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Mikhael JG, Gershman SJ. Adapting the flow of time with
dopamine. J Neurophysiol 121: 1748–1760, 2019. First published
March 13, 2019; doi:10.1152/jn.00817.2018.—The modulation of
interval timing by dopamine (DA) has been well established over
decades of research. The nature of this modulation, however, has
remained controversial: Although the pharmacological evidence has
largely suggested that time intervals are overestimated with higher
DA levels, more recent optogenetic work has shown the opposite
effect. In addition, a large body of work has asserted DA’s role as a
“reward prediction error” (RPE), or a teaching signal that allows the
basal ganglia to learn to predict future rewards in reinforcement
learning tasks. Whether these two seemingly disparate accounts of DA
may be related has remained an open question. By taking a reinforce-
ment learning-based approach to interval timing, we show here that
the RPE interpretation of DA naturally extends to its role as a
modulator of timekeeping and furthermore that this view reconciles
the seemingly conflicting observations. We derive a biologically
plausible, DA-dependent plasticity rule that can modulate the rate of
timekeeping in either direction and whose effect depends on the
timing of the DA signal itself. This bidirectional update rule can
account for the results from pharmacology and optogenetics as well as
the behavioral effects of reward rate on interval timing and the
temporal selectivity of striatal neurons. Hence, by adopting a single
RPE interpretation of DA, our results take a step toward unifying
computational theories of reinforcement learning and interval timing.

NEW & NOTEWORTHY How does dopamine (DA) influence
interval timing? A large body of pharmacological evidence has
suggested that DA accelerates timekeeping mechanisms. However,
recent optogenetic work has shown exactly the opposite effect. In this
article, we relate DA’s role in timekeeping to its most established role,
as a critical component of reinforcement learning. This allows us to
derive a neurobiologically plausible framework that reconciles a large
body of DA’s temporal effects, including pharmacological, behav-
ioral, electrophysiological, and optogenetic.

dopamine; interval timing; reinforcement learning; reward prediction
error

INTRODUCTION

The ability to accurately estimate time is crucial for survival
and is critically intertwined with reinforcement learning (RL).
To adequately learn the properties of its environment and
respond to them as they change, an animal must learn the
temporal information associated with both its environment and

its own behavior (Allman et al. 2014; Buhusi and Meck 2005;
Matthews and Meck 2014).

Over the past several decades, dopamine (DA) has emerged
as a neural substrate with a central role in both RL and interval
timing. In RL tasks, midbrain DA neurons communicate a
“reward prediction error” (RPE), or the signed difference
between received and expected reward (Schultz et al. 1997).
This RPE serves as a teaching signal that instructs basal
ganglia (BG) circuitry to update its estimates of incoming
rewards until those rewards are well predicted (Eshel et al.
2015; Glimcher 2011; Niv and Schoenbaum 2008; Schultz et
al. 1997; Steinberg et al. 2013). Hence, delivery of an unex-
pected reward elicits a DA burst, omission of an expected
reward elicits a DA dip, and a fully predicted reward elicits no
DA response. Subsequent work has shown that DA maps to the
RPE term of temporal difference learning models particularly
well (Schultz 2007), and we review this class of algorithms
below.

On the other hand, decades of research have implicated DA
and the BG in interval timing (Buhusi and Meck 2005). Timing
dysfunction has been well documented in diseases of the DA
system and the BG such as Parkinson’s disease (Malapani et al.
1998), Huntington’s disease (Rowe et al. 2010), and schizo-
phrenia (Elvevåg et al. 2003). In Parkinson’s disease, dysfunc-
tion in timing is often ameliorated with DA agonists (Artieda
et al. 1992; Jahanshahi et al. 2010; Malapani et al. 1998). This
dysfunction has been recapitulated in healthy subjects pharma-
cologically (Arushanyan et al. 2003; Maricq and Church 1983)
and through transgenic (Ward et al. 2009) and optogenetic
(Soares et al. 2016) manipulation of the DA system in mouse
models as well as by direct lesion of striatum in rats (Meck
2006).

Unlike its role as an RPE in RL tasks, however, a conceptual
model of DA in timekeeping has been elusive, in part because
of the recent emergence of conflicting evidence regarding its
role. The pharmacological evidence, with notable exceptions,
has tended to show that DA agonists result in behaviors
consistent with a faster “internal clock” and DA antagonists
with a slower clock (Cheng et al. 2007; Lake and Meck 2013;
Maricq et al. 1981; Maricq and Church 1983; Meck 1986). On
the other hand, recent photometric recordings and optogenetic
manipulations have shown exactly the opposite effect (Soares
et al. 2016). How to explain these seemingly conflicting results
and, in fact, why DA would serve a role in modulating
timekeeping in the first place remain open questions. Further-
more, whether and how the two seemingly disparate roles of
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DA in RL and timekeeping may be related remains unknown
(Gershman et al. 2014; Petter et al. 2018).

We show in this article that viewing interval timing through
an RL lens allows us to reconcile the conflicting evidence on
the role of DA in timing tasks. To do so, we derive from first
principles a local plasticity rule that describes how DA allows
cortico-striatal circuits to learn the temporal structure of re-
ward. This rule accounts for how the DA signal modulates the
internal clock and shows that it can produce either a speeding
or a slowing effect, depending on when during the task it
occurs.

METHODS

For all simulations of experimental results, we have chosen �d � d
for d � {1,2,..., 80}, � � 0.9, � � 10, � � 40, � � t0.7, and �� � 0.1,
unless otherwise stated below.

Simulation of behavioral results. Reinforcement density (RD) is the
inverse of trial length. We have initialized baseline reward time to be
T � 30. For high and low bias, we have selected T � 25 and T � 35,
respectively, with subsequent return to the baseline condition T � 30
(see Fig. 5).

Simulation of electrophysiological results. By visual inspection, we
set � � 30 and � � t0.6 (see Fig. 6).

Simulation of pharmacological results. Update over the course of a
single trial occurred according to the approximation in Eq. 7. To
visually match the deviation of responses in medicated conditions
from those of placebo, we have arbitrarily scaled the total update by
�� � 20 (note that �� need not be �1) and set � � 5 and Tmax � 35
for the placebo condition. For the temporal estimates, we have plotted
xt�7 and xt�17. We take the end point of temporal reproduction to
occur at the peak of V̂�. For administration of DA agonists, we have
chosen a gain modulation of 5 for positive RPEs and 0.2 for negative
RPEs; for administration of DA antagonists, we have chosen a gain
modulation of 0.2 for positive RPEs and 5 for negative RPEs. Finally,
we have fixed the veridical time estimate to correspond to the baseline
condition of unitary modulation of all RPEs (see Fig. 7).

Simulation of optogenetic results. To simulate the results of Soares
et al. (2016), we have chosen �� � 10 (�� need not be �1). A mean
of 1.5 and a temperature parameter of 0.2 in the softmax learning rule
(Luce 1959; Shepard 1958) were used to generate the choices. For
activation and inhibition, we have arbitrarily chosen �� � �1 and
�� � �1, respectively (see Fig. 8). For the results of Toda et al.
(2017), we have chosen �� � 7 and Tmax � 20 and set �� � �1 (see
Fig. 9).

Source code. Source code for all simulations can be found at
https://www.github.com/jgmikhael/flowoftime.

RESULTS

As our model endows interval timing frameworks with an
RL architecture, we begin this section with a brief review of
temporal difference learning algorithms.

Temporal difference learning in cortico-basal ganglia
circuitry. Perhaps the most successful account of DA function in
the BG posits that phasic DA activity reports the RPE, or the
difference between the received and expected reward (Glimcher
2011; Schultz 2007; Schultz et al. 1997). This account has been
formalized in terms of the temporal difference (TD) learning
algorithm (Sutton 1988), which we briefly review here.

For ease of exposition, we omit actions and assume that the
agent traverses a series of “states” according to a Markov
process. A state corresponds to some combination of relevant
contextual cues, or features, that aid in predicting future re-

wards. For example, a state could denote proximity to a known
food source or time until reward delivery. In the TD frame-
work, the value of being in a state is defined as the expected
discounted sum of current and future rewards:

Vt 	 ���
k	0




�krt�k� (1)

where t denotes time and indexes states, rt is the reward
received at time t, and � � [0,1) is a discount factor that
decreases the weights of later rewards. Following previous
work (Ludvig et al. 2008, 2012; Schultz et al. 1997), the agent
estimates Vt by learning a linear weighting of the features:

V̂t 	 �
d

wdxd,t (2)

where xd,t is the dth feature at time t, and this feature is
weighted by wd. The weights are updated by gradient ascent to
reduce the discrepancy between Vt and its estimate V̂t:

wd
(t�1) 	 wd

(t) � ��t
(t)�wd

V̂t
(t) (3)

where � � [0,1) denotes the learning rate, the superscript

represents the learning step, �wd
V̂t

�t� 	 xd,t is the gradient of V̂t
�t�

with respect to the weight wd and �t is the RPE:

�t 	 rt � �V̂t�1  V̂t (4)

For an intuition, the received reward rt, together with the
discounted expected value at the next step �V̂t�1, can be
thought of as a single sample of value Vt. RPE is then the
difference between this sample and the current estimate V̂t.

In mapping the TD framework onto cortico-BG circuitry, the
features xd,t represent cortical inputs to striatum, the weights wd
are encoded by the strengths of the cortico-striatal synapses
(Houk et al. 1995; Montague et al. 1996), the error signal �t is
communicated by the firing of midbrain DA neurons (Eshel et
al. 2015; Glimcher 2011; Niv and Schoenbaum 2008; Schultz
et al. 1997; Steinberg et al. 2013), and the estimated value V̂t
constitutes the output of the BG (Ratcliff and Frank 2012).

For a timekeeping task, a natural feature set arises from the
recent experimental observation of “time cells,” or neurons that
are sequentially activated during the timed interval and that
predict the animal’s estimate of the interval (Mello et al. 2015;
Wang et al. 2018). Remarkably, when the length of the re-
quired interval duration was experimentally manipulated, the
response profiles of these cells rescaled to fit the newly timed
duration as the animal learned the updated parameters of the
task. This rescaling is an important attribute of our model,
which we describe next.

Model description. We adopt the approximation architecture
outlined in Eq. 2, where the features xd,� and estimated value V̂�

are indexed by subjective time �. The features are encoded by time
cells, and each time cell d is preferentially tuned to a subjective
time �d, such that higher values of d correspond to cells that
respond later. For simplicity, we take the features xd,� to be
Gaussian in shape, centered at �d, and with tuning width �, i.e.,

xd,� 	 exp�
1

2� �  �d

� �2� (5)

One simple neural circuit that implements this architecture is
diagrammed in the bottom three layers of Fig. 1, where time
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cells are fed subjective time � and their activations are
weighted and summed to give the estimated value V̂�, as
described in Temporal difference learning in cortico-basal
ganglia circuitry.

Let us now introduce our key addition to the linear approx-
imation architecture, which derives from the observation that
time cell responses rescale to reflect the properties of the
external environment (Mello et al. 2015; Wang et al. 2018), as
mentioned above. We implement this experimental finding
with the parsimonious addition of a scaling factor � between t=
and �, where t= represents a compressive function of objective
time t (see appendix for a comparison with alternative imple-
mentations) and t= and � are represented upstream of the time
cells, presumably in cortex (Wang et al. 2018). Hence, �
controls the mapping of objective time onto subjective time,
where a higher � means a faster clock. In keeping with
conventional terminology (Gibbon et al. 1997; Treisman 1963;
Zakay and Block 1997), we also refer to the clock as a
“pacemaker,” and hence refer to the parameter � as the pace-
maker rate. The novelty of our account is the idea that the
pacemaker rate, known to be modulated by DA as discussed in
INTRODUCTION, can be viewed as a parameter of the function
approximation architecture. This parameter is thus updated by
gradient ascent:

�(t�1) 	 �(t) � ����
(t) �

�(t) V̂
˙

�
(t) (6)

where �� is the learning rate, ��V̂ 	
�V̂

��

��

��
	

�

�
V̂
˙

� is the

gradient of estimated value with respect to �, and V̂
˙

� denotes
the time derivative of V̂�.

We have assumed a constant tuning width � for all features
against subjective time, but note that because subjective time is
a compressive function of objective time, the widths of the
features increase with the passage of objective time, as shown

in Fig. 2. This compression will not be necessary for our results
below but better reflects the universal observation that subjec-
tive estimates of elapsed duration become (linearly) more
corrupted as the duration increases, a phenomenon known as
the scalar property (Gibbon 1977). It also facilitates compari-
son of our features with those of the microstimulus model,
which are also overlapping Gaussians of increasing tuning
width (Ludvig et al. 2008), and the learning-to-time model
(LeT) from the interval timing literature, which posits a se-
quential activation of behavioral states with associated learn-
able weights (Machado 1997).

A bidirectional update rule governs �. To examine the
update rule in Eq. 6 more closely, let us restrict our analysis to
the case of a single reward of magnitude 1 delivered after a
delay of objective time T, which corresponds to subjective time
�. In this case, Eq. 1 reduces to V� 	 ��� over the delay
period (Fig. 3, top, dashed gray curve). Importantly, with an
overlapping feature set, our architecture can never learn V�

exactly. Instead, due to “smearing” across states, the estimate
V̂� will resemble a smeared version of V� (Fig. 3, top, solid
black curve). This in turn will result in an RPE that is not fully
reducible even with extensive learning, as has been theoreti-
cally predicted (Ludvig et al. 2008) and experimentally sug-
gested (Kobayashi and Schultz 2008). For instance, internal
timing noise, which may be implemented by an overlapping
feature set, precludes the exact time of reward from being
perfectly estimated; hence, a small amount of “surprise” (or
nonzero RPE) will be experienced even if the reward is
delivered on time (Fig. 3, bottom, solid black curve). In
addition, owing to the asymmetric shape of Vt about time T, the
peak of the estimate V̂� occurs slightly before the true time of
reward delivery T. We return to this point in a subsequent
result.

There are two critical observations to be made about the
update rule in Eq. 6. First, the synaptic weight encoding � has
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Fig. 2. Effect of scaling � on activation of time cells. When measured against
objective time t, higher � leads to more compressed time cell activations. Here,
the same � for all features is learned. By Eq. 5, it is straightforward to show
that all features move in tandem with a constant coefficient of variation, and no
crossovers are produced during rescaling (appendix).

Fig. 1. Model architecture. The top layer denotes a compressive representation
t= of objective time t. t= maps onto subjective time �, weighted by the scaling
factor �. Each time cell d is preferentially tuned to a time �d and responds with
activation xd,�. The sum of the features xd,�, weighted by wd, gives estimated
value V̂�.
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direct access to � from its postsynaptic neuron (or its presyn-

aptic neuron, as � � �t=), to �� from the DA signal, and to V̂
˙

�

from projections from the BG output nuclei (substantia nigra
pars reticulata and globus pallidus interna) via the BG-
thalamo-cortical loop (Utter and Basso 2008). Therefore, the
learning rule for � is local. The update rule itself is a form of
differential Hebbian learning (Klopf 1988; Kosko 1986),
whereby changes in presynaptic activity are correlated with
postsynaptic activity to determine the extent of update. Roberts
(1999) has shown that this type of learning rule can be
implemented by spike-timing-dependent plasticity (see also
Rao and Sejnowski 2001). This update is effectively gated by
the RPE, giving rise to a form of three-factor learning rule
similar to what has been proposed to underlie plasticity at
cortico-striatal synapses (Reynolds and Wickens 2002).

Second, it follows from Eq. 6 that the update of � produces
a bidirectional learning rule, as illustrated in Fig. 4. Concep-
tually, just as the weights wd will increase or decrease to allow
V̂� to best approximate V�, so too will �. Whereas the weights
wd will change the magnitude of estimated value at different
points of time, changes in � result in rescaling of estimated
value against objective time. Hence, for � a reward that is
delivered earlier than expected indicates that estimated value is
not compressed enough, so � must increase. On the other hand,
a reward that is delivered later than expected indicates that
estimated value is too compressed, so � must decrease. For an
intuition of how our derived update rule implements this

bidirectionality, note that this rule relies on the product of V̂
˙

�

and ��. After learning, V̂� takes a monotonically increasing
(and roughly convex) shape leading up to reward time �,
closely approximating V� 	 ���, and then decreases quickly,
but not instantaneously, to zero (Fig. 4, black curve, and Fig. 3,
top, black curve). This more gradual decrease is due to the

overlapping nature of our features, as late features accrue pos-
itive weights due to their contribution to the estimated value
leading up to reward. The shape of V̂� implies that its derivative

V̂
˙

� will be �0 before reward delivery, �0 zero at reward
delivery, and �0 during a window afterward. Therefore, early

reward will result in ��~V̂
˙

��� � 0 and thus an increase in �
and compression of the features against objective time. On the
other hand, late reward will result in a negative RPE over

� � � when V̂
˙

� � 0, followed by a positive RPE when reward

is delivered, at which point V̂
˙

� � 0; hence, ��~V̂
˙

��� � 0 over
both domains, so that � decreases and the features expand.

In summary, Eq. 6 represents a local update rule of the
pacemaker rate �, where DA can facilitate either an increase or
a decrease in � to allow the estimated value V̂� to better
approximate the true value V�.

Finally, having examined the role of phasic DA in commu-
nicating RPEs to update �, let us now consider how tonic DA
levels influence the learning of �. Numerous studies have
shown that higher levels of tonic DA enhance learning from
positive RPEs, whereas low tonic DA levels enhance learning
from negative RPEs (Cools et al. 2009; Frank et al. 2007, 2004;
Shiner et al. 2012; Smittenaar et al. 2012). Assuming temporal
reproduction occurs by timing until the peak of the estimated

value function, over which V̂
˙

� � 0, it follows from Eq. 6 that
higher tonic DA levels will result in a bias toward increases of
�. Hence, the pacemaker will accelerate and the features will
be compressed against objective time. Similarly, low tonic DA
levels will decelerate the pacemaker and expand the features.

Relationship with experimental data. A large body of exper-
imental work in the interval timing literature is concerned with
the modulation of timekeeping in healthy states and in disease.
For instance, even in healthy states, timekeeping is biased by
factors such as attention (Coull et al. 2004), motivation (Gable
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Fig. 4. Bidirectional learning rule for �. Because of feature overlap, the learned
value V̂ (black curve, plotted here against objective time) does not drop
immediately to zero after reward time T (dashed vertical line). This gradual

decrease allows its derivative V̂
˙

to be negative over a nonzero domain of time,
which in turn allows the update rule for � in Eq. 6 to take negative values over
that same domain. It follows that � increases if reward is delivered roughly
before T and decreases if reward is delayed past T (gray curve).
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and Poole 2012), and emotion (Droit-Volet and Meck 2007),
which may serve adaptive functions (Harrington et al. 2011;
Matthews and Meck 2014; Meck 2003). To characterize these
types of modulation, researchers have predominantly relied on
either the peak-interval procedure (Roberts 1981) or the bisec-
tion task (Church and Deluty 1977). The peak-interval proce-
dure is a reproduction task: Here, the animal is trained to
respond maximally at a criterion duration to receive a reward.
Occasionally, much longer, unreinforced probe trials are pre-
sented, and the peak response, a measure of the animal’s
estimate of the time of reward delivery, is measured against the
desired manipulation (e.g., administration of DA agonist). In
this procedure, acutely increasing the speed of the pacemaker
will result in underproduction of a timed interval. The bisection
task, on the other hand, is an estimation task: Here, the animal
is trained to respond differently to stimuli of either short or
long duration, such as pressing a left lever when presented with
a short interval and a right lever when presented with a long
interval. In probe trials, unreinforced intervals of intermediate
length are presented, and the animal must respond with either
the “short” response or the “long” response. A psychometric
function is fit against each of the control condition and the
desired manipulation, and the two functions are then compared.
A faster pacemaker will cause interval durations to be per-
ceived as longer than they are, thus resulting in overestimation
of intervals. Hence, acutely increasing the pacemaker rate will
result in underproduction and overestimation. Similarly,
acutely decreasing the pacemaker rate will lead to overproduc-
tion and underestimation.

Perhaps the main attraction of a bidirectional learning rule
on � is that it allows our model to explain the seemingly
conflicting effects of DA, and by extension unexpected re-
wards, on the pacemaker rate. Indeed, as discussed below,
behavioral and pharmacological studies have found that higher
reward rates and DA agonists result in behaviors consistent
with a faster pacemaker, whereas optogenetic activation of
midbrain DA neurons displays the opposite pattern. We show

here that these results can be reconciled under the model
behaviors derived above.

First, our model is consistent with results from the behav-
ioral literature. In Morgan et al. (1993), pigeons were trained
on a bisection task in which they had to discriminate between
a 10-s and a 20-s duration and were then exposed to high or
low rates of freely delivered reinforcers. When returned to the
discrimination task, those returning from a richer context
judged durations to be longer than those returning from a
poorer context, consistent with a faster and slower pacemaker,
respectively (Fig. 5B). Previously, Killeen and Fetterman
(1988) had found that the speed of the pacemaker is directly
proportional to the rate of reinforcement (Fig. 5A; see also
MacEwen and Killeen 1991), similarly predicted by our model.
These results are also consistent with studies of electrical brain
stimulation of the medial forebrain bundle in mouse, an area
that is involved in pleasure sensation and that supports self-
stimulation (Olds 1958). Stimulation of this area resulted in a
shift of timing behavior that is similarly consistent with a faster
pacemaker (Meck 2014).

Second, the model is consistent with results from electro-
physiology. As mentioned above, Mello et al. (2015) have
shown that in a timekeeping task the response profiles of
putative medium spiny neurons (MSNs) representing time cells
undergo significant rescaling to reflect the temporal properties
of the task at hand (Fig. 6). By construction, this is captured by
our model: Here, DA modulates feature rescaling against
objective time by exactly this mechanism, and this effect is
unexplained by the existing TD and microstimulus models.

Third, the model is consistent with results from pharmacol-
ogy. Pharmacological manipulations have shown that in a
bisection task DA agonists such as methamphetamine predom-
inantly shift the psychometric function to the left (or globally
increase the probability of responding “long”), consistent with
making the clock go faster, whereas DA antagonists like
haloperidol shift it to the right, consistent with making it go
slower (Maricq and Church 1983). Lake and Meck (2013) have
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Fig. 5. Results from behavioral experiments compared
with model behavior. A: Killeen and Fetterman (1988)
have found that the speed of the pacemaker is directly
proportional to the rate of reinforcement. Reprinted
from Killeen and Fetterman (1988). B: Morgan et al.
(1993) have found that when exposed to high or low
rates of reinforcement and returned to a baseline con-
dition, pigeons’ behaviors were consistent with a faster
or slower pacemaker, respectively. Reprinted from
Morgan et al. (1993) with permission from Elsevier. C
and D: model behavior, recapitulating observations in A
and B, respectively. See METHODS for simulation details.
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demonstrated this effect on timekeeping with a peak-interval
procedure, which our model recapitulates in Fig. 7.

Finally, our model is consistent with results from optoge-
netics. In Soares et al. (2016), successive optogenetic stimula-
tion occurred over the duration of the entire trial, which
corresponds in our model to sequentially updating � with every
new traversed state in that trial by the increment ��, deter-
mined by Eq. 6 and the gray curve in Fig. 4. Hence we may
approximate the total change in � over the course of an entire
trial as

�� 	 �
�

��

�

�
V̂
˙

��� (7)

Importantly, the stimulation protocol covered both the early
positive limb and the late negative limb of the gray curve in
Fig. 4. Under our model, optogenetic activation (�� � 0)
therefore resulted in updates of � that first increased it (early
stimulation, before the peak of the estimated value function)
and then decreased it (late stimulation, after the peak). It is
straightforward to show that for optogenetic activation the
quantity in Eq. 7 is negative (see appendix for derivation). This
can also be visually ascertained from Fig. 4, by noting that the
negative limb of the gray curve is larger in area than the
positive limb. Therefore, the net effect of this trial-long acti-
vation is to slow down the pacemaker. Similarly, trial-long
inhibition (�� � 0) will increase �, and the pacemaker will
speed up (Fig. 8). Note here that, for convenience, we have
taken the effects of optogenetic activation and inhibition to be
equal and opposite (�� � �1 and �1, respectively), but this
need not be the case. In fact, the experimental data show a
rather small effect for inhibition. In principle, this asymmetry
may follow from differences in the stimulation protocol, from

the asymmetric relationship of DA levels with positive and
negative RPEs (Bayer et al. 2007), from the nonlinearity of
behavior with equal and opposite changes in value (Luce 1959;
Shepard 1958), or from other causes.

In Toda et al. (2017), mice were trained on a peak-interval
licking schedule in which a drinking needle delivered sucrose
solution every 10 s. Licking behavior was stereotyped, and
peak licking occurred at approximately the expected reward
time. The authors showed that although start and end times for
licking tended to vary with satiety, the peak time was robust to
such variations and continued to reflect the expected reward
time. The authors then optogenetically stimulated the nigrotec-
tal pathway, an output pathway of the BG, for a 1-s duration
that occurred at different times during the trial. Interestingly,
stimulation for 1 s immediately before or immediately after
reward resulted in later peak responding on the subsequent
trial, whereas stimulation ending 1 s before the reward led to
earlier peak responding on the subsequent trial.

As illustrated in Fig. 9, this asymmetry follows from our

model. Because the sign of V̂
˙

� changes at the peak of the
estimated value function, which itself occurs before the true
time of reward (Figs. 3 and 4), it follows from Eq. 6 that RPEs
that occur after, or immediately before, reward time will have
an opposite effect on the speed of the clock compared with
those occurring sufficiently before reward time. Importantly,
how the output of the BG, reflecting estimated value (Ratcliff
and Frank 2012), is transformed and combined into the DA
signal from midbrain has been ill defined, although various
hints exist (e.g., Barter et al. 2015; Eshel et al. 2015). We
assume here that increases in this output serve to increase �� �
�V̂��1 � V̂�. This means that stimulation after, or immediately
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1753ADAPTING THE FLOW OF TIME WITH DOPAMINE

J Neurophysiol • doi:10.1152/jn.00817.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Harvard Univ (206.253.207.235) on May 1, 2019.



before, reward time will decrease � and lead to later respond-
ing on the next trial. On the other hand, stimulation that is early
enough compared with reward time will increase � and lead to
earlier responding.

DISCUSSION

The RPE hypothesis of DA is a compelling one, with a rich
history of theoretical and experimental support (Eshel et al.
2015; Glimcher 2011; Montague et al. 1996; Niv and Schoe-
nbaum 2008; Schultz 2007; Schultz et al. 1997; Steinberg et al.
2013). In this article, we consider one effect of DA that at first
glance does not seem to relate to RPEs: the modulation of
timekeeping estimates by DA.

We have shown in this work that, beyond updating the
weights wd of relevant features, the RPE interpretation may be
generalizable to learning about other relevant parameters, in-
cluding, for temporal tasks, the pacemaker rate. Given exper-
imental evidence that DA modulates the pacemaker rate, and
inspired by the recent discovery of scalable “time cells,” we
have shown that the same RPE signal, when extended to the
pacemaker rate �, reconciles a wide array of experimental
observations, including some that may otherwise seem contra-
dictory. Concretely, we derived from first principles a biolog-
ically plausible learning rule on � that facilitates either speed-

ing or slowing the pacemaker, depending on the timing of the
DA signal: When reward is presented earlier than expected, the
function of � is to increase, thus compressing the estimated
value function against objective time, which allows it to better
match the true value. On the other hand, when reward is
presented late, � must decrease to allow the estimated value to
expand appropriately.

A learnable �, and hence a scalable feature set, allows
similar numbers of features to participate in the timed interval
independent of its length, thus maintaining time cells in the
dynamic range of the relevant task. This carries implications
for precision, whereby temporal estimates of shorter intervals
can be resolved with higher granularity, and may account for
the scalar property (Gibbon 1977). In fact, theoretical and
experimental work has implicated DA in various measures of
precision (Friston et al. 2012; Kroener et al. 2009; Manohar et
al. 2015). Second, rescaling the features when the rate of
reinforcement changes allows value functions to be rapidly
updated without a need for relearning each weight wd individ-
ually. This allows for fewer update steps to occur before
convergence (as only a single parameter must now be updated),
which paves the way for potentially faster convergence. In
addition, we have limited our discussion to interval timing, but
this rescaling may be extended to putative downstream repre-
sentations, such as action velocity. For instance, Yin (2014)
has proposed that DA may function as gain control on velocity
reference signals, which may explain the bradykinesia of
Parkinson’s disease and motor symptoms of Tourette syn-
drome. Indeed, under our formulation, a compression of time
cells with high tonic DA will lead to a faster execution of
learned action sequences, effectively implementing a type of
gain control on executed velocity. Similarly, rescaling time
cells to fit the task-specific dynamic range may carry implica-
tions for (upstream) cognitive control and attentional modula-
tion, if these inputs exert their influence by operating at the
level of the time cells themselves.

The key contribution of the present work—a bidirectional
learning rule on the pacemaker rate that critically depends on
the timing of DA—is conceptually in line with a number of
observations from the broader BG literature. It has been well
established that the modification of cortico-striatal weights
occurs via a bidirectional, spike-timing-dependent plasticity
mechanism (Song et al. 2000) that depends critically on
dopaminergic modulation (Pawlak and Kerr 2008; Shen et
al. 2008). Emerging experimental evidence furthermore sup-
ports the existence of bidirectional mechanisms for learning
in striatum that depend on the timing of stimulation. Nota-
bly, Yttri and Dudman (2016) have found that optogeneti-
cally stimulating MSNs during an approach task can either
increase or decrease the subsequent velocity of approach,
depending on when during the task the stimulation occurs:
Stimulation of D1 MSNs during the fastest phase of the
animal’s motion in the task induced increases in velocity on
both current and subsequent trials, whereas stimulation
during the slowest phase of motion induced decreases in
velocity. D2 MSNs, which are thought to act antagonisti-
cally to D1 MSNs in motor control (Albin et al. 1989;
DeLong 1990; Kravitz et al. 2012; Smith et al. 1998),
displayed the opposite effect (an increase in velocity fol-
lowing stimulation during the slowest phase and a decrease
following stimulation during the fastest phase). For time-
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keeping in particular, it is the D2 receptor that seems to
mediate the effects of DA. For instance, the discussed
pharmacological effects on timekeeping relied on haloperi-
dol (Fig. 7), which is a D2 antagonist, whereas these effects
were not found with SCH-23390, a D1 antagonist (Drew et
al. 2003). Transient overexpression of D2 in striatum has
similarly been found to impair timing behaviors (Drew et al.
2007), although the understanding of the roles of D1 and D2
in interval timing is far from complete (see Coull et al. 2011
for a review).

Throughout this article, we have made a number of simpli-
fying assumptions. First, for the optogenetic data, Soares et al.

(2016) only observed the effects of dopaminergic modulation
of temporal estimates in the currently evaluated trial, rather
than in future trials in which modulation of synaptic weights is
more likely to play a dominant role. The TD framework is
untroubled by this limitation, as weights are not restricted to
trial-level learning; rather, learning occurs across states, even
within a single trial. Furthermore, as discussed above, in
examining the effects of MSN stimulation on movement con-
trol, Yttri and Dudman (2016) have found that the time-
dependent bidirectional effects on the current trial extended to
future trials as well, presumably through plasticity-mediated
changes. Second, for a canonical timekeeping model, our
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and B: in Soares et al. (2016), mice were trained on a
temporal discrimination task in which they had to judge
intervals as either shorter or longer than 1.5 s, and
psychometric functions were fit to the data (black
curves in both panels). A: under optogenetic activation
spanning the entire trial, the psychometric function
shifted to the right (dark gray curve), consistent with a
slower pacemaker. Insets show the average difference
between the probability of selecting the long choice
during activation trials vs. control trials per animal (top
left) or per stimulus (bottom right). B: under optogenetic
inhibition, the psychometric function shifted to the left
(light gray curve), consistent with a faster pacemaker.
Insets: same as in A, but for inhibition. A and B from
Soares et al. Science 354: 1273–1277, 2016. Reprinted
with permission from AAAS. C and D: our model
recapitulates these effects. See METHODS for simulation
details.
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(2017), mice were trained on a peak-interval licking task, and
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pathway was optogenetically stimulated immediately after re-
ward (left), immediately before reward (center), or 1 s before
reward (right). Bottom: stimulation resulted in a shift in peak
licking on the subsequent trial. The peak time occurred later
when stimulation was delivered immediately after or immedi-
ately before reward (left and center), and it occurred earlier
when stimulation was completed 1 s before reward (right).
*P � 0.05. Reprinted from Toda et al. (2017) with permission
from Elsevier. B: our model recapitulates these effects. See
METHODS for simulation details.
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framework afforded us the convenience of examining the
modulation of timekeeping with a single parameter. Alterna-
tive models, described below, can replace this framework with
no effect on the bidirectionality of our update rule, which is
determined by performing gradient ascent on V̂� independent of
implementation. Third, for our canonical RL model, we have
restricted learning to the case in which a nonzero value func-
tion has already been established and a change in the temporal
dynamics of a simple reward distribution causes a subsequent
initiation of learning. Hence, we have assumed that � is learned
at a much faster rate than wd. A series of behavioral papers
have indeed shown rapid, nearly one-shot or two-shot learning
of temporal duration in rats (Davis et al. 1989; Higa 1997;
Meck et al. 1984), mice (Balci et al. 2008, with reanalysis in
Simen et al. 2011, Supplemental Fig. 10), pigeons (Wynne and
Staddon 1988), and humans (Simen et al. 2011). Recent theo-
retical work (Simen et al. 2011), discussed below, has taken
these findings into account and developed learning rules that
are particularly effective at rapid, single-exposure learning,
compared with the TD models we have assumed, where learn-
ing is more gradual.

Finally, this work inherits the limitations of the existing
literature on DA and interval timing. For instance, the present
findings of DA’s role in timekeeping do not preclude the
possibility of unanticipated off-target effects. Similarly, be-
yond influencing the internal clock, DA may affect motivation
(Balcı 2014; Galtress et al. 2012), attention (Nieoullon 2002),
and the role of context (Gu et al. 2015; Malapani et al. 1998;
Shi et al. 2013) and may asymmetrically influence the encod-
ing and decoding of temporal estimates in memory (Malapani
et al. 2002). Although these are not novel concepts and time-
keeping experiments have attempted to control for such factors
(e.g., Lake and Meck 2013; Soares et al. 2016), the potential
for confounds remains.

Experimental predictions. Our model makes a number of
novel experimental predictions. First, the model makes a strong
claim on the bidirectional rule governing the update of �, as
written in Eq. 6 and illustrated in Fig. 4. This claim can be
experimentally verified with the paradigm of Soares et al.
(2016): Correlating changes in pacemaker rate with DA levels
preceding choice time by some increment �t, for each incre-
ment independently, will recapitulate the gray curve in Fig. 4.
In addition, direct optogenetic manipulation of DA levels over
different intervals within a single trial will demonstrate this
same relationship between DA levels and pacemaker rate, but
with causality.

Second, as a result of feature rescaling, our model makes a
strong claim about the conditioned stimulus (CS) response in
classical conditioning tasks with fixed delay and in particular
how it should change under different environmental or phar-
macological conditions. Consider then the case in which ani-
mals are both trained and tested on timing tasks under either
high or low tonic DA conditions. We have shown in RESULTS

that high tonic DA leads to feature compression under our
model. It follows that animals experiencing high-DA condi-
tions will experience more states during the same delay period.
This means that value at the CS will be of smaller magnit-
ude than that of animals trained and tested under low-DA
conditions (Fig. 10A). Hence, the phasic DA CS response will
also be smaller under higher-DA conditions (Fig. 10B). This
experiment can similarly be performed by varying reward rate

environments rather than DA levels, with similar predicted
results.

Third, our model asserts that the pacemaker rate and
external reward rate are state functions. In other words,
given a current average reward rate, � will converge to the
same value regardless of reward history. As described in
RESULTS, Morgan et al. (1993) studied the immediate effect
of reward history on pigeons in a discrimination task and
found that pigeons returning from a highly rewarding con-
text initially judged duration to be longer than those return-
ing from a poorer context, and these judgments in both
groups slowly adjusted to the new environment. Our addi-
tional prediction, however, is that after overcoming this
immediate effect the pacemaker rate in both conditions will
converge to the same value (see Fig. 5B).

Fourth, our model makes a claim about the interaction
between tonic and phasic DA levels, namely, that tonic DA
functions to bias the pacemaker toward speeding up, whereas
phasic DA functions to modulate the pacemaker in either
direction depending on its timing. This interaction can be
tested with combinations of experimental manipulations, for
instance, by varying either the average reward rate or the type
of optogenetic stimulation (activation vs. inhibition) against a
background of either high or low tonic DA levels. The behav-
ioral output of a categorization task similar to that of Soares et
al. (2016) can address this prediction.

Relationship with other models. As mentioned above, our
key result, that a DA-dependent bidirectional rule controls
time cell response scaling, can be incorporated into a large
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class of timing models, including pacemaker-accumulator
(PA) models, sequential-state models, and striatal beat-
frequency models.

In the influential PA model (Gibbon et al. 1997; Treisman
1963; Zakay and Block 1997), a pacemaker, representing the
internal clock, emits pulses with approximately constant
periodicity. When an interval is to be timed, an accumulator
collects the pulses emitted during that interval, and the total
number of accumulated pulses is subsequently stored in
memory. To reproduce the stored interval, accumulation
begins afresh and continues until the accumulated quantity
closely matches the quantity stored in memory. This model,
whose terminology we have borrowed, maps very naturally
onto our framework: Here, the second layer of our neural
circuit, encoding subjective time �, represents the pace-
maker, and the time cells, taken as an ordered set, represent
the accumulator. The modulation of the pacemaker rate
occurs by changing �.

Despite its abstract nature, perhaps the main attraction of the
PA model is its intuitive implementation of timekeeping and its
biases. For instance, acutely speeding the internal clock results
in underproduction and overestimation of intervals. Under the
PA model, this is intuitive: During reproduction of a previously
stored interval, acutely increasing the speed of the pacemaker
causes the accumulator to collect the desired number of pulses
within a shorter time frame (underproduction). Alternatively,
during a bisection task an acutely sped-up pacemaker will
cause the accumulator to collect more pulses by the end of the
presented interval than it otherwise would have, thus creating
a bias toward selecting the “long” response (overestimation).
Similarly, acutely slowing the pacemaker will lead to overpro-
duction and underestimation.

Sequential-state models are similar to PA models but assume
a population of cells that are connected in series (rather than in
parallel) and thus sequentially activate each other with a time
delay. These cells closely resemble the time cells in our model,
and their activations serve to encode time (Buonomano and
Merzenich 1995; Killeen and Fetterman 1988). For instance, in
the behavioral theory of timing (BeT) (Killeen and Fetterman
1988), the cells correspond to behavioral states and the rate of
transition across states is taken to be proportional to the reward
rate. LeT (Machado 1997) is a descendant of BeT that further
views these states as a basis set whose weighted sum consti-
tutes the output layer. Although not a normatively justified RL
model, LeT succeeds in proposing associative rules to govern
these weights, which allow rewards to be correctly associated
with early or late states. This is akin to the bottom two layers
in our model and represents an early effort to use principles of
RL in interval timing.

Finally, striatal beat-frequency models assume oscillatory
neurons in cortex that fire and converge on MSNs in striatum.
Timing information is stored in the cortico-striatal weights,
gated by DA-dependent long-term potentiation and depression.
Subsequent comparisons of time durations with the stored
memory are then achieved by comparing the pattern of activa-
tion of the oscillatory neurons with the memory trace (Matell
and Meck 2000, 2004). Although the architectures of the three
presented models differ, it remains that a gradient ascent rule
on a parameter controlling the rate of transitions between
states, seeking to minimize the difference between the true

value V� and estimated value V̂�, will qualitatively recapitulate
the bidirectionality derived in Eq. 6.

With respect to the conflicting experimental evidence re-
garding the role of DA in timekeeping, we are not aware of any
computational work that has sought to reconcile these obser-
vations. However, the idea of parameterized rescaling, inter-
preted broadly, is not novel in the interval timing literature, and
whether DA may be related to these models is an open
question. For instance, modulating drift rates for the purpose of
learning to time is a key component of drift-diffusion models
of interval timing (Luzardo et al. 2013; Rivest and Bengio
2011; Simen et al. 2011), and recent work has related these
models with theories of classical conditioning (Luzardo et al.
2017). In the time-adaptive opponent Poisson drift-diffusion
model (TopDDM) (Balcı and Simen 2016; Rivest and Bengio
2011; Simen et al. 2011), the ramping rate of neural integrators
(or the drift) to a fixed threshold is controlled by the proportion
of its active inputs, whose activations are in turn controlled by
learning rules on their own input weights (see Komura et al.
2001 for a potential neural correlate of the integrator in sensory
thalamus). A virtue of these update rules is that complete
adaptation to a new duration can occur after a single exposure:
If the timed duration ends before the ramp reaches the fixed
threshold (late timing), then a “late learning” rule increases the
input weights to the strength required for accurate timing of the
new duration. On the other hand, if the threshold is reached
before the end of the duration (early timing), a separate “early
learning” rule begins to decrease the weights continuously until
the timed duration ends. This occurs in such a way that the new
drift will allow for accurate timing of the new duration. As
discussed above, such learning rules, for either increasing or
decreasing drift, are particularly adept at capturing rapid and
one-shot learning.

Finally, there is a substantial literature within the study of
interval timing that examines the effects of attentional control
on timekeeping (Fortin 2003). It is conceivable that the differ-
ent effects of DA may be explained by invoking differential
attentional modulation, for instance, by reallocating the limited
resource of attention either away from or toward the timekeep-
ing system, depending on the experimental paradigm (Meck
1984). It is furthermore possible that attentional control works
in tandem with the update mechanism proposed here, for
instance, by modulating the compression t= of objective time t
or by other mechanisms. Our aim is not to refute these
possibilities but instead to show how a single RPE interpreta-
tion can account for a wide range of seemingly conflicting
results.

APPENDIX

Alternative implementations of the pacemaker rate. Rather
than introducing a separate layer representing t= in our circuit, it is
possible to directly modulate the weights between � and xd,� by �d.
This is a feasible alternative; however, without restricting the param-
eter space or introducing additional assumptions, such a neural circuit
may result in crossovers of the time cell responses. For instance, if a
large reward is delivered at � � 3, the update of �3 may be enough to
cause x3,� to respond earlier than x2,� on the next trial. By restricting
learning to a single �, our proposed circuit protects against this
possibility. We can show this by rewriting xd,� as
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Therefore the ordering of �d is maintained when scaling by �, and no
crossovers occur.

Sequential activation of DA neurons over the course of an
entire trial results in a net negative RPE. Let us analytically
derive this result. We begin by writing

�� 	 �
�

��

�

�
V̂
˙

��� (A1)

over the duration of an entire trial. For a better intuition of the result
we will derive below, let us extend our analysis to the continuous
domain. The relationship in Eq. A1 thus becomes

�� 	 �
��

�

�
V̂
˙

���d� (A2)

Because the estimated value V̂� decays to zero after reward time �,
it follows that

�
V̂
˙

�d� 	 0 (A3)

Here, V̂
˙

�, like ��, has a positive limb, or a domain over which V̂
˙

�

is �0, followed by a negative limb. Additionally, by Eq. A3, the
integral over the positive limb is equal and opposite to that over the
negative limb.

Since
�

�
	 t' is monotonically increasing, it follows that

�

�

�
V̂
˙

�d� � 0

Therefore, with optogenetic activation (�� � 0), the integral in Eq.
A2 is negative, so that � will decrease and the pacemaker will slow
down. With a similar analysis for optogenetic inhibition, � will
increase and the pacemaker will speed up.
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