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Abstract
Humans form sequences of event models—representations of the current situation—to predict how activity will unfold. Multiple 
mechanisms have been proposed for how the cognitive system determines when to segment the stream of behavior and switch from 
one active event model to another. Here, we constructed a computational model that learns knowledge about event classes (event 
schemas), by combining recurrent neural networks for short-term dynamics with Bayesian inference over event classes for event- 
to-event transitions. This architecture represents event schemas and uses them to construct a series of event models. This 
architecture was trained on one pass through 18 h of naturalistic human activities. Another 3.5 h of activities were used to test each 
variant for agreement with human segmentation and categorization. The architecture was able to learn to predict human activity, 
and it developed segmentation and categorization approaching human-like performance. We then compared two variants of this 
architecture designed to better emulate human event segmentation: one transitioned when the active event model produced high 
uncertainty in its prediction and the other transitioned when the active event model produced a large prediction error. The two 
variants learned to segment and categorize events, and the prediction uncertainty variant provided a somewhat closer match to 
human segmentation and categorization—despite being given no feedback about segmentation or categorization. These results 
suggest that event model transitioning based on prediction uncertainty or prediction error can reproduce two important features of 
human event comprehension.
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We directly compared two accounts of the control processes governing how event representations in the brain are updated. A dom
inant account holds that event representations are updated when prediction error spikes. Another account proposes that event rep
resentations are updated when prediction uncertainty spikes. The two accounts reflect two modes of control, but they have been 
difficult to distinguish because error and uncertainty are highly correlated. Here, our naturalistic corpus allows them to be dissoci
ated. This major scientific advance was enabled by a technical accomplishment: A large-scale activity corpus combined with a com
putational architecture that can handle full-scale activity, represented in a format approximating outputs of mid-level human visual 
processing, such that models’ outputs could be directly compared with human behavior.
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Introduction
To act effectively in a dynamic, complex environment, humans 
and other species use memory and knowledge to predict how ac
tivity will unfold over time (1–3). Knowledge about event classes 
can be encoded in structured representations called event schemas 
(4–6). One effective means to predict the near future is to use event 
schemas and sensory information to construct and maintain an 
internal model of the current situation (an event model). For ex
ample, if one is serving a cup of coffee, an event model can help 
to predict that the person receiving the coffee will pick it up, 

and how they will move to do so. However, for such a model to 

be effective it needs to transition when one thing ends and the oth

er begins—once the coffee has been taken up, a coffee-serving 

model is unhelpful (7). How does a cognitive system effectively 

and efficiently decide when to transition its event models? One 

possibility is that the system learns to identify clusters of highly 

connected states of the world and updates at transitions from 

one cluster to another (8). An additional possibility is that the sys

tem simply tracks when the current state changes dramatically 

and updates when this happens (9). Latent cause inference 
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models (10, 11) propose that the system learns latent classes that 
generate observable states and evaluates the probability of all la
tent classes at any moment based on observable states; event 
boundaries correspond to abrupt shifts in the probability distribu
tion over latent classes. Inspired by latent cause models (10, 11), 
we propose that human comprehension starts from an assump
tion that experiences are generated by a series of unobservable la
tent classes. At each moment, the comprehension system holds 
one hypothesis about which class is most likely to have generated 
the current observed information. This inferred latent class is 
combined with instance-specific information to form the current 
event model. One possibility is that the current latent class is eval
uated continuously (10, 12); however, latent class inference is 
computationally expensive so it is likely that latent class infer
ence is gated. One possible gating mechanism is to monitor the 
system’s predictions and transition when prediction quality de
grades (11, 13). In particular, two aspects of prediction quality 
would seem to be good candidates for controlling event model 
transitions: spikes in prediction error (7, 14) or in prediction uncer
tainty (13, 15). Prediction error occurs when there is a misalign
ment between what the current event model predicts and what 
happens. In contrast, prediction uncertainty, what was called un
predictability in (13), occurs when the current event model is not 
able to make confident predictions. Differentiating between error- 
based and uncertainty-based mechanisms of event model updat
ing can reveal how a cognitive system flexibly relies on different 
types of information to detect event boundaries and allocate at
tention (13). We set out to evaluate these two gating mechanisms 
in this paper and to compare them to a more computationally ex
pensive continuous inference algorithm. There are also other can
didate gating mechanisms for event model updating (8, 10, 11); 
here, we focus on these two because (i) prediction error is the dom
inant mechanism in current theories and (ii) prediction error and 
prediction uncertainty can be straightforwardly compared with 
the ungated model, and to each other, in the structured event 
memory (SEM) architecture.

Models of comprehension in language (16) and visual perception 
(17, 18) have simulated predictive processing by training it to pre
dict the next state on each timestep. One study (19) trained a gated 
recurrent neural network (RNN) using this one-step prediction task 
on a simplified sequence of human motion tracking data and found 
that the model’s prediction error was associated with event bound
aries. To the best of our knowledge, there has not been an attempt 
to relate a model’s prediction uncertainty with event boundaries. 
The SEM (12) model extends neural network models of event cogni
tion by representing different event schemas by separate RNN weight 
matrices, and each activation of an event schema constitutes an 
event model. This approach is contrasted with another line of 
research that represents all event schemas in a single network 
(20–23). Sharing the same network means that event dynamics 
across event types are learned jointly; thus, the network can benefit 
from commonalities across event types. Having separate RNNs de
prives SEM of the ability to learn commonalities across event types. 
We addressed this in SEM-2.0 by initializing new schemas from 
weights of a single RNN trained on all seen activities (see below). 
SEM is tasked to predict the next state on each timestep based on 
its current event model. This raises the question of how to select 
the most appropriate event schema at each timestep. Bayesian in
ference has been widely proposed as a mechanism to infer event 
type given observed sensory sequences (10, 11, 23). In SEM, approxi
mate Bayesian inference is used to determine which event schema 
is currently active based on observed scene transitions; this process 
is called event schema inference. The initially published SEM 

architecture evaluated all active and inactive schemas on every 
timestep. Here, we developed two variants of the SEM architecture 
that gate the schema inference mechanism based on either predic
tion error or prediction uncertainty. Thus, we were able to test can
didate mechanisms for controlling event model transitions with 
architectures that are more computationally tractable and more 
biologically plausible.

In SEM, event schemas are learned by adjusting weight matri
ces based on observed scene transitions. As an event schema is 
learned from sequences of scenes, it comes to represent schemat
ic knowledge associated with a particular class of event. Given fi
nite learning experiences, there is uncertainty about the 
schematic knowledge. This kind of uncertainty is referred to as 
model uncertainty or epistemic uncertainty in Bayesian deep 
learning (24); it leads to uncertainty in predictions. (Another 
type of uncertainty concerns which event schema is appropriate 
to the current moment—in other words, which latent cause is re
sponsible for the current observation (10). Although latent cause 
uncertainty influences prediction uncertainty (11) in full 
Bayesian inference, SEM approximates the distribution with a sin
gle high probability latent cause; thus, latent cause uncertainty 
does not influence prediction uncertainty in SEM.) Model uncer
tainty can lead to uncertainty about at least two salient features 
of activity: temporal dynamics (what comes next) and component 
structure (what are the components that will occur as part of a 
particular unit). For example, imagine Sarah is at a friend’s house 
watching him making a special ice latte. Having seen baristas 
make iced lattes before, she is familiar with many aspects of the 
general process—boiling water, making an espresso shot, prepar
ing ice, and steaming milk. However, having never seen this type 
of latte before, she is relatively uncertain about the specific se
quence—whether the espresso should be added to the cup of ice 
before or after the steamed milk. In addition, this kitchen includes 
features that are new to her: a sophisticated espresso machine 
and a unique milk frother. For these devices, she might have 
greater uncertainty about their components—how to operate 
the espresso machine, which settings to use, and whether the 
milk frother needs any special preparation. Here, we evaluated 
transient increases in this type of uncertainty as a potential mech
anism for gating the updating of event models and contrasting 
this with gating based on prediction error.

In naturalistic activity, prediction error and prediction uncer
tainty are correlated—when you are highly uncertain about 
what follows the keynote talk, your prediction is also more likely 
to be wrong. Also, naturalistic activity is characterized by rich cor
relations among perceptual features such as body movement and 
conceptual features such as interactions with objects. To general
ize to real-world comprehension, it is important to include natur
alistic structure in the modeling environment. To address these 
central features of naturalistic comprehension, we first adapted 
the SEM architecture so that it could be trained on the multi-angle 
extended three-dimensional activities (META) corpus, which is a 
25-h corpus of richly annotated recordings of everyday activity 
(25). These recordings allowed us to directly compare the model’s 
output to human performance on a moment-by-moment basis. 
We refer to the adapted model as SEM-2.0. We then developed var
iants of SEM-2.0 that gate the schema inference mechanism based 
on uncertainty (uncertainty-SEM) or prediction error (pe-SEM). We 
ran simulations to address two major questions: First, does a mod
el that uses event representations to predict the unfolding of hu
man activity (SEM-2.0) spontaneously identify human-like event 
boundaries and event categories? Second, does adding more bio
logically plausible gating mechanisms, reflecting prediction 
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uncertainty (uncertainty-SEM) or prediction error (pe-SEM) cause 
the model to more closely approximate human behavior? The 
main difference between the two model variants and SEM-2.0 is 
that SEM-2.0 triggers the inference over all possible event sche
mas at every timestep, whereas uncertainty-SEM and pe-SEM 
only trigger the inference when a threshold for prediction error 
or uncertainty is reached.

An important feature of the current work is that the models 
were trained on a large, rich corpus of recordings of live human 
activity (Fig. 1), such that the performance of the models could 
be compared directly to human perceptual and categorization 
judgments. In what follows, we first describe the model architec
tures and the dataset used to train and evaluate the models. Then, 
we present the results comparing the models’ segmentation and 
categorization agreement with human judgments on 3 h 39 min 
of validation activities, in order to compare how the model var
iants learned, segmented activity, and categorized incoming 
scenes. Finally, we assess how each model variant agrees with hu
man segmentation and categorization to evaluate the candidate 
mechanisms of event model transitioning.

Results
The three models of event comprehension were trained and tested 
on the META stimulus set, a corpus of naturalistic activities (25). In 
each activity, an actor performed a series of 6 to 7 scripted actions 
in a realistic environment (Fig. 1). Because the visual and semantic 
features processed in mid-level human vision may be the building 
blocks from which event representations are constructed (26), we 
used a combination of human coding and computer vision meth
ods to generate a rich set of these features for each scene and 
used the generated vectors as input to the models. Specifically, 
from three-dimensional joint position recordings, we calculated 
features of body pose, velocity and acceleration, as well as 

inter-hand distance, velocity, and acceleration. To represent the se
mantic meanings of interactive objects in the activities, we anno
tated bounding boxes that tracked the positions of objects, then 
used a language model (GloVe (27)) trained on a large text corpus 
(28) and translated the name of each object to a vector embedding. 
We then computed a weighted vector representation of the objects 
closest to the actor’s right hand and the mean vector representa
tion of all objects currently present in the scene. Principal compo
nent analysis reduced a set of 253 input features (object 
appearances, object disappearances, mean frame-to-frame change 
in pixel luminance values, skeletal motion features, object seman
tic features) to a set of 30 features that we presented as input scene 
vectors to three models. The models were trained to take in the run
ning sequence of these reduced representations and to predict the 
next timepoint in the sequence, one-third of a second later.

Modeling human activity at scale
We will first describe the original SEM model (SEM-1.0) and then 
our modified SEM (SEM-2.0) and the two variants derived from 
SEM-2.0: uncertainty-SEM and pe-SEM. The core architecture of 
the SEM-1.0 model is depicted in Fig. 2. This model represents 
each event schema as an RNN’s weight matrices and each event 
model as an RNN’s weight matrices and hidden unit activations. 
SEM-1.0 uses an approximate Bayesian inference (clustering) pro
cess to assign incoming scene vectors to event schemas; thus, 
each scene vector has an event label (event schema’s name). On 
each time step, a currently active RNN is presented with previous 
input scene vectors and predicts the current scene vector. The 
clustering process then compares the posterior probability of 
the active RNN’s prediction, relative to posteriors from all other 
RNNs and then either (i) retains the current RNN, (ii) activates a 
different RNN from the library, (iii) retains the same RNN, but re
sets its activation values, or (iv) spawns and activates a new RNN. 

Fig. 1. Structure of META dataset. A) Five actors performed four types of activities; each actor performed three out of four activity types. Each cell 
represents 10 unique recordings for each activity type. For example, actor 5 performed 10 unique sequences of actions pertinent to making breakfast. 
Gray cells indicate that an actor did not perform a particular activity type. For example, actor 1 did not perform the personal grooming activity. B) An 
example sequence of actions pertinent to personal grooming. C) Skeleton joint positions (left) and object location and identity (right) were extracted for all 
frames of a sequence. (The illustration only shows either skeleton or object for visualization purposes; in reality, both types of features were extracted for 
each frame.)
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We will refer to 2–4 as transitioning event models, and an event 
boundary is operationalized as a transition from one RNN to an
other RNN. SEM-1.0 utilizes several hyperparameters: stickiness, 
the tendency to keep the active model (to ensure temporal coher
ence in events); concentration, the tendency to spawn new models; 
and learning rate to update RNNs’ weight matrices.

SEM-1.0 (12) was able to account for structure in several small 
datasets, and it deployed new event schemas effectively, such 
that event schemas were frequently reused. However, when we ap
plied SEM-1.0 to the META corpus dataset, we observed that the 
model activated only a small number of its event schemas across 
all 22 h of activities. Three modeling assumptions led to this inef
fective use of resources. First, newly spawned-event schemas 
were initialized to random weights; this disadvantages new event 
schemas as they lack broad “general knowledge” about feature co- 
occurrence and dynamics. In SEM-2.0, we initialized newly 
spawned event schemas with weights from a single RNN that 
was trained on all scene vectors up to that point in time. The single 
RNN’s weights serve to capture dynamics common across events. 
Second, the process SEM-1.0 used to assign prior probabilities to 
schemas was a sticky Chinese Restaurant Process (sCRP) (29). 
This process is a commonly used prior distribution that has a 
“rich-get-richer” property (30)—a small number of large classes ac
counts for most observations. In SEM-1.0, this property caused 
most timepoints to be assigned to only a small number of event 
schemas. Although “rich-get-richer” might be appropriate to 
some clustering applications, this property might not be desirable 

in applications where a more balanced prior distribution is appro
priate (30, 31). In SEM-2.0, we instead used a uniform prior distribu
tion, while retaining the stickiness and concentration parameters. 
Third, in SEM-1.0 active schemas made predictions about the cur
rent scene from the previous scene vectors, but inactive schemas 
were asked to make predictions from a random vector. This ap
proach reduces model training and inference time, but it puts in
active schemas at a disadvantage. SEM-2.0 provides all schemas 
with input scene vectors from previous timepoints (see Materials 
and methods for details) to make predictions.

Gating updating based on prediction error or 
prediction uncertainty
SEM-2.0, like SEM-1.0, infers event schemas for every incoming 
scene (timestep). In this schema inference process, SEM-2.0 asks 
all event schemas to predict the current scene given previous 
scenes (Fig. 2A), which is computationally expensive and biologic
ally implausible. A more efficient and realistic approach is to 
make predictions based only on the current active schema and 
to use prediction quality as a gating signal to decide when to 
evaluate alternative schemas. We evaluated two candidate gating 
mechanisms: prediction error and prediction uncertainty; the 
models implementing each of these mechanisms are referred to 
as pe-SEM and uncertainty-SEM. At each timestep, each of the two 
variants used their active event schema to make a prediction; 
then, prediction error and prediction uncertainty were computed. 

Fig. 2. Overview of SEM architecture. A) In this hypothetical example, SEM is in the process of training and has generated four event schemas (four sets of 
RNNs’ weights). At each time step, the RNNs predict the current input scene vector; then, prediction errors are computed and converted to likelihoods, 
which contribute to posterior probabilities. Based on the posterior probabilities, SEM keeps the active event schema active, activates another schema in 
its library, or spawns a new event schema (depicted as an RNN with a dotted outline). The resulting active event schema updates its weights by 
backpropagating its prediction error. B) A potential sequence of outcomes. On the first two timesteps, the currently active schema is retained. On the third 
timestep, SEM switches to a different previously learned schema. On the fourth timestep, SEM initializes a new schema. (Not shown: SEM separately 
evaluates the probability of the current schema based on the current RNN’s hidden unit values and based on re-initializing the RNN’s hidden unit values. 
If resetting the hidden unit values is found to be more valuable, they are reset. This allows SEM to model, for example, washing a plate and then 
immediately washing a second plate.)
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Prediction error was operationalized as the Euclidean distance be
tween an observed scene vector and the RNN’s prediction. 
Prediction uncertainty was operationalized as variability in RNN 
predictions across perturbations of the RNN weights (epistemic 
uncertainty (24)), which we implemented by applying random 
dropout to the RNN repeatedly and generating predictions. 
Specifically, each RNN generates 32 different predicted scene vec
tors, with each prediction generated by different weight matrices 
derived by randomly dropping out weights of the RNN. The vari
ance of these predicted scene vectors approximates prediction 
uncertainty induced by uncertainty about RNN’s weights (32). In 
pe-SEM, if prediction error (pe-SEM) exceeds the prediction error 
threshold, the event schema inference process is triggered to de
termine the most probable event schema; otherwise, the current 
event schema is assigned to the current scene. Similarly, in 
uncertainty-SEM, if prediction uncertainty exceeds the prediction 
uncertainty threshold, the inference process is triggered. Thus, 
the difference between SEM-2.0 and the other two variants is 
that SEM-2.0 triggers the schema inference process at all time
steps, while the other two variants trigger the schema inference 
process when prediction error or prediction uncertainty is high. 
The schema inference process is the same for all three models.

From 128 activities (total duration: 21 h 43 m, range: 5 m 35 s to 
19 m 16 s, mean: 10 m 11 s), activities were split into a training set 
of 108 randomly selected activities (18 h 4 m) and a validation set of 
the remaining 20 activities (3 h 39 m). In contrast to the common 
practice with deep learning models of interleaving learning with re
peated presentation of stimuli (33), SEM-2.0, uncertainty-SEM, and 
pe-SEM encountered and learned each training activity only once, 
watching the whole activity before moving to the next activity. 
Even though activities do not repeat, there are multiple instances 
of the same event type spanning across different activity. For ex
ample, actor A performs “making a bagel” in activity 1 and actor 
B performs “making a bagel” in activity 2. This training regime ap
proximates the structure of human naturalistic learning, in which 
each event is experienced only once, but similar events and event 
sequences recur. After training on each activity, the validation 
set was tested with learning turned off.

All three models learn to predict naturalistic 
scene dynamics
Mean prediction errors for validation activities of all model var
iants decreased throughout training (Fig. 3). At the end of training 

(>900 min), SEM-2.0, which performs the inference over event 
schemas to select the most predictive event schema at all time
points, had lower mean prediction error for validation activities 
compared with pe-SEM (two-sided t test, t-statistics = −7.96, 
P-value = 5.4e−08, and degree of freedom (df) = 30) and 
uncertainty-SEM (two-sided t test, t-statistics = −6.40, P-value =  
2.2e−06, and df = 30). Uncertainty-SEM’s and pe-SEM’s prediction 
errors were not significantly different (two-sided t test, t-statistics  
= −0.85, P-value = 0.4, and df = 30).

To assess the impact of event knowledge partitioning, we cre
ated a generic model, composed of a single RNN that predicted 
the incoming scene vector from the last input scene vectors, and 
compared its mean prediction error to SEM-2.0’s mean prediction 
error. This model used the same parameters as SEM-2.0 for its one 
event schema, but could not switch or spawn new event schemas. 
The generic model had a higher mean validation prediction error 
and was more susceptible to interference than SEM-2.0 (Fig. S15). 
We also created generic models with double and triple the number 
of RNN’s hidden units. The double generic model had comparable 
prediction error with SEM-2.0, and the triple generic model had 
lower prediction error than SEM 2.0. During online comprehen
sion, humans maintain event models which need to balance the 
tradeoffs between efficiency and accuracy. These results suggest 
that instead of learning a single large model that might be compu
tationally expensive, learning multiple smaller models and transi
tion between them could achieve similar level of accuracy while 
being more efficient.

The models’ segmentation correlates with human 
segmentation, and updating based on uncertainty 
leads to more human-like segmentation than 
updating based on prediction error
A key test of the models is whether they generate human-like 
event boundaries for naturalistic stimuli. To compare SEM-2.0, 
uncertainty-SEM, pe-SEM to human performance on event updat
ing, we used data from the META stimulus set (25). Normative 
event boundaries were collected from an online sample of partic
ipants. Participants were instructed to watch a randomly selected 
sequence and to press a button each time one meaningful unit of 
activity ended and another began. This task is widely used in the 
human event segmentation literature (34, 35). Each participant 
was assigned a grain of coarse, defined as the largest meaningful 
units of activity, or fine, defined as the smallest meaningful units 

Fig. 3. All models learn to predict naturalistic activity, with SEM-2.0 having the lowest prediction error. Each purple, goldenrod, or green violin plot is a 
distribution of prediction errors for eight different simulations of SEM-2.0, uncertainty-SEM, and pe-SEM, respectively. Validation prediction error of 
SEM-2.0, uncertainty-SEM, and pe-SEM decreases over time. At the end of the training, SEM-2.0 has the lowest prediction error, whereas uncertainty-SEM 
and pe-SEM have similar prediction errors.
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of activity, and instructed appropriately. Participants could seg
ment multiple videos. We collected 30 segmentations per grain 
per activity.

Our goal was to compare the performance of each model vari
ant when it segmented in a range similar to that of our human 
participants. To that end, we conducted a hyperparameter search 
for each of the models to minimize the difference between the 
models’ number of boundaries and the median fine-grained event 
boundaries identified by humans (Fig. S10). We modeled human 
fine segmentation instead of coarse segmentation so that we 
would have more event boundaries per activity to model, increas
ing statistical power.

To quantify human-to-human and model-to-human segmen
tation agreement, we calculated the proportion of human raters 
who segmented during each timestep and computed the point- 
biserial correlation between that normative human segmentation 
timeseries and (i) each individual human rater and (ii) the models’ 
event boundaries. The possible range of this correlation depends 
on the number of event boundaries; thus, comparing correlations 
for two segmenters who identify different numbers of event 
boundaries can be misleading. Therefore, we scaled the correl
ation (36) based on its minimum possible and maximum possible 
values, given the number of boundaries observed. We also as
sessed how likely the result would occur by chance by creating 
permuted boundaries: shuffling the models’ event boundaries 
while preserving event lengths (see Materials and methods). 
Then, we computed scaled point-biserial correlations between 
the models’ boundaries and human boundaries and between the 
permuted boundaries and human boundaries. As shown in 
Fig. 4, scaled point-biserial correlations for all models at the end 
of training (>900 min) were much larger than would be expected 
by chance (two-sided t tests, t-statistics are 61.59, 36.81, and 
41.82, P-values are 2.80e−44, 6.48e−21, and 2.01e−41, and dfs 

are all 62 for SEM-2.0, uncertainty-SEM, and pe-SEM, respectively), 
and were almost halfway from the median of permutation-to- 
human to the median of human-to-human segmentation agree
ment (0.44, 0.46, and 0.32 for SEM-2.0, uncertainty-SEM, and 
pe-SEM, respectively). Scaled point-biserial correlations of 
SEM-2.0 and uncertainty-SEM were not significantly different 
(t-statistics = 0.23, P-value = 0.82, and df = 30), and both had high
er scaled point-biserial correlations than pe-SEM did (two-sided t 
tests, t-statistics are 24.28 and 14.11, P-values are 6.3e−21 and 
9.82e−12, and dfs are all 30 for SEM-2.0 and uncertainty-SEM, re
spectively) (Fig. 4). That is, the models segmented in a human-like 
fashion, with SEM-2.0 and uncertainty-SEM showing stronger 
agreement with human segmentation than pe-SEM.

The architectures of uncertainty-SEM and pe-SEM were identi
cal except for the triggering mechanism. However, the concentra
tion and stickiness hyperparameters that were needed to match 
human segmentation differed (Table S3): pe-SEM has smaller con
centration and larger stickiness compared with uncertainty-SEM. 
When pe-SEM and uncertainty-SEM were run with the same con
centration and stickiness settings, pe-SEM spawned more event 
schemas and had more event boundaries. This is because the like
lihood of spawning a new schema or switching to an old schema is 
inversely proportional to prediction error. The differences regard
ing segmentation or categorization between the two model var
iants could be due to the difference in the triggering signals (i.e. 
prediction error or uncertainty) or to differences in the tendency 
to stick to the current event (stickiness) and the tendency to 
spawn a new event (concentration). To rule out the latter explan
ation, we compared uncertainty-SEM using hyperparameters 
matched to human segmentation with pe-SEM which had hyper
parameters matched to those chosen for uncertainty-SEM. We 
also ran the converse comparison. These manipulations did not 
change the result: Uncertainty-SEM’s boundaries still agreed 

Fig. 4. The three models’ segmentation agrees with that of human observers, even though they were never given feedback on segmentation. Updating 
based on uncertainty led to more human-like segmentation than updating based on prediction error. Scaled point-biserial correlations across all 
validation activities for SEM-2.0, uncertainty-SEM, pe-SEM, humans, and permutations across training. Each purple, goldenrod, or green violin plot is a 
distribution of point-biserial correlation for eight different simulations of SEM-2.0, uncertainty-SEM, and pe-SEM, respectively. Each light sea-green violin 
plot is a null distribution generated by shuffling models’ boundaries while preserving event lengths. The cornflower line is the median of the distribution 
of scaled point-biserial correlation between different human subjects and normative group segmentation. SEM-2.0’s segmentation agreement with 
human segmenters was greater than expected by chance. Scaled point-biserial correlations for SEM-2.0 and uncertainty-SEM are not significantly 
different and are significantly higher than scaled correlation for pe-SEM.
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with human normative boundaries more than pe-SEM’s boundar
ies did (Figs. S16 and S18).

The models’ categorization corresponds with 
human categorization, and updating based on 
uncertainty leads to more human-like 
categorization than updating based on prediction 
error
To comprehend an activity, one needs to not only capture its 
boundaries but also relate the current activity to previous knowl
edge. For each scene, the three models select an event schema to 
remain active or become active; this can be interpreted as an 
event label categorizing that scene. A model’s event labels re
present its categorization of a current moment as an instance of 
a previously learned activity. To evaluate the models’ ability to 
classify, we used the script action labels that were provided to the 
actors before recording each activity. We asked two human raters 
to watch videos of the activities and identify the beginning and 
end of each of the 6–7 scripted actions per activity. Agreement be
tween raters was high, with a median discrepancy of 1.40 s 

between raters. Discrepancies were resolved by computing the 
mean of the time annotations. We compared human-rated action 
labels and each model’s event labels. Figure 5A shows examples of 
these script action labels.

To quantify the models’ agreement with human action cat
egories, we calculated the adjusted mutual information (37) between 
each model’s event labels and the scripted action labels. Mutual 
information quantifies the information shared by the two parti
tioning (clustering) algorithms (model variants and humans parti
tion input scene vectors into clusters) and thus can be employed 
as a categorization similarity measure. If models categorize input 
scene vectors in a human-like way, the mutual information be
tween models’ event labels and script action labels will be high 
(see Materials and methods). The adjusted mutual information 
score corrects for the chance level of expected mutual informa
tion between two partitioning algorithms. We also assessed how 
likely the result would occur by chance by creating permuted 
event labels: shuffling the models’ events while preserving event 
lengths (see Materials and methods). This is the same shuffling 
procedure we performed to generate permuted boundaries 
(when events are shuffled, event boundaries are also changed). 

Fig. 5. Three models’ categorization agrees with human categorization, despite never receiving feedback on categorization. A) Examples of human action 
labels for “bathroom grooming” activities. Each row is an example activity from a different actor performing these action sequences. Each color 
represents an action label. The X-axis indicates the time and duration of the action. Notably, actions varied in their order and durations across activities, 
as illustrated by the labeled “Wash Face” and “Floss Teeth” actions. B) Categorization agreement between three models’ event labels and human action 
labels. Each violin is a distribution of adjusted mutual information scores for eight different simulations of each model (purple for SEM-2.0, goldenrod for 
uncertainty-SEM, and green for pe-SEM). Light sea-green violins indicate distributions of adjusted mutual information scores between permutated event 
labels and human action labels. All models’ adjusted mutual information scores increase across training and remain significantly bigger than chance. 
Uncertainty-SEM’s event labels agree with human action labels more than SEM-2.0’s and pe-SEM’s.
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Then, we computed adjusted mutual information between mod
els’ event labels and human action labels and between permuted 
event labels and human action labels. As shown in Fig. 5B, the ad
justed mutual information between each model’s event labels 
and script action labels was all significantly higher than the per
muted null distributions (two-sided t tests, t-statistics are 26.64, 
31.67, and 23.55, P-values are 1.20e−35, 5.42e−40, and 1.26e−32, 
and dfs are all 62 for SEM-2.0, uncertainty-SEM, and pe-SEM, re
spectively). Qualitatively, an examination of the correspondence 
between each model’s schemas and script action labels revealed 
that event schemas generalized across actors and environments: 
The same schema was often activated for the same script action 
performed by different actors in different environments (Fig. S5).

To assess whether updating based on uncertainty or prediction 
error led to more human-like categorization, we compared 
SEM-2.0’s categorization agreement with humans to those of 
pe-SEM and uncertainty-SEM. At the end of training (>900 min), ad
justed mutual information with human action labels for 
uncertainty-SEM was significantly higher than pe-SEM (two-sided 
t test, t-statistics = 7.68, P-value = 1.45e−08, and df = 30); indeed, it 
had higher agreement than SEM-2.0 did (two-sided t test, 
t-statistics = 3.47, P-value = 1.61e−03, and df = 30). SEM-2.0 had sig
nificantly higher agreement than pe-SEM did (two-sided t test, 
t-statistics = 3.43, P-value = 1.78e−03, and df = 30). Uncertainty- 
SEM’s categorization also agreed with humans more than 
pe-SEM’s categorization in the two hyperparameter-matched re
gimes (Figs. S17 and S19), suggesting that the observed differences 
were not due to differences in hyperparameter values.

Together, the segmentation and categorization results suggest 
that an architecture controlling the inference process over event 
schemas through prediction uncertainty leads to more human- 
like behavior than a computationally intensive architecture that 
performs the inference process all the time or an architecture con
trolling the inference process by prediction error.

Note that perfect adjusted mutual information is possible only 
if two partitions have the same number of categories; if two parti
tions differ in the number of categories (i.e. if one is finer than the 
other), the best possible adjusted mutual information score is low
er. Over training, the models develop more specific event schemas 
and finer-grained segmentation: By the end of the training, their 
mean event lengths were 29.47, 28.96, and 24.7 s for SEM-2.0, 
uncertainty-SEM, and pe-SEM respectively, suggesting that they 
were identifying sub-events of the scripted actions (mean length 
of 79.90 s). This lowers the adjusted mutual information score. 
To better understand how finer-grained segmentation affects 
the relationship between each model’s evolving partitioning and 
human categories, we used two complementary categorization 
metrics, purity and coverage (38). This analysis confirmed that all 
three models’ categorization at the end of training captured sub- 
units of the action script labels (Fig. S7).

SEM-2.0 and uncertainty-SEM produce flurries of 
updating at some event boundaries
In SEM-2.0’s and uncertainty-SEM’s performance, we noted “flur
ries” of event model transitions such that the model would often 
update multiple times in rapid success and then settle back into 
a stable state. These occurred more frequently for SEM-2.0 than 
for uncertainty-SEM and were not observed for pe-SEM. 
Figure S21A and B shows SEM-2.0’s boundaries for two example 
validation activities. Figure S21C shows the distribution of elapsed 
durations between consecutive boundaries. The distribution is 
heavily right-skewed, and ∼36% of SEM-2.0’s and 15% of 

uncertainty-SEM’s pairs of consecutive boundaries have dura
tions below 1 s, showing that both models make flurries of rapid 
transitioning within a short time. Even though we know that hu
mans agree on where event boundaries are, we do not know 
whether it is the case that the brain experiences one boundary 
or a flurry of boundaries. Thus, SEM-2.0 and uncertainty-SEM 
make a novel prediction that the brain might sometimes experi
ence a series of switches before settling into a new stable event 
model. This prediction extends existing theories by introducing 
the concept of transitional instability in event model formation.

The generation and use of event schemas
One feature of the META dataset is that there are multiple instan
ces of the same event class (e.g. there are multiple performances 
of “making coffee” spanning environments and actors). If the 
models successfully learn dynamics associated with event 
classes, we should expect them to reuse event schemas later in 
training. We observed that the models spawned new event sche
mas at a higher rate early in training and reused event schemas 
more often later in training (Fig. S20).

Comparison with input-deprived models
To explore the contribution of motion features and semantic fea
tures on uncertainty-SEM’s prediction, segmentation, and categor
ization, we created two input-deprived uncertainty-SEM versions: 
semantics-deprived and motion-deprived models (see Materials 
and methods) and compared them to uncertainty-SEM. Deprived 
models have higher prediction errors than uncertainty-SEM, with 
a large contribution coming from the respective deprived features. 
Full uncertainty-SEM had higher segmentation correlation with 
humans and categorization agreement with humans than did the 
two deprived models (Figs. S13 and S14).

Discussion
Event models facilitate effective real-time responses to dynamic 
activity, planning for the future, and encoding for long-term 
memory (2, 26, 39–42). Previous modeling attempts have been 
conducted on stimuli that were highly abstract or simplified, 
and too brief to capture the variability and structure of naturalis
tic events (8, 12, 19). The META dataset (25) provides a more rigor
ous test for computational models of event comprehension by 
allowing for a model training and testing regime that resembles 
human learning experience, that humans never experience the 
same event twice but experience similar events of the same event 
class (e.g. similar “making bagel” events). The present simulations 
asked two critical questions about event comprehension. First, 
does encapsulating event dynamics in schemas, with schema se
lection governed by inferring latent structure in the dynamics of 
activity, facilitate learning the dynamics of naturalistic activity? 
Second, does gating updating based on prediction error or predic
tion uncertainty lead to more human-like segmentation and 
categorization? The results show that encapsulating schema 
knowledge improves the prediction of upcoming activity and 
reproduces two features of human behavior: segmentation and 
categorization. In addition, an uncertainty-based updating mech
anism leads to more human-like event segmentation and action 
categories than gating based on prediction error does.

Prediction
The model was trained to predict one-third of a second into the fu
ture based on a sequence of scene representations. The 
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simulation input and output scene vectors were constructed to 
capture key properties of object and action processing in the pri
mate visual system (43); we view these as a rough summary of 
the results of early- and mid-level visual processing. This strategy 
allowed for direct comparison of human and model event seg
mentation and categorization, enabled the model to generalize 
its schemas across actors and environments, and should facilitate 
generalization to other everyday activities as well as comparison 
to neurophysiological data.

The model’s ability to learn is grounded in its hybrid architec
ture—a gated recurrent network to learn short-run event dynam
ics joined with the inference process over event schema to model 
transitions from event to event. These results are consistent with 
previous findings that RNNs are effective for sequential learning 
(16, 33, 44). Comparison models that did not incorporate event 
schema inference were able to achieve reasonable performance 
on the prediction task; however, they were less able to protect pre
vious learning from interference (45, 46). SEM’s segregation of 
event knowledge into multiple schemas distinguishes it from pre
vious models of event cognition (8, 19–21), in which event dynam
ics was learned by a single neural network instead of a library of 
networks.

Segmentation
In our two model variants, segmentation reflects the updating of 
the model’s current event representation in response to predic
tion error or uncertainty. This instantiates the core principle of 
event segmentation theory (14). Crucially, the model was never 
provided with information about human segmentation; our find
ing that its segmentation corresponded with human segmenta
tion occurred as a natural side effect of implementing the 
algorithm. The results are consistent with a small-scale demon
stration using SEM-1.0 (12). All model variants produced better 
than chance level segmentation agreement with human partici
pants when trained and evaluated on large-scale naturalistic ac
tivities. Further, uncertainty-SEM (and SEM-2.0) produced a 
significantly higher agreement with human segmentation than 
pe-SEM. Though the three models still did not correspond well 
to human segmentation, they could serve as a baseline for future 
modeling effort with naturalistic events.

Categorization and generalization
All variants of SEM-2.0 generated event schemas that matched hu
man action categories better than chance, again without being pro
vided with information about human categories. Uncertainty-SEM 
produced more human-like categorization than pe-SEM or SEM-2.0. 
It generalized event schemas to performances by different actors in 
different environments, indicating that it could learn underlying 
event dynamics while smoothing surface features.

Monitoring prediction quality: error and 
uncertainty
Prediction error (3, 7, 14, 42, 47) and prediction uncertainty (11, 13, 
15) are two signals of the quality of a current event model’s appro
priateness. They are correlated but not at all identical. The cur
rent results have important implications for theories of event 
comprehension, including event segmentation theory, which pos
its that event models are updated at spikes in prediction error 
(14, 19, 42, 47, 48). They suggest that other metrics of prediction 
quality—specifically prediction uncertainty—should be consid
ered as potential gating mechanisms for human event segmenta
tion (11, 13, 49, 50). Benchmarking these two mechanisms against 

human performance required a large, naturalistic corpus of hu
man activity recordings.

Given the proposed theoretical differences (13)—prediction 
error-based updating mechanism being reactive, responding to 
discrepancies in expectations, and prediction uncertainty-based 
updating mechanism being proactive, anticipating and preparing 
for future unpredictability—it is essential to delve deeper into the 
neural underpinnings associated with each mechanism in future 
research. Comparing these neural underpinnings will illuminate 
how the brain implements these distinct strategies. The current 
computational framework could help facilitate this task by pro
viding estimates of moment-by-moment error, uncertainty, and 
boundary timecourses, enabling forward inference (51) with neu
roimaging data.

Limitations
The META corpus represents a substantial step forward as a 
testbed for modeling human event comprehension at scale (25). 
The activity recordings were processed to form representations 
intended to capture the core features of human body motion 
and object interactions that might be recovered by early- to mid- 
level human vision. This approach made the problem computa
tionally tractable and made the results interpretable, but it is ne
cessarily an approximation. The timestep was 1/3 s, which was 
chosen because this duration is not too long such that the motion 
and semantics features change drastically from one step to the 
next which makes it too hard to learn, and this duration is not 
too short such that the features change too slow which makes it 
too easy to learn. The specific decision is arbitrary and future 
work might explore other timesteps. In addition, the current 
SEM versions use RNNs to represent event schemas due to their 
ability to incorporate past information. However, the choice of a 
four-layer gated recurrent unit (GRU) is also arbitrary, and other 
architectures might yield different results. Prior work has shown 
limitations of similar RNNs in role-filler binding (52) and spatio
temporal tasks (53), suggesting the need for better representation 
of structural relations between entities. One approach is to aug
ment an RNN with modules that are designed to progressively ex
tract abstract representations such as in convolutional neural 
networks. Prior work (54, 55) used convolutional LSTMs 
(cLSTMs) as representation modules for the task of next-frame 
video prediction. A cLSTM is an enhanced version of the standard 
LSTM neural network, designed specifically for image sequence 
processing, such as in video analysis. Experiments have shown 
that cLSTMs consistently outperform traditional LSTMs in tasks 
that involve spatiotemporal data (53).

The current SEM versions do not have memory for schema up
dating, meaning that they must repeat inference when re- 
encountering similar scenes. A more computationally efficient al
ternative could involve storing previously inferred scene–schema 
pairs, allowing direct retrieval instead of repeated inference. This 
possibility has been the subject of recent research (56).

Future directions
One important problem for future research is to account for the 
learning of hierarchical structure in activity (57). A sequence of 
small-scale events such as “browse the menu,” “call the server,” 
and “order meals” may occur reliably as part of a larger event 
such as “order food at a restaurant.” Behavioral (58, 59) and neuro
imaging (60, 61) data provide evidence that human event compre
hension represents such temporal hierarchy. The SEM architecture 
does not currently have a means to explicitly model the multiple 
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grains and relations across grains. One limitation of the sticky uni
form process (sUP) or the sCRP is that the prior for the next event is 
not influenced by the current event. Thus, one direction to explore 
is to extend the schema selection process to learn transition dy
namics between events, effectively grouping sub-events belonging 
to a larger event together (62). Another strategy is to allow the mod
el to learn events on multiple timescales simultaneously. One dis
tinction between SEM and other modeling approaches (15, 20–22) is 
that these approaches represent different event types with the 
same RNN. This approach allows multiple timescales to be repre
sented in the same latent space, where finer timescale dynamics 
are transitions between neighboring points in the latent space 
and coarser timescale dynamics are transitions between neighbor
hoods. It is worth evaluating the extent to which a single RNN could 
capture multiple timescales in future work.

Another central problem to be explored is the reuse of previ
ously learned schemas to create a new one. For example, event 
“sell stock at a coffee shop” could include elements of event “sell 
stock” and elements of event “have coffee at a coffee shop.” One 
approach to such reuse is to represent events compositionally, de
composing components into elements and combining these com
ponents in a rule-like manner (63). Notably, Elman and McRae (20) 
demonstrated that a single, large neural network could combine 
elements learned in different events. The authors trained a neural 
network model on two different events: a person cuts food in a res
taurant with a knife and a person cuts themselves with a knife and 
bleeds. The network was tested with a new event: a person was in 
the restaurant and cut themself, and it correctly inferred that the 
person bleeds, combining elements from the two learned events. 
The META corpus provides a more stringent testbed to evaluate 
the extent to which a single network could represent events 
compositionally.

Materials and methods
Model architectures and implementation
SEM-2.0 was adapted from SEM-1.0 to address its limitations when 
applied to our human-scale naturalistic dataset and to answer the 
question whether a model that uses event representations to pre
dict the unfolding of human activity spontaneously identifies 
human-like event boundaries and event categories. Uncertainty- 
SEM and pe-SEM variants were adapted from SEM-2.0 to test 
whether adding a more biologically plausible gating mechanism 
to SEM-2.0 causes the model to approximate human behavior bet
ter, and whether prediction uncertainty or prediction error is a 
more suitable gating mechanism. We will describe SEM-1.0, 
SEM-2.0, and the two variants below.

The core architecture of the SEM-1.0 model has two main com
ponents: a library of RNN schemas and an approximate Bayesian 
inference module (12). The specific RNN architecture was a four- 
layer, fully connected neural network with GRUs, a leaky rectified 
linear activation function (leaky ReLU), and 50% dropout for regu
larization. An active RNN represents the active event model that 
humans maintain during online comprehension. We view the 
RNN with GRUs as a general-purpose engine for learning the 
short-run trajectories of events using stable hidden layers. 
Because we focused here on gating of the approximate Bayesian 
inference architecture, we adopted the RNN architecture directly 
from that of Franklin et al. (12) and did not vary it. The approxi
mate Bayesian inference module clusters each incoming scene 
vector to an event schema by inferring which event schema gen
erated the scene vector, using local maximum a posteriori (MAP) 

estimation (Fig. 1A). For each incoming vector, SEM-1.0 computes 
the likelihood that the vector belongs to each event schema by 
comparing event schemas’ predictions with the scene vector, 
with higher similarity indicating higher likelihood. SEM-1.0 as
signs prior probabilities based on the sCRP. Priors and likelihoods 
are combined to compute posterior probabilities for all event 
schemas, and the incoming scene vector is assigned to the event 
schema with the highest posterior probability. Consequently, in 
this architecture, event boundaries are defined as selecting a 
new schema (or selecting to re-initialize the currently active sche
ma). This inference mechanism over event schemas by estimating 
local MAP approximates Bayesian inference; exact Bayesian infer
ence would require computations for all past clustering out
comes. However, comparisons between local MAP and more 
exact forms of Bayesian inference have shown their performance 
on certain problems to be highly similar (64).

In SEM-1.0 (12), there were three sources of bias (modeling as
sumptions) that created an imbalance in the relative activation 
of event schemas. One source of bias was that newly spawned 
event schemas were initialized to random weights. This initializa
tion disadvantages new event schemas for the learning of natur
alistic activities like the META corpus, because the environment 
is rich with general features and dynamics, such as where objects 
are typically found and how bodies can move, as well as 
event-specific information. To address this imbalance, we initial
ized newly spawned-event schemas with weights from an RNN 
that was trained on all scene vectors up to that point in time. 
Second, in SEM-1.0, the process used to assign priors to event 
schemas was the sticky sCRP, which assigns higher prior probabil
ities to event schemas that have more frequently been activated 
in the past. This led to the activation of a small number of event 
schemas for most time points and rarely activated newly spawned 
event schemas; therefore, in SEM-2.0, we replaced this process 
with the sUP, in which large and small clusters have equal prob
ability; the sUP has been applied for event schema inference in an
other work (23). As in the sCRP, the sUP has a hyperparameter 
called stickiness that controls the tendency to remain in the cur
rently active event and a hyperparameter called concentration 
that controls the likelihood of spawning new event schemas. 
Removing this “rich-get-richer” property helped SEM-2.0 to use 
event schemas more evenly (Fig. S2). Third, SEM-1.0 asked active 
schemas to make predictions about the current scene by feeding 
them scene vectors from previous timepoints while asking in
active schemas to make predictions by feeding them a random 
vector. This approach helped the authors circumvent a computa
tional challenge because predictions from inactive schemas could 
be cached (because the random vector was constant, predictions 
were also constant) and used to compute likelihoods for the in
active event schemas. However, that approach placed inactive 
event schemas at a disadvantage because the input scene vectors 
to these event schemas were not informative to predict the cur
rent scene vector, while the input scene vectors to the active event 
schemas were the scene vectors from previous timesteps. 
Consequently, inactive event schemas were less likely to be se
lected and update their weights (since only the active event sche
ma updates its weights at a specific timestep), resulting in only 
some initial event schemas activating and updating their weights 
most of the time. Relatedly, because event schemas in SEM-1.0 
were trained to predict current scene vectors from either previous 
scene vectors or random vectors, the architecture’s predictive 
power was compromised. We therefore modified SEM-2.0 so that 
both active and inactive schemas were provided with the previous 
scene vectors as input. To retain efficient processing, we 
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parallelized the calculation of predictions from active and in
active schemas. These changes led to more even use of event 
schemas and reduced prediction error (Figs. S2 and S4).

Like SEM-1.0, SEM-2.0 performs inference over all schemas at 
every timestep, which is not biologically plausible. Gating mecha
nisms were added to create two model variants: uncertainty-SEM 
and pe-SEM. At each timestep, each of the two variants used their 
active RNN to make a prediction; then, prediction error and pre
diction uncertainty were computed. If prediction error (pe-SEM) 
or prediction uncertainty (uncertainty-SEM) exceeds the average 
prediction error or prediction uncertainty of the active RNN by a 
certain margin, the Bayesian inference process is triggered to de
termine the most probable RNN. Prediction error is operational
ized as the Euclidean distance between the active RNN’s 
prediction and the observed scene vector. There are two sources 
of uncertainties associated with an RNN’s prediction: noise inher
ent in the data (aleatoric uncertainty) and the variance of the es
timated RNN’s weights (epistemic uncertainty) (24). We assume 
aleatoric uncertainty is constant for all data points (scene vectors) 
and conceptualize epistemic uncertainty as prediction uncer
tainty of the active event schema (RNN). In principle, epistemic 
uncertainty can be modeled by placing a prior distribution over 
an RNN’s weights and then trying to estimate the posterior distri
bution of these weights given the observed scene vectors assigned 
to that RNN. This approach is computationally prohibitive in prac
tice with large-scale datasets and especially with our architecture 
since we need to estimate posterior distributions of all RNNs’ 
weights. For RNNs, epistemic uncertainty can be approximated 
by randomly applying dropout before every weight layer and cal
culating the variance of predictions (Eq. 1) (32, 65). Specifically, at 
every timepoint t, we repeatedly generate predictions S times and 
estimate the variance of this prediction distribution.

Uncertainty(t) =
1

S − 1

􏽘S

s=1

(v(s, t) − E[v(t)])T(v(s, t) − E[v(t)]);

v ∈ R30, s, t ∈ D

E[v(t)] =
1
S

􏽘S

s=1

v(s, t)

(1) 

All code was implemented in Python, using the TensorFlow library 
for neural network implementation: https://github.com/ 
mbezdek/extended-event-modeling and https://github.com/ 
NguyenThanhTan/SEM2.

Materials
Each of the three models was trained on the META stimulus set 
(25) which contains over 25 h of everyday activities, each about 
10 min long. We used 128 performances out of 149 performances 
(Fig. S1). Performances were captured with a Kinect V2 device, 
which includes a video camera and a time-of-flight depth sensor 
(66), and two other video cameras. The Microsoft Kinect SDK 
was used to determine actors’ skeletal joint positions. Joint posi
tions were adjusted, so the mid-spine joint was at the origin and 
rotated to align shoulder joints along the Z-axis. Features were 
smoothed with a rolling mean of seven frames. We calculated 
joint velocity, acceleration, and inter-hand distance metrics.

Semantic information about objects was captured as follows: 
Human annotators labeled object positions and identities with 
bounding boxes for a subset of frames at 10-s intervals. A tracking 
model (Siam region proposal network) was then used to track ob
jects forward and backward between labeled frames (67). 
Trackers were dropped if confidence fell below a threshold, and 

the Hungarian algorithm matched tracks. Object appearance/dis
appearance features were binary, indicating frames where objects 
began or ceased being tracked. We embedded object names into 
50-dimensional semantic vectors using the GloVe language model 
(27), averaged across objects in each frame, to create a feature set. 
We also calculated features for the three nearest objects to the ac
tor’s right hand, using a weighted average of vectors based on the in
verse distance from the hand. In total, there were 102 object-related 
features: object appearances/disappearances, 50 features for all ob
jects, and 50 features for the nearest objects to the actor’s hand.

We performed principal component analysis to reduce the di
mensionality of the feature vectors. Dimensionality reduction 
was performed separately on body motion and semantic features, 
to allow for modality-specific calculations of predictions and er
rors. The resulting set of features contained 30 dimensions (14 
body motion dimensions, 13 semantic dimensions, 2 dimensions 
for object appearances and disappearances, and 1 dimension for 
the correlation of pixel luminance between successive video 
frames). This dimensionality reduction preserved 76% of the ori
ginal variance of the full feature set.

Training and evaluation regimen
To train and validate the models, we used a hold-out procedure to 
save computation time. The 128 activities were divided into a 
training set of 108 activities and a validation set of 20 activities. 
The training set was shuffled eight times to create eight sequen
ces, each used for one simulation. In each simulation, each model 
variant watched one unique activity sequence, allowing them to 
learn from each activity only once, similar to human experience. 
Different instances of the same event type enabled the models to 
learn generalized event schemas. Each model’s core architecture 
has two parts: a library of event schemas represented by RNN 
weight matrices and an approximate Bayesian inference module. 
Learning involved either creating new RNNs or adjusting weights 
of existing ones. At each timestep, only the currently active RNN 
processed the scene vector and updated its weights via backpro
pagation of prediction error. After every 10 training activities, 
models were evaluated using all validation activities with frozen 
RNN weights. Since each model ran eight simulations and was 
evaluated after every 10 activities, each model had eight data 
points per evaluation metric described below.

Evaluation metrics
Prediction error
To measure how a model learns to predict throughout training, we 
calculated its prediction error for each pass through the validation 
set. The prediction error for each timestep is the Euclidean dis
tance between the active model’s prediction and the input scene 
vector at that timestep, and the summarized prediction error for 
the validation set is the average of the prediction errors calculated 
at all timesteps for all activities.

Validation PE

=
1

|activities|

􏽘

a∈activities

1
|timesteps|

􏽘

t∈timestepsa

����������������������������

(v(t)predicted − v(t)input)
22

􏽱

;

v ∈ R30

(2) 

Scaled point-biserial correlation
To quantify models’ segmentation agreement with human segmen
tation, we computed scaled point-biserial correlations (68) between 
models’ event boundaries and human fine-grain segmentation. We 
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treated the human fine-grain segmentation as the continuous vari
able and the models’ event boundaries as binary variables. To the 
extent that the models’ event boundaries correspond to peaks in hu
man segmentation, the scaled point-biserial correlation between 
models and human segmentation will be high.

Adjusted mutual information
To quantify models’ categorization agreement with human cat
egorization, and how models’ event schemas generalize to actions 
performed by the same actor in different instances and by differ
ent actors at different locations, we computed the mutual infor
mation score (with adjustment to account for chance (37)) 
between the models’ event labels and human action labels. We 
treated script action labels as one clustering of input scene vec
tors, and each model’s event labels as another clustering of input 
scene vectors. To the degree that the model categorizes input 
scene vectors in a human-like way and its event schemas general
ize to instances of the same action, adjusted mutual information 
between two partitioning algorithms will be high (Fig. S8).

Generating permutations
We wanted to assess the extent to which the correspondence of 
model boundaries and event labels with human boundaries and ac
tion categories could be due to the distribution of model event 
lengths. Recall that in order to appropriately compare the models’ 
segmentation to human segmentation, we tuned parameters so 
that the models produced event boundaries with the same median 
frequency as human participants. The models’ distributions of 
event lengths constrain when event boundaries could occur over 
the course of an activity. (For example, if the shortest event pro
duced by a model was k seconds in duration, there could be no mod
el event boundaries in the first or last k seconds of the activity.) To 
address this issue, we generated permutations from all three mod
els (SEM-2.0, pe-SEM, and uncertainty-SEM). For each model, event 
labels for all validation activities were first concatenated. A permu
tation is generated by shuffling events (runs of event labels), thus 
preserving event lengths in the resulting permutation. The shuffling 
not only changes models’ event labels for particular input scene 
vectors but also changes models’ event boundaries. As a result, 
the shuffling procedure can be used for both segmentation and cat
egorization tests. When we concatenate two validation activities, 
there is an interval between the onset of the last event in the first ac
tivity and the onset of the first event in the second activity. Because 
human event boundaries are less likely to fall into these intervals, 
and the models never placed boundaries in these intervals, we 
made sure permutations did not have boundaries within these in
tervals so that the models would not have an unfair advantage 
over permutations. Permutations were repeated one time for each 
model in each simulation, and because we ran eight simulations 
for each model, there were 48 permutations in total. Scaled point- 
biserial correlation, adjusted mutual information, purity, and 
coverage were computed for each permutation.
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