noted above, intelligence is comprised of a complex set of
underlying processes. A recent study by Schlagenhauf et al. (2013)
validated complex attention and reasoning as a subprocess of
general intelligence using computational modeling. Participants
completed a reversal learning task during functional magnetic
resonance imaging (fMRI) and this was followed by a positron
emission tomography (PET) scan used to measure dopamine
synthesis capacity. It was found that reward prediction errors in the
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ventral striatum positively correlated with IQ, and this was specific
to the complex attention and reasoning portion of the general
intelligence assessment. Moreover, the ventral striatal reward pre-
diction error signal was inversely correlated with dopamine
synthesis. Together these findings suggest that a component of the
computational phenotype (reward prediction errors) are a pro-
mising target for understanding individual differences in fluid
intelligence.

5. The computational phenotype across development and
aging

Development across the lifespan is associated with profound
behavioral and psychological changes. For example, adolescence
is characterized by hypersensitivity to social context, vulnerability
to emotional arousal, increased impulsivity, and a propensity
toward drug and alcohol abuse. Adolescence is also accompanied
by neurodevelopmental changes in brain structure (Giedd et al.,
1999) and function (Casey, Getz, & Galvan, 2008). The challenge
is linking brain and behavior to specific cognitive processes that
are tuned differently across developmental stages. Understanding
the normative trajectory of these processes can help us to identify
atypical developmental trajectories. Moreover, individual differ-
ences in these processes arise through a developmental process.
Computational phenotypes allow us to better understand and
disentangle the factors that influence individual trajectories.

5.1. Development: Model-based control across the lifespan

One particularly important phenotype is the expression of model-
based control—the critical ability to evaluate the consequences of
our actions. The capacity to prospectively plan actions according
to their consequences is starkly contrasted in childhood and
adulthood. Requiring significant cognitive resources, model-based
control relies on prefrontal structures (Doll, Duncan, Simon,
Shohamy, & Daw, 2015; Smittenaar, FitzGerald, Romei, Wright,
& Dolan, 2013) known to change dramatically across develop-
ment (Gogtay et al., 2004). Indeed, there is a shift across devel-
opment from reliance on impulses to deliberative goal-directed
planning (Hartley & Somerville, 2015). This behavioral shift
mirrors a neurodevelopmental trajectory whereby prefrontal
structures engaged during goal-directed evaluation exhibit a
gradual process of integration with subcortical brain structures
that can support more automatic behavior (Gogtay et al., 2004).
The computational phenotype of model-based control is one way
to link changes in brain function and structure to behavioral
changes in goal-directed action across development.

Building upon this idea, Decker et al. (2016) administered the
same two-step task discussed above, using a computational model
to estimate the relative balance of model-free and model-based
control in a developmental sample. They found a near total absence
of model-based control in children ages 8–12. Model-based control
emerged during adolescence (ages 13–17) and further strengthened
during adulthood (ages 18–25). Extending this work, a subsequent
study found that age-related increases in model-based control were
mediated by increases in fluid reasoning—the ability to integrate
distant concepts to solve problems (Potter, Bryce, & Hartley, 2017).
The developmental relevance of these findings is bolstered by
evidence that model-based control has been linked to variation in
dopamine function (Deserno et al., 2015; Doll, Bath, Daw, & Frank,
2016; Sharp, Foerde, Daw, & Shohamy, 2015; Wunderlich, Smittenaar,
& Dolan, 2012) and prefrontal cortex function (Daw et al., 2011;

Doll et al., 2015; Smittenaar et al., 2013), both of which are
known to change across development (Hartley & Somerville, 2015).
Interestingly, while Decker et al. found an increase in model-based
control from childhood into adulthood, a recent study found that
model-based control subsequently decreases in older adults.

Eppinger et al. (2013) examined the relationship between model-
based control, age, and working memory in a sample of younger
adults (mean age 24) and older adults (mean age 69). Older adults
showed less model-based control than younger adults and this effect
was further pronounced by shifting the reward probabilities. They
demonstrated that older adults have specific difficulties changing
their “cognitive map” of the environment in response to unexpected
rewards, whereas younger adults changed their decision strategy
and explored the new environment. Like Otto et al. (2013), they
found that greater working memory was associated with greater
model-based control, but only in younger adults. Moreover, fol-
lowing unexpected rewards younger adults engaged in more stra-
tegic exploration of the task structure and older adults tended to
perseverate on the previously exploited option. The authors suggest
this may be due to a deficit updating expected reward values in
older adults. By using a computational phenotype and relating it
to other age-dependent processes, the authors demonstrate how
phenotypes can be used to examine age-related changes in goal-
directed and habitual behavior.

Together, these studies demonstrate how a computational
phenotype can be used to trace an arc of cognitive changes across
development and through senescence.

5.2. Development: Counterfactual deficits in adolescence

A core feature of adolescence is difficulty simulating the hypothe-
tical outcomes of decisions. In cognitive science, the consideration
of these alternative outcomes is referred to as counterfactual
thinking. A recent demonstration of counterfactual deficits in
adolescence was accomplished via Bayesian model selection.
Palminteri, Kilford, Coricelli, and Blakemore (2016) administered
an instrumental learning task and applied three separate compu-
tational models. While adolescents were best characterized by a
simple reinforcement learning model based upon the Rescorla–
Wagner learning rule detailed above, adults were best fit by two
more sophisticated models. The first was a counterfactual learning
model in which adults incorporated task feedback about unchosen
options, and the second was a value contextualization model that
allowed adults to learn equally from positive and negative rewards.
In contrast to symmetrical reward and punishment learning in
adults, adolescents were less likely to learn from punishment.
Therefore, this study identifies three separate computational
phenotypes that account for developmental changes in learning and
specific process components (e.g., counterfactual learning and
punishment sensitivity) that underlie these differences.

6. Debugging the brain

Computational modeling provides the advantages in overcoming
problems of heterogeneity, comorbidity, and non-specificity in
psychiatric nosology (Petzschner et al., 2017; Stephan et al., 2015;
Wiecki, Poland, & Frank, 2015), providing mechanistic links (i.e.,
computational phenotypes) between translational neuroscience
and applied practice (Friston et al., 2014; Huys, Maia, & Frank,
2016; Maia & Frank, 2017; Paulus, Huys, & Maia, 2016), and even
producing single-patient clinical predictions (Stephan et al.,
2017). To expand, pathological behavior can be linked to brain
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disruptions through computational models of distortions in the
latent cognitive or biological process. Moreover, specific para-
meters represent individual components of the process, providing
targets for intervention. Computational models also hold promise
for linking various types of measurement (e.g., behavior, self-
report, brain function) at several levels of analysis. In this section
we turn back to model-based control, and examine how this
phenotype shows specific relationships with different aspects of
psychopathology. We then review work that combines pheno-
typing with machine learning to aid in the study of schizophrenia,
and follow that with an illustration of using Bayesian model
comparison to identify two separate neurobiological mechanisms
for the phenomenon of synesthesia.

6.1. Psychopathology: Model-based control

A core feature of psychiatric illness is over-reliance on habits at
the cost of goal-directed action (Everitt & Robbins, 2005). For
example, individuals will often continue a pattern of compulsive
drug use despite a stated desire to abstain. The goal of abstinence
requires actions that are commensurate with accurate prospective
simulations of the severe consequences of relapse. Due to this
phenomenological similarity with the prospective simulation
aspect of model-based control (Doll et al., 2015), several studies
have investigated the balance between model-free and model-
based control in psychiatric illness. Model-based impairment
has been found in schizophrenia (Culbreth, Westbrook, Daw,
Botvinick, & Barch, 2016), obsessive-compulsive disorder,
methamphetamine dependence, and binge eating disorder (Voon
et al., 2015).

However, the association between model-based control and
problematic alcohol use has been somewhat equivocal and
concurrently illuminating. Across the subsequent studies the
computational phenotype (balance between model-based and
model-free behavior) remains formally consistent, yet the pheno-
type relates to categorical and trait characteristics of problematic
alcohol use differentially. This suggests traditional category-based
descriptions of heterogeneous phenomena such as addiction may
be further specified with computational phenotypes.

In computational investigations of alcohol use problems some
studies have found reduced model-based control in detoxified
patients (Sebold et al., 2014) whereas others have not (Sebold
et al., 2017; Voon et al., 2015). Despite no reductions of model-
based control, Sebold et al. (2017) found that reduced medial-
prefrontal signatures during model-based decision-making
predicted relapse in detoxified alcohol-dependent patients. In
addition, positive views about the reinforcing effects of alcohol
were associated with reduced model-based control in patients
who subsequently relapsed (Sebold et al., 2017). Yet, other
research has found that model-based control is not associated
with a range of problematic alcohol use, including binge drinking,
onset age for alcohol use, and alcohol consumption (Nebe et al.,
2018). Together these studies suggest that model-based impair-
ments may have a more nuanced relationship with alcohol use
that traditional methods are not well designed to capture.

Indeed, contemporary views of addiction (Everitt & Robbins,
2005; Kurth-Nelson & Redish, 2012) suggest that individuals will
engage in complex reasoning and goal-directed activity to satisfy a
craving. This shifts the view of addiction as simply habitual
behavior to a process-based account of drug taking and seeking.
Meanwhile, the traditional notion of “addiction as habit” relies on
a phenomenological observation that compulsive drug seeking is

habitual. This leaves out mechanistic accounts of what drives
addictive behavior. Fortunately, a large volume of preclinical
and human studies suggest that addiction is comprised of mul-
tifactorial disruptions (e.g., cognitive, pharmacological, neural) in
the learning process (see this book chapter for theoretical inte-
gration of this research; Huys, Beck, Dayan, & Heinz, 2014).
Challenges in specifying the mechanisms underlying pathological
phenomena can also be partially remedied via dimensional
approaches to psychiatric illness.

A large online study by Gillan et al. (2016) used a transdiag-
nostic approach to studying model-based control in psycho-
pathology. They applied factor analysis to symptom dimensions
comprising mood problems, habitual behaviors, and social func-
tioning. They found that model-based control was reduced in a
factor termed “compulsive behavior and intrusive thought” but
was unaffected by anxious depression and slightly improved by
social withdrawal. Thus, model-based impairments may be spe-
cific to symptoms and traits that cluster together.

While relatively few studies have examined model-based
control in psychopathology, computational phenotypes provide
a common mathematical foundation for understanding goal-
directed deficits. The aforementioned categorical studies osten-
sibly examined the same process, however, they may suffer from
nosological problems associated with diagnostic classification and
description (Cuthbert & Insel, 2013; Insel et al., 2010). Gillan et al.
illustrate how we can more accurately conceptualize psycho-
pathological phenomena by shared deficits in a certain process
represented by a computational phenotype. Clinicians and
researchers alike have observed the transdiagnostic nature of
psychopathology, but we have been restricted by lack of for-
malization of the process and dysfunction within the process. In
this regard, computational phenotypes may help shift diagnosis
toward a process-oriented understanding of mental illness
whereby deficits in the cognitive process are linked to brain dis-
ruptions and behavioral impairments.

6.2. Psychopathology: Generative embedding in
schizophrenia

We have largely focused on mechanistic models that describe how
the behavioral or neural data were generated (so-called generative
models). These generative models can also be combined with
machine learning techniques (e.g., Brodersen et al., 2011). We
illustrate this idea with a study that uses machine learning to
define psychiatric subgroups in schizophrenia (Brodersen et al.,
2014). In contrast to generative models, machine learning
approaches are agnostic to mechanism and use the data only to
classify subjects as patient or non-patient. However, there is a
fundamental problem with this approach. It requires the use of
Diagnostic and Statistical Manual of Mental Disorders or Inter-
national Classification of Diseases diagnostic labels. Specifically,
the researcher labels training data as patient or control and this is
the input for the machine learning algorithm. Using these labels,
the machine learning algorithm trains itself to classify the data
into patient or control. This approach reifies pre-existing theories
about categorical diagnoses. Alternatively, Brodersen et al. embed
a generative model (rather than labels) of the process giving rise
to neural data as the input into a machine learning classifier.

Brodersen et al. administered an n-back working memory task
to a group of patients with a diagnosis of schizophrenia and
healthy controls while they were being scanned with fMRI. They
created a generative causal model of the underlying neuronal
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dynamics (dynamic causal model [DCM]) that gave rise to the
fMRI data. The DCM described the network dynamics between
the visual cortex, parietal cortex, and dorsolateral prefrontal
cortex. Subject-level parameters were derived describing the
specific neuronal dynamics for each person and these were sub-
sequently entered into a machine learning algorithm that classi-
fied subjects into the schizophrenia or control group. Without
any clinical information, the classifier was able to sort the subjects
with 78% accuracy. Moreover, within the patient group, the
classifier identified three different groups of neural network
dynamics. Again, without access to any diagnostic information,
the three classifier groups corresponded to three clinical sub-
groups as shown by significant differences in negative symptoms.
This study is a powerful demonstration of linking a neurocog-
nitive model of working memory to ecologically valid clinical
diagnoses via completely data-driven approaches.

6.3. Psychopathology: Grapheme-color synthesia

Grapheme-color synthesthesia is a perceptual disturbance
whereby letters and/or numerals are associated with an experience
of color. For example, a person may see a black “4” and perceive
the color yellow. Interestingly, there are two broad phenomena
that characterize the experience of grapheme-color synthesthetes.
Projector synthesthetes perceive the color externally such that the
number (e.g., 4) appears in the color yellow. Alternatively, asso-
ciator synthesthetes experience a strong internal association of the
color. In a recent study, van Leeuwen, den Ouden, and Hagoort
(2011) demonstrate the advantage of using computational
phenotypes to identify separable neuronal mechanisms that
account for these two types of grapheme-color synthesthesia.

van Leeuwen et al. administered a synesthesia-inducing
paradigm to a group of known synesthetes during fMRI. They
used a DCM to test two competing hypotheses about visual
processing abnormalities that could account for projectors vs.
associators. They found that neural activity in projectors more
closely matched (via Bayesian model comparison) a bottom-up
processing stream within the fusiform gyrus, whereas associators’
neural activity matched a top-down processing stream in the
parietal lobe. Therefore, Bayesian model comparison was able to
validate that projectors and associators have dissociable compu-
tational phenotypes.

7. Challenges ahead

Computational modeling is a field that holds promise for
grounding individual differences in underlying cognitive and
neural mechanisms. However, there are several challenges facing
the practical use of computational phenotypes.

One challenge concerns specifying the mechanisms underlying
the computational phenotype. For example, model-based control is
based upon a number of interrelated cognitive mechanisms
including working memory (see Voon, Reiter, Sebold, & Groman,
2017, for a recent review). Therefore, impairments in working
memory will correlate with impairments in model-based control
(Culbreth et al., 2016) and it will be difficult to tease competing
mechanisms apart. One possible solution is administering multiple
tasks within the same subject and developing models that capture
the overlapping sets of mechanisms across these tasks. These models
would derive, for example, parameters that concurrently consider
working memory demands and sequential decision making to dis-
sociate the relative contributions of various underlying mechanisms.

A second, related challenge is construct validity. While person-
ality psychology has exerted considerable effort in establishing the
validity and robustness of its constructs, computational phenotyping
has not yet undertaken such a systematic effort. This is particularly
important for several reasons. First, it is well known that parameters
in computational models are not always identifiable (Gershman,
2016). This means that parameter values can trade-off against one
another to produce similar predictions, thereby making it much
more difficult to draw conclusions about the mechanism underlying
patterns of behavior. This can be partially remedied by para-
meterizing models in such a way that they do not suffer from
identifiability issues, or using data-driven constraints on parameter
estimates (Gershman, 2016).

Reliable parameter estimates also require tasks with many
trials. This is particularly problematic for patients studies where
heterogeneity in the underlying mechanisms and deficits can
produce high variance data. One possible solution is to use
hierarchical Bayesian modeling to increase sensitivity to indivi-
dual differences (Nilsson, Rieskamp, & Wagenmakers, 2011;
Wiecki, Poland, & Frank, 2015; Wiecki, Sofer, & Frank, 2013).

Adding to this complexity, it is also unclear how, why, or if,
the processes represented by the parameters change over time.
This is also important for developmental research, as cross-
sectional age differences in a given parameter are assumed to
mean that the parameter values within-individual exhibit similar
age-related changes over developmental time. However, we do not
typically know the test–retest reliability of computational phe-
notypes because models are rarely fit to multiple data sets from
the same subject. This means we have no handle on the con-
tribution of state dynamics to trait measures. This issue can be
easily remedied simply by collecting more data; even better, we
can measure (or experimentally control) the dynamics of other
variables, and thus begin to model state-dependent aspects of
computational phenotypes (see Kool, Gershman, & Cushman,
2017, for an example). Test–retest reliability will be especially
important for establishing the utility of phenotypes in predicting
clinical outcomes and treatment development (Stephan et al.,
2017) as we move from translational neuroscience to clinical
application (Gold et al., 2012; Paulus, Huys, & Maia, 2016).

Another challenge concerns the integration of behavioral and
neural data. Computational models are typically fit to behavioral
data and then the fitted parameters and latent variables are used in
the analysis of neural data. However, recent work has shown how
simultaneously modeling neural data (e.g., electroencephalography
or fMRI; Cassey, Gaut, Steyvers, & Brown, 2016; Turner et al., 2013;
Turner, Rodriguez, Norcia, McClure, & Steyvers, 2016; Turner, Van
Maanen, & Forstmann, 2015; Turner, Wang, & Merkle, 2017), or
self-report measures (Vandekerckhove, 2014) with behavioral data
can lead to greater predictive accuracy and integration of latent
cognitive abilities with personality constructs. Other approaches,
such as behavioral dynamic causal modeling (bDCM) translate
experimental stimuli into neural connections, which in turn, gives
rise to behavioral outcomes (Rigoux & Daunizeau, 2015). Effec-
tively, the computational phenotypes represented by bDCMs are
neural networks that operate as neurocomputational mechanisms
between environmental inputs and behavioral outputs. Neural
models of specific brain regions (e.g., the basal ganglia; Frank, 2005)
can also link cellular and systems neuroscience to inform decisions
about experimental acquisition of behavioral and brain data. This
approach provides biologically plausible mechanisms that account
for the neural computations that give rise to behavior (Forstmann &
Wagenmakers, 2015). However, application of these models by
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non-experts poses significant challenges because of the mathema-
tical and programmatic skills required.

Accessible software development is critical for adoption of
models by non-computational psychologists and neuroscientists.
To date, there are relatively limited software tools available
(though, see Wiecki, Sofer, & Frank, 2013), and those that exist
can be difficult for non-experts to use. This problem will be
gradually remedied as funding bodies and journals place more
stringent requirements on software accessibility. In fact, efforts
such as the annual computational psychiatry course already
provide open source software for reinforcement learning models,
hierarchical Gaussian filters, and drift diffusion models.

Computational models also require mathematical skills that are
not easily applied, or understood. Indeed, the application of these
models to questions in personality, development, and psychiatry has
typically required the integration of skills from multiple researchers
with different backgrounds (e.g., personality psychologists and
computational neuroscientists). Conferences (e.g., the annual
Computational Psychiatry course in London), graduate courses, and
potentially graduate degree tracks, could aid in filling these technical
and conceptual gaps. In addition, simple steps such as attempts to
bridge the language of complementary fields will also be important.
For example, the article by Brodersen et al. (2014) explicitly
describes generative embedding methods in a tutorial aimed at
researchers with a clinical background.

Finally, we need more systematic evaluations of the assump-
tions linking computational phenotypes to behavioral and neural
data. Often, researchers run a correlation or regression, looking
for simple associations without grappling with the possibility that
computational phenotypes could be related to observed data in
more complex ways. Clinical psychometricians have extensively
studied a range of probabilistic models for understanding how
different symptoms and traits are related, ranging from factor
analysis to undirected networks (Borsboom, Mellenbergh, & van
Heerden, 2004; Borsboom et al., 2016). These same kinds of
techniques could be applied to analyzing computational pheno-
types. However, the importance of these phenotypes depends
upon their predictive validity. This is where longitudinal trans-
lational research efforts (Paulus, Huys, & Maia, 2016), such as
those currently underway in the study of schizophrenia (Gold,
2012; Gold et al., 2012), can validate the ecological and clinical
utility of computational models.

Despite these challenges, we are optimistic that computational
phenotypes have already begun to bear fruit for personality neu-
roscience and related fields. We envision a future in which they will
be applied to precision medicine approaches (Cuthbert & Insel, 2013;
Fernandes et al., 2017; Friston, Redish, & Gordon, 2017), where
particular latent processes can be targeted for intervention, and
optimized for individual people. Similar interventions could be con-
ceived for the purposes of individualized education and the design of
incentive mechanisms for improving financial decision making.
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