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Bayesian models successfully account for several of dopamine (DA)’s effects on contextual calibration in interval timing and reward
estimation. In these models, tonic levels of DA control the precision of stimulus encoding, which is weighed against contextual
information when making decisions. When DA levels are high, the animal relies more heavily on the (highly precise) stimulus
encoding, whereas when DA levels are low, the context affects decisions more strongly. Here, we extend this idea to intertemporal
choice and probability discounting tasks. In intertemporal choice tasks, agents must choose between a small reward delivered soon
and a large reward delivered later, whereas in probability discounting tasks, agents must choose between a small reward that is
always delivered and a large reward that may be omitted with some probability. Beginning with the principle that animals will seek
to maximize their reward rates, we show that the Bayesian model predicts a number of curious empirical findings in both tasks.
First, the model predicts that higher DA levels should normally promote selection of the larger/later option, which is often taken to
imply that DA decreases ‘impulsivity,’ and promote selection of the large/risky option, often taken to imply that DA increases ‘risk-
seeking.’ However, if the temporal precision is sufficiently decreased, higher DA levels should have the opposite effect—promoting
selection of the smaller/sooner option (higher impulsivity) and the small/safe option (lower risk-seeking). Second, high enough
levels of DA can result in preference reversals. Third, selectively decreasing the temporal precision, without manipulating DA,
should promote selection of the larger/later and large/risky options. Fourth, when a different post-reward delay is associated with
each option, animals will not learn the option-delay contingencies, but this learning can be salvaged when the post-reward delays
are made more salient. Finally, the Bayesian model predicts correlations among behavioral phenotypes: Animals that are better
timers will also appear less impulsive.
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INTRODUCTION
The neuromodulator dopamine (DA) has been repeatedly
associated with choice impulsivity, the tendency to prioritize
short-term over long-term reward. Impulsive behaviors character-
ize a number of DA-related psychiatric conditions [1], such as
attention-deficit/hyperactivity disorder [2–6], schizophrenia [7, 8],
addiction [9, 10], and dopamine dysregulation syndrome [11, 12].
Furthermore, direct pharmacological manipulation of tonic DA
levels in humans [13, 14] and rodents [15, 16] has corroborated a
relationship between DA and impulsivity. The standard approach
to measuring impulsive choice is the intertemporal choice task
(ITC), in which subjects choose between a small reward delivered
soon and a large reward delivered later [17]. A subject’s preference
for the smaller/sooner option is often taken as a measure of
their impulsivity, or the extent to which they discount future
rewards [18–21].
In the majority of animal studies, higher DA levels have been

found to promote selection of the larger/later option (inhibiting
impulsivity) [15, 22–28]. However, the inference that DA
agonists inhibit impulsivity has been challenged in recent
years, in part because, when ITCs are administered to humans,

DA agonists seem to promote impulsivity [29]. Perhaps relevant
to this contrast is that, while impulsive choices in humans are
assessed through hypothetical situations (‘Would you prefer $1
now or $10 in one month?’), ITCs in animals more closely
resemble reinforcement learning tasks involving many trials of
experienced rewards and delays. Complicating this picture
further, the effect of DA, even within animal studies, is not
straightforward. While in most studies, DA appears to decrease
impulsivity, DA has been found to systematically increase
impulsivity under some conditions [30–32], such as when
the delay period is uncued [16] or when different delays for
the larger/later option are presented in decreasing order across
training blocks [33].
The relationship of DA with impulsive choice finds a parallel in

its relationship with risk-seeking. Disruptions in risk preferences
feature prominently in a number of DA-related conditions [1],
including Parkinson’s disease [34–37], schizophrenia [38, 39], and
attention-deficit/hyperactivity disorder [40]. Moreover, direct
manipulation of DA levels in Parkinson’s patients [41], healthy
humans [42], and rodents [29] has further established a link
between DA and risk preferences.
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Risk-seeking can be formalized as the tendency to prioritize
uncertain rewards over less uncertain rewards of equal average
value. For example, a risk-seeker will preferentially select an option
yielding a reward of magnitude 10 on 50% of trials and no reward
in the remaining trials, over an option yielding a reward of
magnitude 5 on 100% of trials. A standard measure of risk-seeking
is the probability discounting task (PD) [43–45], where subjects
choose between a small reward delivered with complete certainty
and a large reward that is only delivered with some probability.
Subjects that are more likely to select the large/risky option than
other subjects—regardless of reward probability—are labeled as
being more risk-seeking. Though studies involving direct pharma-
cological manipulation have highlighted a key role for DA in
setting this preference, the directionality of DA’s effect has
remained unclear: Whereas St Onge and Floresco [46] have found
that increasing the DA level promotes risk-seeking in PDs, follow-
up work has shown that DA may have exactly the opposite effect,
depending on how the training blocks are ordered [47], a variable
whose relevance for risk preferences is not immediately obvious.
Animal behavior in ITCs and PDs can be reinterpreted from a

reinforcement learning perspective. With repeated trials of the
same task, an optimal agent can learn to maximize its total
accumulated rewards by estimating the reward rate for each
option (reward magnitude divided by total trial duration) and
choosing the option with the higher reward rate. Thus if the
larger/later option has a sufficiently large reward or sufficiently
short delay, it will be the optimal choice. However, if its reward
were sufficiently small or its delay sufficiently long, the smaller/
sooner option may be the superior choice instead, without any
assumption of ‘discounting.’ Under this view, animals do not
necessarily discount rewards at all, but rather make choices based
on a reward-rate computation. The notions of true impulsivity in
ITCs and risk-seeking in PDs have persisted, however, because
animals tend to choose the smaller/sooner and large/risky options
even when they objectively yield fewer rewards over many trials.
To address the question of whether animals compare reward

rates, a body of theoretical and experimental work focused on
impulsivity has demonstrated that the suboptimal tendency to
choose the smaller/sooner option is better explained by temporal
biases than by biases of choice [48–50] (see also [51]). This work
has shown that animals behave in a way consistent with
maximizing their reward rates, but they underestimate the
elapsed time—and in particular, the periods after receiving
the reward and before beginning the next trial. Thus animals
estimate the reward rates for each option based largely on the
pre-reward delays. This bias disproportionately benefits the

smaller/sooner option, which has a much shorter pre-reward
delay. As a result, the animals make choices that can be
interpreted as impulsive. Said differently, animals disproportio-
nately underestimate the total trial duration for the smaller/sooner
option compared to the larger/later option, making the former
more appealing. While this discounting-free view derives animal
behavior from a normative framework (maximizing reward rates),
how and why DA modulates choice preferences remains the
subject of much speculation.
In this paper, we build on recent theoretical work that cast DA

in a Bayesian light [52, 53]. Here, DA controls the precision with
which cues are internally represented, which in turn controls the
extent to which the animal’s estimates of the cues are influenced
by context. In Bayesian terms, which we discuss below, DA
controls the precision of the likelihood relative to that of the prior
(the context). This framework predicts a well-replicated result in
the interval timing literature, referred to as the ‘central tendency’
effect: When temporal intervals of different lengths are repro-
duced under DA depletion (e.g., in unmedicated Parkinson’s
patients), shorter intervals tend to be overproduced and longer
intervals tend to be underproduced, and DA repletion rescues
accurate timing [54–56]. We recently extended this framework to
the representation of reward estimates [57]. In this case, the
Bayesian framework predicts that DA should tip the exploration-
exploitation balance toward exploitation, in line with empirical
findings [58–60] (but see [61, 62]).
We show here that, under the Bayesian theory, higher DA levels

should promote behaviors consistent with lower impulsivity in the
standard ITC (selection of the larger/later option), but should have
the opposite effect when the temporal precision of the delay
period is selectively and sufficiently reduced. In both cases, high
enough levels of DA should elicit preference reversals, and not
only an amplification of the current preference. Furthermore, in
manipulations of temporal precision, if animals are more likely to
select the larger/later option at baseline, DA administration will
tend to reverse that preference (promote the smaller/sooner
option), and vice versa. We show that animals should not learn the
contingencies between options and their post-reward delays, but
that this learning can be salvaged if the post-reward delays are
made more salient. We show that animals that display more
precise behaviors in interval timing tasks should also appear less
impulsive. Finally, we reproduce this analysis for the case of risk-
seeking and PDs: Depending on the relative balance between the
uncertainty about the reward magnitude and the uncertainty
about the reward probability, we show that DA can either
promote or suppress selection of the large/risky option.
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Fig. 1 Contextual influence is stronger when the encoding precision is low. Distributions for two signals, one small and the other large.
A When the encoding precision is high compared to the prior precision, the posteriors do not deviate significantly from the likelihood. B As
the encoding precision decreases, the posteriors migrate toward the prior. The horizontal black segments illustrate the difference in posterior
means under high vs. low precision.
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METHODS
The Bayesian theory of dopamine
An agent wishing to encode information about some cue must contend
with noise at every level, including the information source (which is
seldom deterministic), storage (synapses are noisy), and signaling (neurons
are noisy) [63]. We can formalize the noisy encoding as a mapping from an
input signal (e.g., experienced reward) to a distribution over output signals
(e.g., firing rates). For the purposes of this paper, we will remain agnostic
about the specific neural implementation of the mapping, and instead
discuss it in abstract terms. Thus a noisy encoding of some variable can be
represented by a distribution over values: Tight distributions correspond to
encodings with low noise (Fig. 1A), whereas wide distributions correspond
to encodings with high noise (Fig. 1B).
Consider, then, a scenario in which an animal must estimate the average

yield of a reward source from noisy samples. Because of the animal’s
uncertainty about the average yield (the encoding distribution has non-
zero spread), its final estimate can be improved by utilizing other sources
of information. For example, if the nearby reward sources tend to yield
large rewards, then the animal should form an optimistic estimate of the
reward source’s average yield. Similarly, if nearby reward sources yield
small rewards, then the animal should form a pessimistic estimate.
Formally, the contextual information can be used to construct a prior
distribution over average yield, and the encoding distribution can be used
to construct a likelihood function for evaluating the consistency between
the encoded information and a hypothetical average yield. Bayes’ rule
stipulates that the animal’s final probabilistic estimate should reflect the
product of the likelihood and prior:

pðμjmÞ / pðmjμÞ pðμÞ; (1)

referred to as the posterior distribution. Here, μ is the variable being
estimated (the reward yield), m is the stored value, p(m∣μ) is the likelihood,
and p(μ) is the prior. For simplicity, we take these distributions to be
Gaussian throughout. Under standard assumptions for Gaussian distribu-
tions, the estimate μ̂ corresponds to the posterior mean:

μ̂ ¼ λ0
λ0 þ λ

� �
μ0 þ

λ

λ0 þ λ

� �
μ: (2)

Here, μ0, λ0, μ, and λ represent the prior mean, prior precision, likelihood
mean, and encoding precision, respectively. In words, the agent takes a
weighted average of the prior mean μ0 and the likelihood mean μ—
weighted by their respective precisions λ0 and λ after normalization—to
produce its estimate, the posterior mean μ̂. Intuitively, the tighter each
distribution, the more it pulls the posterior mean in its direction.
The Bayesian theory of DA asserts that increasing the DA level increases

the encoding precision λ, where the prior here represents the distribution
of stimuli (i.e., the context). Thus when DA is high, the estimate μ̂ does not
heavily depend on contextual information, whereas when it is low,
Bayesian migration of the estimate to the prior is strong (compare Fig. 1A
and B). Shi et al. [56] have applied this theory to interval timing and shown
that it predicts DA’s effects on the central tendency: Parkinson’s patients
who are on their medication will have high λ, qualitatively corresponding
to Fig. 1A. Then the temporal estimates for the short and long durations
will be very close to their true values (here, 4 and 8 s). On the other hand,
patients who are off their medication will have low λ, corresponding to
Fig. 1B. Thus the estimates for both durations will migrate toward the prior
mean, or the average of the two durations. In other words, the estimate for
the short duration will be overproduced, and the estimate for the long
duration will be underproduced, as observed [54, 55].
The Bayesian model can also be applied to reward magnitudes [64, 65].

Imagine a bandit task in which an agent samples from two reward sources,
one yielding small rewards on average and the other yielding large
rewards on average. Under lower levels of DA, the central tendency should
decrease the difference between the two reward estimates (compare
lengths of black segments on the x-axis in Fig. 1A and B). Under standard
models of action selection, animals are more likely to choose the large
option when the difference between the two estimates is large, and
become more and more likely to sample other options as the difference
decreases (see next section). This means that lower levels of DA should
promote selection of the smaller reward, often taken to indicate a drive to
‘explore,’ as empirically observed [58–60] (but see [61, 62]). Thus, as
previously proposed, DA may be interpreted as controlling the exploration-
exploitation trade-off [66]. This is in line with the ‘gain control’ theory of
DA, in which high DA levels have been hypothesized to amplify the
difference between reward estimates during decision making [66–70]. The

Bayesian theory of DA subsumes the gain control view (see next section),
but importantly, under this theory, animals do not become intrinsically
more explorative or exploitative under different DA levels, but rather
modify their behaviors to match the estimated difference in rewards.
We can also compare the degree of the central tendency in temporal

and reward estimation, which will be important in the Results. Empirically,
the central tendency in temporal tasks is normally weak. While it can be
unmasked in healthy subjects [71–75] and animals [76], it is most evident
in unmedicated Parkinson’s patients [54], in whom the DA deficiency is
profound. This implies a significant asymmetry at baseline: While
decreasing the DA levels will have a strong behavioral signature (the
central tendency), the effect of increased DA levels will be small (due to a
‘ceiling effect,’ in which the central tendency will continue to be weak). On
the other hand, both increases and decreases to the DA level substantially
affect the exploration-exploitation trade-off [24, 58–60, 77]. This suggests a
more significant central tendency for rewards at baseline, which can be
amplified or mitigated by DA manipulations. Below we will find that DA’s
effect in ITCs and PDs will depend on its relative contribution to each of
the reward estimates and temporal estimates at baseline. Driven by the
empirical observations, we take the baseline central tendency to be weaker
in the domain of timing than in the domain of rewards.
Finally, it will be useful to distinguish between an animal’s true precision

and its estimated precision (or what it perceives its precision to be). True
precision refers to the precision with which the animal actually encodes
the signal. Estimated precision, on the other hand, determines how heavily
to weigh the previously encoded signal against the context, as in Eq. (2).
The above treatment assumes perfect calibration between encoding and
decoding, so that the animal weighs a signal (during decoding) in perfect
accordance with its true encoding precision. However, if the neural
substrate of precision is the DA level, then it should be possible to elicit
certain biases by selectively manipulating the DA level during decoding.
Our main predictions will indeed involve tasks in which the DA level was
pharmacologically manipulated after training but immediately before
testing.

Decision making under the Bayesian theory
Having estimated the relevant parameters in the task, how does the animal
actually use these parameters to make decisions? Under standard models
of action selection, the probability of selecting arm Ai with expected
reward μ̂i follows a softmax function [78, 79]:

pðAiÞ ¼ eβμ̂iP
je
βμ̂j

; (3)

where β is the inverse temperature parameter, which controls choice
stochasticity. The studies examined in the Results all involve choices
between two options; thus, we can restrict our analysis to the case of two
arms, Al and As, yielding large and small reward, respectively. Furthermore,
each arm not only carries a different reward magnitude but also a different
delay period between rewards. Thus, the animal must estimate the arms’
reward rates Rl and Rs (or ratios of reward magnitude to delay),
respectively, in order to maximize its total accumulated reward. Eq. (3)
can then be written as

pðAlÞ ¼ 1

1þ e�βðRl�RsÞ
: (4)

Notice here that the probability of selecting the option yielding the large
reward rate depends on the difference between the reward estimates: As
the quantity ðRl � RsÞ increases, p(Al) increases. Furthermore, by controlling
the encoding precisions and thus the central tendencies (either in the
temporal or reward domain), DA modulates the estimated difference in
posterior means (see horizontal black segments in Fig. 1). A number of
authors have argued that DA implements gain control on the values μ̂i in
reinforcement learning tasks, possibly by controlling β [60, 66, 69]. The
Bayesian theory subsumes the gain control theory by modulating the
estimated difference directly.
We have made two important assumptions here. First, our choice rule,

though conventional, disregards the contributions of the posterior
precisions (i.e., their uncertainties). Recent studies have shown that human
behavior in certain bandit tasks is better described by augmented models
that incorporate random and directed exploration strategies, both of
which make use of the posterior precisions [80–83]. We discuss the
augmented model in Supplementary Text 1 and examine its implications
for the Bayesian theory.
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Our second assumption is about the shape of the posterior distributions.
As mentioned above, we have assumed Gaussians throughout, with fixed
encoding noise. These assumptions are for convenience: Indeed, the
uncertainty about an arm should be lower when the arm is more
frequently sampled (more well-learned), higher when it is sampled further
in the past, and higher for larger-magnitude stimuli [84–87]. Our results will
not depend strongly on either the Gaussian assumption or the absolute
magnitude of the encoding uncertainty, but only that the central tendency
be sufficiently reduced or strengthened under sufficiently high and low
precisions, respectively.

RESULTS
Dopamine and intertemporal choice
ITCs involve choosing between a small reward delivered soon, and
a large reward delivered later. In these tasks, the smaller/sooner
delay is held fixed (and is often zero, resulting in immediate
reward), while the larger/later delay is varied across blocks. When
the delays are equal, animals will overwhelmingly choose the
larger option, but as the delay for the larger option gets longer,
animals become more and more likely to choose the smaller/
sooner option (Fig. 3). This shift toward the smaller/sooner option
has traditionally been explained in terms of reward discounting:
The promise of a future reward is less valuable than that same
reward delivered immediately, and becomes even less valuable as
the delay increases. In other words, future rewards are discounted
in proportion to the delay required to receive them. Previous
computational models have shown this reward discounting to be
well-described by a hyperbolic (or quasi-hyperbolic) function
[21, 88].
A competing line of thought is that animals seek to maximize

their reward rates (or equivalently, the total accumulated rewards
in the task) [48, 49, 51], but are limited by a significant
underestimation of the post-reward delays in the task [50]. On
this view, animals compute the reward rate for each option—i.e.,
the undiscounted reward magnitude divided by the total trial time
—but base the trial time largely on the pre-reward delay. This

causes the reward rate for the smaller/sooner option to be
disproportionately overestimated compared to that of the larger/
later option. This view, much like the discounting view, predicts
that animals will choose the larger/later option when its delay is
short, but will gradually begin to prefer the smaller/sooner option
as the delay is increased. Furthermore, the smaller/sooner option
will be preferred in some cases even when it yields a lower reward
rate, although this is due to a temporal bias (underestimation of
post-reward delays), rather than a choice bias (reward discount-
ing). Note here that we use the term ‘discounting’ to refer to the
psychological principle that future rewards are valued less than
immediate rewards by virtue of the need to wait for them. Thus,
even though in the reward-rate view, rewards are divided by their
temporal interval, they are not ‘discounted.’
While the reward-rate interpretation can accommodate the

aspects of the data explained by the discounting model, it also
captures aspects of animal behavior where the discounting model
fails. In particular, Blanchard et al. [50] examined the effect of post-
reward delays on behavior. Under the discounting model,
behavior depends only on the reward magnitudes and pre-reward
delays (over which the discounting occurs), and thus should be
invariant to changes in the post-reward delays. The authors,
however, found that monkeys modified their choices in line with a
reward-rate computation, which must take into account both pre-
and post-reward delays when computing the total trial time.
Interestingly, the best fit to the data required that the post-reward
delays be underestimated by about a factor of four, consistent
with a bias of timing rather than a bias of choice in explaining
animal behavior in ITCs. In what follows, we adopt the reward-rate
interpretation in examining DA’s role in ITCs.
Given DA’s effects on reward estimates and durations, it is not

surprising that DA would influence behavior in ITCs, where the
agent’s task is to maximize the ratio of these two, the reward rate R:

R ¼ wrμr þ ð1� wrÞμr0
wtμt þ ð1� wtÞμt0

; (5)
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Fig. 2 Behavior in ITCs depends on the relative change in reward precision compared to temporal precision. A Schematic illustrating the
reward and temporal estimates for each of the smaller/sooner and larger/later options under different reward and temporal precisions.
Selectively increasing the reward precision (bottom cells to top cells) masks the reward central tendency, making the difference in reward
estimates larger. According to Eq. (4), this promotes selection of the larger/later option. On the other hand, selectively increasing the temporal
precision (left cells to right cells) masks the temporal central tendency, making the difference in temporal estimates larger. This promotes
selection of the smaller/sooner option. B Isolines representing pairs of relative precisions that yield the same probability of selecting the
larger/later option under Eq. (4). Note that these isolines have different concavities: In the top left, the isolines are concave up (or convex),
whereas in the bottom right, the isolines are concave down. Selectively increasing the reward precision promotes the larger/later option (top
arrow), whereas selectively increasing the temporal precision promotes the smaller/sooner option (bottom arrow). Based on empirical
findings, we assume that the temporal precision at baseline is high, compared to the baseline reward precision (each normalized by its prior
precision). This means that DA’s net effect is to promote the larger/later option (right arrow). If, however, the temporal precision is sufficiently
reduced, DA’s net effect will be to promote the smaller/sooner option (left arrow). Plotted on each axis is the ratio of encoding and prior

precisions, which determines the central tendency: w ¼ λ
λþλ0

¼ ð1þ ð λλ0Þ
�1Þ�1

. For illustration, we have chosen μr= 1 and 4, and μt= 2 and 6,
for the smaller/sooner and larger/later options, respectively, and β= 10. LL increase in probability of selecting the larger/later option, SS
increase in probability of selecting the smaller/sooner option, λt temporal encoding precision, λt0 temporal prior precision, λr reward encoding
precision, λr0 reward prior precision.
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which follows from Eq. (2). Here, wr ¼ λr
λrþλr0

, and μr0, λr0, μr, and λr in
the numerator represent the prior mean, prior precision, encoding
distribution mean, and encoding distribution precision in the
domain of rewards, respectively, and similarly for the domain of
time in the denominator. Increasing the DA level increases both
encoding precisions, λr and λt.
To understand DA’s overall effect on the ratio R, it will be useful

to examine manipulations of reward and temporal precision
separately. First, let us hold the temporal precisions (and thus the
temporal estimates in the denominator) constant. A strong central
tendency for the estimated rewards causes an overestimation of

the smaller reward and an underestimation of the larger reward,
thus promoting selection of the smaller/sooner option compared
to baseline. Because increasing DA masks the central tendency, its
effect on the reward estimates in the numerator is to promote
selecting the larger/later option (Fig. 2A and B, top arrow). Now let
us hold the reward precisions constant. In the denominator, a
stronger central tendency for the estimated durations causes an
overestimation of the sooner duration and an underestimation of
the later duration, thus promoting selection of the larger/later
option. Because increasing DA masks the central tendency, its
effect on the temporal estimates in the denominator is to promote
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agonist-delay interaction). For A and B, vertical bars denote the standard error of the difference between means for 0.3, 1.0, and 1.6 mg/kg
relative to saline, from left to right. C Tanno et al. [33] administered a similar task, but varied the order in which the delays were presented.
When the delays were presented in an ascending order, the rats seemed less impulsive with higher doses of DA agonists. D However, when
the delays were presented in a descending order, the rats seemed more impulsive with higher doses. E Our model recapitulates these effects:
Under high temporal precision, such as in the presence of a visual cue during the delay (cue condition) or as suggested empirically by
measuring response variability (ascending condition; Supplementary Text 3), DA’s effect on the reward estimates will dominate in ITCs, which
promotes selection of the larger/later option. F On the other hand, under sufficiently low temporal precision, DA’s effect on the temporal
estimates will dominate, which promotes selection of the smaller/sooner option. G At baseline, responses in the no-cue condition are biased
toward the larger/later option compared to the cue condition. Note that any zero-delay difference cannot be due to a difference in the cues,
since the tasks are identical in the absence of a delay. It is not clear whether these differences are statistically significant, as error bars were not
provided for the saline conditions (although when the conditions were tested immediately before drug administration began, the difference
was not statistically significant). Panel reproduced from the saline conditions in A and B. H Similarly, at baseline, responses in the descending
condition are biased toward the larger/later option compared to the ascending condition. I Our model recapitulates these effects: Selective
decreases to the temporal precision promote the larger/later option. For E, F, and I, see Supplementary Text 3 for simulation details. a.u.
arbitrary units of DA.
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selecting the smaller/sooner option—the opposite of its effect in
the numerator (Fig. 2A and B, bottom arrow). Thus the ultimate
effect of DA will depend on its relative contribution to the reward
and temporal estimates (see Supplementary Text 2 for an
analytical derivation).
As discussed in the previous section, the central tendency at

baseline DA levels is stronger for reward estimates than temporal
estimates. It follows that the central tendency in the numerator
dominates DA’s influence in ITCs (Fig. 2B, right arrow). Under
normal conditions, then, the framework predicts that increasing
DA will promote the larger/later option, or behavior consistent
with lower impulsivity under higher DA levels (Fig. 3E).
This prediction matches well with empirical findings, as the

majority of studies have found administering DA agonists to
decrease impulsivity in ITCs [15, 22–28] (see [29] for a recent
review). For instance, Cardinal et al. [16] trained rats on an ITC
involving a small reward delivered immediately and a large reward
delivered after a delay that varied across blocks. After training, the
authors administered DA agonists and tested the animals on
the task. While the effect is smaller than in other studies (e.g.,
compare with Fig. 3C), the authors found that the DA agonists
promoted selection of the larger/later option when a visual cue
was present throughout the trial (Fig. 3A).
This prediction is based on the empirically motivated result that

DA’s effect on the reward estimate dominates its overall effect in
ITCs. However, it should be possible to elicit exactly the opposite
result—an increased preference for the smaller/sooner option with
DA—under conditions where the central tendency of temporal
estimates dominates. For instance, timing precision is affected by
the inclusion of temporally-informative cues [84, 89, 90] as well as
manipulations of the interval salience, presumably due to changes
in the animal’s alertness [91]. Then removing these cues and
selectively decreasing the salience during the delay period should
promote the temporal central tendency and, if significant enough,
overwhelm the central tendency of rewards in the numerator
(Fig. 2, left arrow). Cardinal et al. [16] examined exactly this
manipulation: The authors found that DA, on average, promoted
selection of the larger/later option only when a salient, temporally-
informative visual cue was selectively available during the delay
period. Otherwise, DA uncharacteristically had the opposite effect
(Fig. 3B), as predicted when the temporal precision is sufficiently
reduced (Fig. 3F).
It is important to note that DA manipulations can mediate

preference reversals, which is captured by our model. For
example, for the 8- and 16-second delays in Fig. 3C, the animal
at baseline prefers the smaller/sooner option (chosen more than
50% of the time). But with high enough doses of DA agonists, it
eventually comes to prefer the larger/later option. This empirical
finding is important because it rules out hypotheses in which DA
simply amplifies or mitigates existing preferences. For instance,
and as mentioned above, a number of authors have proposed that
DA serves a ‘gain control’ function on the action values during
decision making [67–70]. This would predict that preferences
should become more extreme with higher DA levels: Preferences
above the indifference (50%) line should increase, and those
below the indifference line should decrease, which is inconsistent
with the empirical results.
Though the majority of studies have found behaviors consistent

with a negative correlation between impulsivity and DA, Cardinal
et al. [16] found the opposite effect when the cue was selectively
absent during the delay period, and we showed that the Bayesian
framework captures this effect. We are aware of one other
manipulation that may cause this opposite effect: In tasks where
animals are trained on different delays for the larger/later option,
Tanno et al. [33] have reported that DA’s effect depends on the
ordering of the delays. In particular, they found that DA agonists
seemed to promote choosing the larger/later option, in line with
most other studies, when the delays were presented in an

ascending order. However, if the delays were presented in a
descending order, DA agonists had the opposite effect (see also
[92]). This finding would be consistent with our framework, if the
temporal precision in the ascending case were higher than that in
the descending case (Fig. 3C, D). This may indeed be the case, as
when learned in an ascending order, the animals’ temporal
behavior (i.e., the timing of the animal’s lever press) was less
variable than when learned in a descending order (Supplementary
Text 3). An important limitation here is that this result does not
control for the animal’s motivational state: It is possible that the
ordering effect influences not the animal’s temporal precision but
its motivation, leading to less temporally precise behavior. It is not
clear why such an ordering effect exists, although one possibility is
that this arises from a primacy effect in the inference about the
temporal sequence [93–96], as the initial temporal precision is
higher for the short delays due to Weber’s law [84, 89, 90], and
potentially also due to the incentive structure (the animal is more
incentivized to attend to blocks with higher reward rates, i.e.,
those with short delays) [57, 97].
Third, the Bayesian framework makes a counterintuitive

prediction about the relationship between baseline performance
in ITCs and the effect of DA. According to our model, selectively
increasing the temporal precision promotes the smaller/sooner
option. However, DA’s effect, when the temporal precision is
already high, is to promote the larger/later option (compare
bottom and right arrows in Fig. 2). This implies that conditions in
which DA agonists promote the larger/later option will be
conditions in which animals are, at baseline, more likely to select
the smaller/sooner option. The authors of both studies above
indeed observed this relationship: For both the cue and ascending
conditions, animals were more likely to select the smaller/sooner
option at baseline, compared to the no-cue and descending
conditions, respectively (Fig. 3G, H), as predicted (Fig. 3I). Note,
however, that this effect may also be due to baseline differences
in the speed of the ‘internal clock’: There is some evidence to
suggest that slower clocks are correlated with lower temporal
precision [57]. This means that, in tasks with low temporal
precision, the animal may perceive the interval to be shorter than
in tasks with high temporal precision, which may make it more
appealing (shorter intervals result in larger reward rates). We
examine this point at length in Supplementary Text 4. Interest-
ingly, combined with the correlation between clock speed and
temporal precision, the Bayesian theory makes another prediction:
that temporal intervals that are underestimated (slow internal
clock) should not be well-learned (low encoding precision,
resulting in strongly overlapping posteriors due to the central
tendency). As mentioned previously, Blanchard et al. [50] indeed
observed that post-reward delays are underestimated and not
well-learned, but that this learning can be salvaged if the temporal
intervals are made salient, as our model predicts (Supplementary
Text 4).
It should be noted that, while our model is concerned with the

main effect of DA manipulations, animal response profiles seem
also to profoundly diverge in the descending task for the smaller
delays (note splaying of response profiles in Fig. 3D). Our model
can accommodate this result: Because of noisy learning, the
encoding of current estimates will be biased toward estimates
from previous blocks, a form of ‘within-arm’ contextual influence.
This effect should be more apparent under higher DA levels,
because of a silencing of the central tendency. We expand on this
point in Supplementary Text 5.
Finally, having examined DA’s effects on behaviors in interval

timing and measures of impulsivity, we can also examine how the
behavioral phenotypes covary with each other. Our model
predicts that—due to natural differences in DA levels within a
species—animals that are more precise timers should also appear
less impulsive in ITCs, as has indeed been observed [98, 99]
(Supplementary Text 6).
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We have sought to highlight here a link between temporal
precision and the effect of DA in ITCs. Under the Bayesian theory,
reward and temporal estimates normally regress to their
contextual means in inverse proportion to the encoding preci-
sions, and increasing the DA level mitigates this regression. This
increases both the estimated cost (delay) and benefit (reward) of
the larger/later option. When the temporal precision is already
high (negligible regression to the temporal mean), the increase in
benefit dominates DA’s effect, and the animal becomes more
likely to select the larger/later option. When the temporal
precision is sufficiently low (strong regression), the increase in
cost dominates, and the animal shifts its preference toward the

smaller/sooner option. Note here that our focus on temporal,
rather than reward, precision is driven by the experimental
paradigm: Of the four estimated parameters—small reward, short
duration, large reward, and long duration—only the long duration
is varied across blocks, so it is not surprising that variations of the
ITC would be characterized by different temporal precisions. In
principle, a similar analysis can be conducted for manipulations of
the reward precisions.

Dopamine and probability discounting
We now extend the Bayesian analysis to risk-seeking and PDs. We
follow a similar outline to the previous section in showing that,
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Fig. 4 DA agonists promote selection of the large/risky option when the temporal precision is high and the small/safe option when the
temporal precision is low. A St Onge et al. [47] trained rats on a PD in which the animals chose between 1 pellet delivered on 100% of trials
and 4 pellets delivered with some probability that varied across blocks. After training, the authors administered the DA agonist amphetamine.
They found that, when the probabilities were presented in a descending order, amphetamine induced an increase in the tendency to select
the large/risky option. B However, when the probabilities were presented in an ascending order, amphetamine had the opposite effect---
inducing a decrease in the tendency to select the large/risky option. C At baseline, responses in the ascending condition are biased toward
the large/risky option compared to the descending condition. Panel reproduced from the saline conditions in A and B. As per Fig. 3G, it is
unclear for which doses the differences in choice behavior are statistically significant, although visual inspection suggests a main effect of
block order. D Our model recapitulates these effects: Under high temporal precision, DA’s effect on the reward estimates will dominate, which
promotes selection of the large/risky option. E On the other hand, under sufficiently low temporal precision, DA’s effect on the temporal
estimates will dominate, which promotes selection of the small/safe option. F Selective decreases to the temporal precision promote the
large/risky option. See Supplementary Text 3 for simulation details.
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like for the case of impulsivity and ITCs, the findings of DA in PDs
are fully captured by the Bayesian theory, and do not necessarily
reflect changes in risk preferences at all.
St Onge and Floresco [46] tested rats on a task in which they

had to choose between an arm yielding 1 pellet with 100%
probability (the small/safe option) and another arm yielding 4
pellets but with a probability that was varied across blocks (the
large/risky option). As the probability decreased, the rats became
less likely to choose the large/risky option. After the rats achieved
stable performance in each block, the DA agonist amphetamine
was administered. The authors found that the DA agonist induced
a tendency to select the large/risky option, which was taken to
suggest that increasing the DA levels may promote risk-seeking
behaviors. However, in a follow-up study [47], the authors found
that the ordering of the blocks mattered: The DA agonist only
promoted the large/risky option when the probability of reward
decreased with blocks. When the order was reversed, the DA
agonist had the opposite effect (Fig. 4A, B).
The Bayesian theory predicts this finding. At a conceptual level,

this is because the task sets up a trade-off between two attributes
(reward magnitude and risk), whose central tendencies push the
reward rate in opposite directions: An animal that learns the
reward magnitudes well and largely disregards the risks will view
the large/risky option as superior, whereas an animal that learns
the risks (probabilities) well but disregards the reward magnitudes
will prefer the small/safe option.
To evaluate the theory’s predictions more concretely, we note

that there are a number of ways for an animal to learn the reward
rate, and therefore a number of ways to set up the two central
tendencies. For instance, the animal may estimate the reward
magnitude and reward probability separately and take their
product. Alternatively, the animal may estimate the reward
magnitude and average delay time between two rewards for
each option, and take their ratio, as in Eq. (5). While both
approaches can accommodate the empirical results, we will
assume the latter for two reasons: First, this approach allows for a
direct comparison with ITCs, as delay discounting and probability
discounting elicit similar behaviors [100, 101], similar types of
intolerance [102, 103], and a common neural substrate [44, 104].
Second, after Tanno et al. [33], if the animal is indeed computing
the ratio of reward magnitude to the delay, then the block order
manipulation makes a clear prediction about the temporal
precision: A block order involving sequentially longer delays
(here, the descending condition) results in higher temporal
precision than an order involving sequentially shorter delays
(here, the ascending condition). As was the case for the ITC, this
will be the key variable determining DA’s overall effect.
Thus, to maximize its reward rate, we assume an animal

estimates the reward magnitude and average delay between
rewards for each option, and computes their ratio. For the reward
magnitudes, the central tendency promotes selection of the small/
safe option. Increasing DA silences this effect, and thus promotes
selection of the large/risky option. On the other hand, for the
temporal interval, the central tendency promotes selection of the
large/risky option, which involves a longer waiting time between
rewards. Increasing DA therefore promotes selection of the small/
safe option here—the opposite of its effect for reward magni-
tudes. Thus, once again, DA’s overall effect depends on its relative
contribution to each term. Following the previous section, the
temporal precision is predicted to be low in the ascending
condition (which involves sequentially shorter delays) compared
to the descending condition (which involves sequentially longer
delays). It follows that the temporal central tendency dominates in
the ascending condition and the reward central tendency
dominates in the descending condition, thus predicting the
empirical findings (Fig. 4D, E).
Our theory also predicts that selectively increasing the temporal

precision, without manipulating DA, should also make animals

more likely to select the small/safe option. Indeed, by examining
the baseline (saline) task for each of the ascending and
descending conditions, we find that animals were more likely to
select the small/safe option in the descending condition at
baseline compared to the ascending condition (Fig. 4C), as
predicted (Fig. 4F).
Finally, having examined temporal and probability discounting

separately, we briefly mention the ‘rat gambling task,’ a four-
armed bandit task in which both the delay periods and reward
probabilities (in addition to the reward magnitudes) are varied
across arms. A well-replicated finding in this task has been that the
arm yielding the largest reward magnitude is the second most
frequently selected arm, even though it yields the lowest reward
rate. In addition, amphetamine administration tends to disrupt
selection of the arm yielding the highest reward rate in favor of
that yielding the second highest reward rate [105]. The Bayesian
theory can accommodate both findings (Supplementary Text 7).

DISCUSSION
We have shown here that DA’s effects in ITCs and PDs are well-
described by a Bayesian framework in which animals maximize
their reward rates. Under this view, DA controls the relative
influence of context in computing the reward and temporal
estimates, whose ratio forms the reward rate. Notably, the
discounting-free model successfully predicts that DA agonists
should promote selection of the larger/later and large/risky options
under high temporal precision, but should have exactly the
opposite effects when the temporal precision is sufficiently low.
The Bayesian view thus provides a principled framework for why DA
would appear to inhibit impulsive and risky choices in some
paradigms but promote them in others.
We have followed previous theoretical and experimental work

in adopting a discounting-free model of choice behavior.
However, our results do not necessarily rule out temporal or
probability discounting more generally, nor a role for DA in these
processes. For instance, and as mentioned in the Introduction,
humans tend to prefer smaller/sooner options even in the
absence of repeated trials that make reward-rate computations
meaningful. But why discount future rewards in the first place?
One influential hypothesis from economics is that future rewards
are discounted because of the risks involved in the delay [106]. For
example, a competitor may reach the reward first, or a predator
may interfere in the animal’s plans to collect the reward. As the
delay increases, these alternative events become more likely, and
the expected reward (the average over all alternatives) decreases.
Another idea is that subjects respond as if they will have repeated
opportunities to engage in the same task [107], thus mimicking
the reinforcement learning problem that defines the animal
variant of ITCs. More recently, Gabaix and Laibson [108] have
argued that reward discounting may be due to the simulation
noise involved in mentally projecting into the future: With later
rewards, subjects must mentally simulate further into the future,
so the simulation noise increases, and the precision decreases.
Assuming a Bayesian framework with a prior centered at zero,
the reward estimates will be closer to zero when rewards are more
distant in the future, i.e., rewards are discounted with time (see
also [109] for an extension of this hypothesis).
Interestingly, as mentioned in the Introduction, DA seems to

have the opposite effect in the human variant of the task than in
the majority of animal experiments, with a promotion of the
smaller/sooner option with higher DA levels. That DA may serve a
qualitatively different function in the human variant is not
completely unexpected, given the substantial differences in the
experimental paradigms. Notably, in the human variant, (1) the
subject does not actually experience the pre-reward delay, (2)
there is no post-reward delay, (3) the subject does not necessarily
receive an actual reward, (4) the subject may experience a single
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trial of this task, whereas animals are trained on many trials, and
(5) the hypothetical delay is on the order of days (or months) and
not seconds. Experience and repetitions may prove critical for our
reinforcement learning task, and delays on the order of days
engage different timing mechanisms than those on the order of
seconds-to-minutes [110], which is the duration over which DA’s
central tendency effect has been observed. Nonetheless, the
human findings may still be reconcilable with our framework
under the ‘repeated opportunities’ hypothesis of Myerson and
Green [107] mentioned above: It is possible that the temporal
uncertainty surrounding durations that are not experienced, and
that are on the order of days, is large and thereby dominates DA’s
central tendency effects. Thus DA agonists would be predicted to
promote the smaller/sooner option.
Our framework leaves open a number of theoretical and

empirical questions. First, our model takes DA to control the
encoding precision, a property inherited from the Bayesian timing
model of DA and further motivated by theories of DA as
overcoming the cost of attention [57, 97]. However, our results
only require that DA control the ratio of the encoding precision to
the prior precision but not necessarily the encoding precision
itself. Instead, it is certainly possible that increasing DA decreases
the prior precision, as some authors have proposed [53].
Interestingly, this ambiguity is not specific to theories of DA,
and has been a point of debate for some Bayesian theories of
autism as well (compare weak priors [111] with strong likelihoods
[112]).
A second open question concerns our assumption that

estimates of the reward magnitude are biased by a central
tendency effect. Thus far, this has been inferred mainly from
exploration-exploitation paradigms (see [64] for a more direct
examination), but a dopaminergic modulation of reward
estimates has not, to our knowledge, been observed directly.
Driven by the experimental literature, we have therefore focused
our simulations on manipulations of temporal precision. Our
work then opens the door to a fruitful line of experiments with
novel predictions: For instance, one can develop ITCs and PDs
where the large reward is varied rather than the delay or risk.
Our framework predicts that DA agonists will promote the
larger/later and large/risky options only when reward precision
is low at baseline, and the smaller/sooner and small/safe options
when reward precision is high. On the other hand, selectively
increasing the reward precision will always promote the larger/
later and large/risky options (Fig. 2). Thus, once again, by simply
controlling the central tendency, DA agonists will appear to
inhibit impulsivity and risk-seeking under some conditions, but
promote them in others.
Third, having adopted an algorithmic view of DA’s function, it

remains for future work to ask how the Bayesian theory is actually
implemented neurobiologically. Notably, DA exerts different
effects depending on the postsynaptic receptor subtype: In
reinforcement learning studies, midbrain DA neurons project to
the striatum onto neurons primarily expressing either D1 or D2
receptors, which segregate anatomically into largely
separate basal ganglia pathways [113] and seem to serve opposite
purposes [114, 115], both in their fast- [116] and slow-timescale
[69, 117, 118] activities. Asymmetries in receptor-mediated effects
extend into interval timing studies (compare D1-mediated
[119–123] with D2-mediated [119, 120] effects), and DA’s effects
also depend on enzymatic activity [124, 125] and projection site
[126, 127]. Bridging the algorithmic and implementational levels
of the Bayesian theory will be a necessary next step toward a more
complete theory of DA.
Finally, we have examined in this work how manipulations of

DA affect behavior in the ITC and PD, but it is interesting to ask
what variables determine the DA level in the first place. An
influential proposal has been that the tonic DA level is set by the
average reward availability in an environment [128], as has also

been suggested empirically [129]. One unifying interpretation of
the average reward and Bayesian theories is that, in high reward-
rate environments, animals are more incentivized to attend to a
task, and thus encode the relevant parameters with higher
precision. In this manner, DA connects the encoding stage
(learning the parameters) with the decoding stage (combining
the learned parameters with contextual information, the focus of
this paper) [57]. It will remain for future work to build upon and
experimentally validate coherent theories of DA within an
encoding-decoding framework.
To our knowledge, this is the first framework that can

accommodate the seemingly conflicting effects of DA in measures
of impulsive choice and risk-seeking across experimental condi-
tions. Nonetheless, our aim throughout this work is not to rule out
a role for DA in true impulsivity and risk-seeking, but rather to
show how a single Bayesian framework can accommodate a wide
range of otherwise perplexing behavioral and pharmacological
phenomena.

INSTITUTIONAL REVIEW BOARD
This is a theoretical study which does not describe any new data.

CODE AVAILABILITY
Source code for all simulations can be found at www.github.com/jgmikhael/
bayesiantheory.
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