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What have we learned about artificial intelligence from studying the
brain?
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Abstract
Neuroscience and artificial intelligence (AI) share a long, intertwined history. It has been argued that discoveries in neuro-
science were (and continue to be) instrumental in driving the development of new AI technology. Scrutinizing these historical
claims yields a more nuanced story, where AI researchers were loosely inspired by the brain, but ideas flowed mostly in the
other direction.
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The current excitement

Wenowhave artificial intelligence (AI) systems that can con-
verse with us, beat us at our own games, and help us solve
scientific problems like protein folding and fusion reactor
design. It is significant that these systems achieve human-
level proficiency using machinery that is inspired by the
human brain. The idea that neural networks are not only
similar to the brain, but are successful precisely because of
this similarity, has generated considerable excitement about
the possibility that studying the brain will unlock the recipe
for general intelligence (Hassabis et al. 2017; Macpherson
et al. 2021; Zador et al. 2023). For example, Hassabis et al.
(2017) assert that “better understanding biological brains
could play a vital role in building intelligent machines.”
Similarly, Macpherson et al. (2021) write: “Advances in neu-
roscience... have given rise to a new generation of in silico
neural networks inspired by the architecture of the brain.”
Zador et al. (2023) make an even stronger assertion: “Neu-
roscience has long been an essential driver of progress in
artificial intelligence (AI). We propose that to accelerate
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progress in AI, we must invest in fundamental research in
NeuroAI.”

Indeed, considerable resources have already been mobi-
lized to seek biological inspiration for AI. The company
DeepMind was founded on the principle that engineering
intelligent systems and understanding the brain are part of
a single project. Other companies, such as Vicarious and
Numenta, follow similar founding principles. Established
companies such as Intel and IBM have invested in neuro-
morphic computing. The federal government of the USA
has initiated numerous funding programs directed at the
intersection of AI and neuroscience. Major philanthropic
organizations have created centers, institutes, and confer-
ences dedicated to the same objective (e.g., the Kempner
Institute at Harvard University, the Center for Brains, Minds,
and Machines at MIT, and the NeuroAI program at Cold
Spring Harbor Laboratory).

In light of these efforts, it is worth asking: what have we
learned about AI from studying the brain?

The innocent eye

Most AI researchers would say that they are looking for
computational principles derived from biology, rather than
particular details at the level of anatomical organization or
biochemistry. This sounds appealing, but it runs into concep-
tual difficulties. How do we derive computational principles
from biology? Principles are not resting on the surface of
measurement data, waiting to be observed; there is no inno-
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cent eye that can “just look” at the data (see Gershman 2021
formore discussion).1 Even if we allow that some data analy-
sis has to intervene betweenmeasurement and interpretation,
this often simply replaces the innocent eye with an innocent
algorithm, the output of which must then be interpreted. The
limiting factor is not our ability to extract structure from data,
but rather our ability to specify what kind of structure we are
looking for in the first place. This, in turn, depends on our
theoretical arsenal prior to observing the data. Where does
this come from?

Many of the most impactful ideas in neurobiology
have come from other fields. Shannon’s information theory
inspired efficient coding models; Fourier analysis inspired
models of spatial frequency analysis in the visual system;
statistical mechanics inspired attractor network models of
memory; statistical decision theory inspired evidence accu-
mulation models of perceptual decision making; the list goes
on and on. In all of these cases, it was not the biologists left
to their own devices who invented new technical concepts.
It was not the case that biologists “just looked” at the fir-
ing of neurons and then invented information theory, Fourier
analysis, etc. The theoretical arsenal came from elsewhere,
invented independently of discoveries in neurobiology.

One response to this argument is that there is no reason to
expect it could be any other way—biological inspiration will
always be “loose” because it is infeasible (and probably mis-
guided) to transfer all the details. I agree with this point, but
the problem is that it threatens to render the notion of inspira-
tion vacuous. Even ifwewere able to state some non-vacuous
version, there is the remaining challenge of identifyingwhich
details should be transferred. I submit that it is impossible to
do so without already coming to the data with a computa-
tional framework.

Lessons from history

When people talk about biologically inspired AI, they often
refer to a few canonical examples. One is the foundational
work by McCulloch and Pitts (1943), and later by Rosen-
blatt (1958), which showed that neural networks, loosely
inspired by biological neurons, were capable of logical com-
putation and pattern recognition. A second is the massive
parallelism of neural computation, which inspired “coopera-
tive” algorithms for parallel constraint satisfaction (Grimson
1981; Ackley et al. 1985). A third is the convolutional neural
network (convnet), inspired by the organization of visual cor-
tex. A fourth is reinforcement learning, inspired by studies
of animal learning. These examples deserve careful scrutiny.
In the interest of brevity, I will focus on the third and fourth

1 In Gershman (2021), it is also argued that there is no “innocent algo-
rithm” for analyzing data without making certain assumptions.

examples, because these highlight the specific intellectual
contributions of neuroscience to AI which go beyond gen-
eral ideas about neural computation.

Convolutional neural networks

In 1980, Fukushima published a seminal paper introducing
his neocognitron architecture (Fukushima 1980), which was
based on the single-unit recordings of visual cortex reported
by Hubel and Wiesel (1959, 1962, 1965). The first practi-
cal convnet (trained using backpropagation) was developed
by LeCun et al. (1989), which they applied to handwritten
digit classification. With advances in computing power and
data set size, convnets came to dominate computer vision
(Krizhevsky et al. 2017). They subsequently fed back into
neuroscience, driving new experimental and theoretical work
(Lindsay 2021). Thus, the history of convnets seems like a
paradigmatic case study of positive feedback between neu-
roscience and AI.

To substantiate this claim, we need to lookmore closely at
what Hubel and Wiesel actually found. In their 1959 paper,
they reported the existence of “simple cells’ in primary (stri-
ate) visual cortex, which respond selectively to spots of light
on the retina. Simple cells have retinotopic receptive fields,
responding strongly to light in particular locations on the
retina. The receptive fields also typically have an inhibitory
region flanking the excitatory region (or vice versa). Hubel
and Wiesel noted a number of variations across simple cells:

Somefields had long narrow central regionswith exten-
sive flanking areas: others had a large central area and
concentrated slit-shaped flanks. In many fields, the two
flanking regions were asymmetrical, differing in size
and shape; in these a given spot gave unequal responses
in symmetrically corresponding regions. In some units,
only two regions could be found, one excitatory and the
other inhibitory, lying side by side. (Hubel and Wiesel
1959, pp. 579–580)

These variations are significant because a critical feature of
the neocognitron, and virtually all subsequent convnets, is
the assumption that the receptive fields of cells within a con-
volutional layer are shifted copies of one another. Another
form of variation reported by Hubel and Wiesel was in the
size of receptive fields, ranging from 4◦ to 10◦. This is a sub-
stantial range of variation when one considers that the size
of foveal vision (the high acuity region of the visual field)
is 1◦. Again, this directly contradicts the assumption of shift
invariance.

Hubel and Wiesel reported other properties of simple
cells that were not incorporated into the neocognitron or its
descendants: baseline firing rate, motion selectivity, and ocu-
lar selectivity. These properties also varied across cells. For
example:
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Thirty-six units in this study could be driven only from
one eye, fifteen from the eye ipsilateral to the hemi-
sphere in which the unit was situated, and twenty-one
from the contralateral. Nine, however, could be driven
from the two eyes independently. Some of these cells
could be activated just as well from either eye, but often
the two eyes were not equally effective, and different
degrees of dominance of one eye over the other were
seen. (Hubel and Wiesel 1959, p. 584)

It should be clear by now that the assumption of shift invari-
ance was biologically questionable, just on the basis of this
one study of simple cells. Moreover, a later study by Hubel
and Wiesel (1974), not cited by Fukushima, showed that
receptive field size increases with eccentricity away from
the fovea—another violation of shift invariance.2

In summary, convnets were undoubtedly inspired by stud-
ies of the visual system, but from the beginning they made
assumptions that directly contradicted the biological data.
Those biologically implausible assumptions (particularly
shift invariance) turned out to be of great practical impor-
tance, because it meant that weights could be shared by
convolutional filters, dramatically reducing the number of
parameters that needed to be learned.

While biological implausibility might be an asset for AI,
one could also argue that the complexity of the visual sys-
tem is a source of untapped computational potential. It has
long been known that models based on Hubel and Wiesel’s
characterization of visual cortex explain a surprisingly small
fraction of the variance in neural activity (Olshausen and
Field 2006). More recent models, despite their sophistica-
tion, still do only slightly better than an untrained model, and
remain considerably below the noise ceiling (Zhuang et al.
2021). Thus, early sensory areas might still harbor interest-
ing secrets. Unlocking these secrets will require more than
just looking at activity in visual cortex, since if that were the
case then we’d have unlocked them long ago. Instead, we
should look toward AI as a source of ideas. The study by
Zhuang et al. (2021), even if it is not the last word on visual
cortex, exemplifies the way in which models from AI have
been instrumental in driving progress in visual neuroscience.

Reinforcement learning

The theory of reinforcement learning coalesced in the 1980s
thanks to the work of Sutton (1978), Barto et al. (1983),
and Sutton (1988), who formalized the structure of the prob-
lem that needed to be solved and developed algorithms to
solve it—notably the temporal difference, or TD, learning

2 Some recent work in computer vision has begun to incorporate eccen-
tricity dependence into convnets (Chen et al. 2017; Deza and Konkle
2020).

algorithm. A wide variety of similar algorithms had previ-
ously been applied to reinforcement learning problems with
some success, but it was not clear up to that point why they
worked (or didn’t work). The situation changed dramatically
once the logic of TD learning algorithms was understood,
leading to many generalizations and improvements. These
algorithms continue to be the workhorses of modern rein-
forcement learning systems (Mnih et al. 2015) (though the
history of reinforcement learning is much richer than TD;
see Sutton and Barto 2018).

Sutton andBartowere remarkable for another reason: they
had an unusually interdisciplinary view of the subject, draw-
ing upon ideas from psychology and neuroscience. They
wrote a number of papers showing how their algorithms
were accurate models of classical conditioning phenomena,
addressing some of the problems that vexed earlier models.
Although the detailed biological data on the neural mecha-
nisms of classical conditioning were not yet available, Sutton
and Barto were aware of developments in neuroscience (e.g.,
Kandel’s studies of habituation) and considered the biologi-
cal plausibility of their learning rules.

The question here is whether the biological and behav-
ioral data directly inspired the development of TD learning
algorithms. To answer this question, it is useful to exam-
ine the progression of ideas from their first major paper on
classical conditioning (Sutton and Barto 1981) to the book
chapter published a decade later (Sutton and Barto 1990).
The two publications were based on largely the same body
of empirical data. A key difference is that the second publi-
cation invoked the TD learning algorithm, the logic of which
had been worked out a few years earlier. If the empirical
data were a truly powerful source of inspiration, then one
might have expected that the TD learning algorithm would
already have been invented in 1981, when Sutton and Barto
were first thinking about classical conditioning. Instead,what
happened in the intervening years was a slow process of clar-
ifying the structure of the reinforcement learning problem,
which eventually fed back into the models of classical con-
ditioning.

In summary, the TD algorithm was undoubtedly inspired
by studies of animal learning, but only in a fairly weak sense.
Sutton and Barto were interested in explaining how animals
learn and also how to build machines that learn. It turned out
that doing the latter was useful for doing the former. It was
only after the core engineering problem had been solved
that the appropriate computational framework for animal
learning came into view. It is also worth noting that biol-
ogy played very little role in this story; all of the exciting
biology (dopamine, the basal ganglia, etc.) came later (Houk
et al. 1995; Schultz et al. 1997).
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Convergence

Instead of looking for inspiration, a more plausible (but
weaker) heuristic is to look for convergence: If engineers
propose an algorithm and neuroscientists find evidence for
it in the brain, it is a pretty good clue that the algorithm is
on the right track (at least from the perspective of building
human-like intelligence). While convergence is neither nec-
essary nor sufficient for ensuring the quality of an algorithm,
it can nonetheless provide useful guidance when (as is the
case now) existing algorithms are not well separated based
on current AI benchmarks. In effect, neuroscience can act as
another benchmark (Schrimpf et al. 2020), though we should
avoid reducing the complexity of the brain to a single number
that can be optimized (cf. Goodhart’s law).

The convergence heuristic is consistent with current com-
putational neuroscience practice, where AI has historically
provided a fund of ideas for biological theories. It is also
consistent with current AI practice, where researchers are
primarily looking for directional signals from neuroscience
(is this roughly what the brain does?) rather than specific
algorithms.

A good recent example of convergence is the study of
stochastic computation. It has long been known that neural
activity appears stochastic at multiple levels (Faisal et al.
2008). Researchers have speculated about the computational
function of this stochasticity: escaping from local optima,
sampling probability distributions, exploration, and regu-
larization, to name a few. These speculations are typically
grounded in engineering ideas. For example, the sampling
hypothesis comes from Monte Carlo approximation tech-
niques (Buesing et al. 2011; Gershman et al. 2012), and the
exploration hypothesis comes from reinforcement learning
theory (Gershman and Ölveczky 2020). Researchers have
also been interested in stochasticity froman energy efficiency
perspective: stochastic spike-based neuromorphic chips now
exist that achieve dramatically lower energy demands (Roy
et al. 2019). This line of work is notable for its commitment
to biological plausibility, though it is not yet clear which bio-
logical details matter for performance. A comparable level
of commitment to biological plausibility has not yet pene-
trated modern AI at large, due to the fact that there are many
non-biological options that aremore convenient and effective
(though usually more energy-intensive). This further high-
lights the fact that biology is not necessary for progress in
AI, but it can serve as a useful directional signal for certain
desiderata like energy efficiency.3

3 When the Kempner Institute was created at Harvard, I suggested to
the directors that if they really wanted to advance biologically inspired
AI, they should restrict the compute budget to the wattage of a light
bulb, which is all the brain needs. My suggestion was not followed.

Conclusion

The strongest constraints on algorithms will always come
from the structure of the problems that need to be solved,
since engineers are paid to solve those problems rather than
explain how the brain works. Happily, algorithms optimized
for solving engineering problems frequently turn out to be
successful models of brain function. This is a reason for opti-
mism about future synergies between AI and biology.
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