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Abstract: Neurons in the medial entorhinal cortex exhibit multiple, periodically organized, firing
fields which collectively appear to form an internal representation of space. Neuroimaging data sug-
gest that this grid coding is also present in other cortical areas such as the prefrontal cortex, indicating
that it may be a general principle of neural functionality in the brain. In a recent analysis through
the lens of dynamical systems theory, we showed how grid coding can lead to the generation of a
diversity of empirically observed sequential reactivations of hippocampal place cells corresponding
to traversals of cognitive maps. Here, we extend this sequence generation model by describing how
the synthesis of multiple dynamical systems can support compositional cognitive computations. To
empirically validate the model, we simulate two experiments demonstrating compositionality in
space or in time during sequence generation. Finally, we describe several neural network architectures
supporting various types of compositionality based on grid coding and highlight connections to
recent work in machine learning leveraging analogous techniques.

Keywords: compositionality; generative models; entorhinal cortex; hippocampus

1. Introduction

The generation of new knowledge via the composition of multiple informative el-
ements is a hallmark of natural intelligence and underpins a variety of sophisticated
cognitive processes [1–6]. Compositionality enables complex representations to be formed
combinatorially from simpler components efficiently and flexibly. This concept has been
successfully applied by machine learning algorithms to problems ranging from control to
vision and language [7–10]. We consider how compositionality may be achieved in neural
circuitry, a long-standing problem in cognitive neuroscience [11–13]. In particular, we focus
on compositionality in the context of internal simulations of dynamical systems and apply
our model to spatial tasks in order to make contact with neural data [14].

Given its critical contribution to a variety of cognitive processes and capacity for
sophisticated relational representations in the form of cognitive maps, we focus on the
entorhinal–hippocampal circuit (EHC). The EHC is thought to contribute, in particular,
to cognitive processes that rely on novel compositions of sequential information, such as
imagination [15,16], transitive inference [17,18], novel one-shot associations [19], factorized
replay [20] and spatial planning [21,22]. Although there is evidence that deep neural
networks implicitly use compositional mechanisms to achieve their high performance
in complex cognitive problems such as natural language processing [6,10], we have a
limited understanding regarding how compositionality is implemented in specific neural
systems such as the EHC, of which we have detailed knowledge [23]. Furthermore, data
from several experiments hint at sophisticated regulatory and combinatorial roles for the
medial entorhinal cortex (mEC) with respect to downstream activity in hippocampus
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(HC). In particular, mEC input is necessary for the temporal organization of hippocampal
reactivations [24] and is causally involved in the concatenation of sharp-wave ripples
(SWRs) in a form of sequential compositional replay known as extended replay [25].

In order to address this challenge, we develop a model of compositional sequence
generation in the EHC, whereby distinct grid cell populations in the mEC are coordinated
in order to configure sequential reactivations in the HC. The sequential reactivation of hip-
pocampal representations, purportedly from a cognitive map, is thought to be an important
algorithmic substrate in a variety of cognitive processes and has been conceptualized as
the central role of hippocampal functionality [26]. In this work, we extend a recent theory
of mEC grid cells as regulators of sequence generation which modulate the statistics and
structure of replay including generating normative nonsequential activity patterns [27].
This model shows that grid cell populations can be distributively modulated across mul-
tiple spatial scales to parameterize different regimes of sequence generation within the
EHC. In this work, we demonstrate that grid cells provide a representational substrate
by which cognitive maps may be combinatorially expressed and naturally modulated
for compositional sequence generation. Our analyses are directly inspired by algebraic
formulas drawn from the theory of Lie groups and Lie algebras [28]. In simulation, we
demonstrate that this mechanism is capable of recapitulating several empirical results
regarding hippocampal reactivations, which we interpret computationally as different
forms of compositional simulation.

We demonstrate variations of our compositional generator framework within the
context of three cognitive functions. First, in a simple adaptive exploration paradigm
within a four-room grid world (Figure 1A), we show how to combine dynamics models
corresponding to random exploration and directed exploration. Second, we show how
concatenated sequences may be efficiently generated (Figure 1B) and suggest how this
may underpin extended replay in ripple bursts [25]. Third, we demonstrate how sequence
dynamics may be simultaneously controlled at different levels of hierarchical abstraction
by distinct generators and show how this model explains so-called event-specific rate
remapping of episodic experiences in the hippocampus [29].

Our technical contribution is a complete elaboration regarding how to generate sam-
ples from arbitrary combinations of dynamical systems using a network model of the EHC
for which we provide a self-contained introduction [27]. Analytically, this is a delicate
operation. A naive approach such as averaging transition models leads to unstable dy-
namics, and simple concatenation is not sufficient in general. In particular, a key challenge
in this endeavor is to understand the commutation relationship between generators for
distinct dynamical systems. Relatively simple dynamics in homogeneous state-spaces such
as an open arena are commutative and therefore, the order of composition is irrelevant.
However, many combinations of dynamical systems do not commute. That is, sampling a
transition in one dynamical system and then the other is not equivalent to sampling each
system in the reverse order. For example, in three-dimensional geometry, rotations are not
commutative, which has fundamental implications for sensorimotor mechanisms including
visual processing [30]. When getting dressed, it does not matter the order in which trousers
and socks are put on however the order is important for a shirt and a jacket or socks and
shoes. In the game of chess, a bishop move and a pawn move may not commute if the pawn
blocks the bishop’s path. We draw on the theory of Lie algebras in order to address the
challenge of composing noncommutative generators [28]. We finish by outlining possible
directions for future work in theory and experiment, as well as highlighting connections to
other models in the neuroscience and machine learning literature.
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Figure 1. Distinct forms of composition in dynamical systems, hierarchical and sequential, and the
associated proposed neural architectures in the entorhinal–hippocampal circuit. (A). Hierarchical
composition. A rodent performing directed exploration searching for food in a four-room grid world.
The rodent is presented with a cue that indicates that the food is not located in the bottom-left room
(marked by a red X). How can this information be combined with an internal representation of
the environment to generate efficient exploratory trajectories which avoid the bottom-left room?
(B). Sequential composition. In this T-maze, optimal trajectories may be efficiently constructed
by combining abstract behavioral components represented by the colored arrows. For example, a
combination of the blue and red components are required in order to access the reward R. (C). Circuit
diagram of grid module stacking for hierarchical composition. Each circle represents a network
unit corresponding to a representative cell drawn from a distinct grid module. Grayscale coloring
of neural units indicates variations in level of activation. Dynamical systems, encoded in separate
grid modules (green), may be combined in a deep network architecture where each “hidden” layer
encodes each of the distinct dynamical systems. (D). Circuit diagram of grid module sequencing
for sequential composition. In contrast to grid stacking which manifests as spatially compositional
sequence generation, grid sequencing corresponds to a temporal composition. At any time step,
sequence generation under grid stacking is sensitive to all of the composed dynamical systems
simultaneously, while only one dynamical system is active at any given time with grid sequencing
whereby cells activate sequentially, consistent with entorhinal replay [31]. Note that grid stacking
and grid sequencing are not mutually exclusive and potentially could be combined.

2. Methods
2.1. Cognitive Generators

In these sections, we provide a self-contained introduction to the cognitive generator
theory for sequence generation in the entorhinal–hippocampal circuit [27]. We consider the
problem of sampling sequences from continuous-time Markov processes {Xt}t∈R [32]. Such
processes characterize how a state variable x ∈ X evolves over time under noisy dynamics.
We denote the state at a particular time t as xt and conceptualize this as an internal state
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represented by a cognitive process unfolding in time. The state variable may, for example,
reflect a position in an environment during a planning process or a particular memory being
retrieved. The marginal probability of the random process generating a particular state xi
at time t is denoted ρt(xi) := P(Xt = xi) and ρt constitutes a vector of state probabilities.
Such a stochastic process is compactly specified by a master equation [33]:

τρ̇ = ρO, (1)

where the notation ρ̇ indicates the time derivative of ρ and τ is a time constant. This
equation describes the time evolution of the state probability vector ρ. The matrix O,
known as the infinitesimal generator, defines the state dynamics at very short timescales:

Oij := lim
∆t→0

P
(
Xt+∆t = xj|Xt = xi

)
∆t

. (2)

The differential Equation (1) can be solved analytically to describe the density ρ∆t at an
arbitrary time in the future, given an initial state distribution ρ0 [32,33]:

ρ∆t = ρ0eτ−1∆tO. (3)

This equation shows that the state probability row vector ρ∆t at time ∆t is the product
of the prior state probability row vector ρ0 at time 0 and the matrix exponential of the
infinitesimal generator O. Intuitively, this equation “starts from” the prior state density ρ0
and uses the generator O to iterate the state probabilities forward in time until timepoint
∆t, at a speed that is regulated by τ. By definition of O, eτ−1∆tO is a state transition matrix
for all time intervals ∆t ≥ 0.

2.2. Sequence Sampling

Fixing ∆t = 1 for a single time step, the propagator Pτ = eτ−1O can be applied
iteratively to generate state distributions on successive time steps via

ρt+1 = ρtPτ . (4)

State sequences characterizing the simulated evolution of the system can therefore be
generated by recursively applying this propagator Pτ and sampling

xt ∼ ext−1 Pτ , (5)

where ex is a one-hot row vector indicating that state x is active with probability one. This
results in state sequences x that accurately reflect the generative distribution of sequences
p(x) defined by the generator O and initialization ρ0. By modulating the tempo τ, the speed
of the generated sequence may be controlled. Increasing (or decreasing) τ results in a
slower (or faster) time evolution.

2.3. Roles of Grid Cells and Place Cells in a Linear Feedback Network

The exponential eM of a matrix M is defined as [34]

eM =
∞

∑
n=0

Mn

n!
. (6)

Thus, directly computing the propagator

Pτ =
∞

∑
n=0

(
τ−1O

)n

n!
(7)
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is challenging since it requires an infinite sum of matrix powers. However, Pτ can be
computed efficiently using a generator eigendecomposition O = GΛW (where W is the
inverse matrix for G) as

Pτ = Geτ−1ΛW. (8)

Since Λ is the diagonal matrix of O-eigenvalues, its exponentiation is trivially accomplished
by exponentiating the eigenvalues separately along the diagonal

[
eτ−1Λ

]
kk

= eτ−1λk . Multi-

plication by G projects a state distribution ρt on to the generator eigenvectors φk = [G]·k,
which we refer to as the spectral components of the propagator. We use the term “spectral”
to refer to a basis which diagonalizes the generator. Although we use simple eigende-
compositions to demonstrate our compositional model here, spectral components may
be computed based on the imposition of additional constraints, such as non-negativity,
for further biological realism [27]. In this spectral representation, time rescaling simply
corresponds to parametrically varying the tempo parameter according to the power spectrum

sτ(λ) = eτ−1λ, (9)

where λ corresponds to an eigenvalue associated with a particular eigenvector of O.
In previous work [27], it was also pointed out how this power spectrum may be

parametrically modulated to produce qualitatively different forms of sequence generation.
In particular, superdiffusive sequences, which are distinguished by occasional jumps
between activated positions, may be generated by varying a stability parameter α to values
less than 1 according to

sτ,α(λ) = e−τ−1|λ|α . (10)

Furthermore, motivated by the normative objective of maximizing hippocampal sampling
efficiency, nonparametric modifications to the power spectrum led to the production
of nonsequential patterns of replay whereby successive hippocampal reactivations did
not encode adjacent locations in the associated cognitive map [27]. In this manuscript,
simulations relied on parametric variations in the power spectrum only with the tempo
τ and stability α parameters fixed to the default values of τ = 1 and α = 1 (diffusive
sampling) or α = 0.5 (superdiffusive sampling). All model predictions compared to data
were robust with respect to variations in this parametrization.

We now describe how these computations may be embedded within a fully connected
linear network model with recurrent feedback [27]. Note that this simplified neural model
is designed to establish a direct correspondence to the equations previously elaborated
(Equations (5), (8) and (9)); however, further refinements may be included in order to reflect
these computations within a continuous attractor network model [27]. The input state
density vector ρ0 is encoded in a population of hippocampal place cells (i.e., the firing rate
of each place cell encodes the probability of occupying its preferred spatial location during
sequence generation) or is presumed to be communicated from higher-order cortices. This
representation inputs to a grid cell population with synaptic weights defined by the matrix
G. Each column of G corresponds to a separate grid cell which is representative of a distinct
grid module. Effectively, the output of this computation is a representation of the input
spatial distribution in a spectral basis of the associated generator. The second synaptic
weight matrix W recurrently maps this spectral representation back into the input space. By
modulating the gain on the output of the second layer according to the power spectrum s,
the network can control how far into the future those state transitions are generated. Within
our neural model, we hypothesize that this may be accomplished by neuromodulatory gain
control or grid rescaling [35]. The generator model proposes that grid cells serve as a basis
set for infinitesimal generators of dynamical systems [27]. The compositional architectures
elaborated in the present manuscript are variations on this network model (Figure 1C,D).
For example, in the stacking architecture (Figure 1C), we show how deeper networks with
multiple layers of grid cells can generate compositional sequences.
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2.4. Propagator Composition

Within our framework, the simplest compositional mechanism is to concatenate n
propagators P1, . . . , Pn via

ρt = ρ0P1 · · · Pn (11)

ρt = ρ0

n

∏
i=1

GietΛi Wi, (12)

where we have used the corresponding generator decompositions Oi = GiΛiWi. Logically,
this composition motif corresponds to an AND operation across propagators, which we
denote P1 ∧ · · · ∧ Pn. That is, sequence generation using the propagator composition
(Equation (12)) results in sequences reflecting the dynamics associated with all propagators.
If the propagators do not commute (i.e., if [Pi, Pj] 6= 0 for any i, j) then the order of the
propagators matters. We describe how noncommutative propagators may be composed
in Appendix A.1. Alternative approaches to composing dynamical representations are
available at the level of generators, which we elaborate in the next section.

2.5. Generator Composition

Any non-negative linear combination of two generators, say O = β1O1 + β2O2, is also
a generator [32]. This compositional generator defines a new dynamical system according to

ρ̇ = ρO

= ρ[O1 + O2] (13)

ρt = ρ0et[O1+O2] (14)

More generally, compositional processing is described by the compositional master equation:

ρ̇ = ρ

(
n

∑
i=1

wiOi

)
(15)

which admits the compositional propagator as a solution:

ρt = ρ0et(∑n
i=1 wiOi) . (16)

The state-space dynamics described by the compositional propagator (Equation (16)) reflects
the weighted contribution of each of the propagators Oi. The matrix exponential calculation
required by the solution (Equation (16)) may be challenging to compute in general. This
is due to the fact that, if some of the generators do not commute, then they cannot be
simultaneously diagonalized; thus, the matrix exponential cannot be computed efficiently
in a similar fashion to the case of a single generator (Equation (8)). An inflexible solution is
to construct a specialized generator combining the contributions of the generators to be
composed. We refer to this as conjunctive composition (Appendix A.3.1). In contrast, we
demonstrate a flexible approach whereby the higher-order commutation relations between
noncommutative generators are used to form a distinct cognitive interface generator, which
encodes the appropriate higher-order interactions between noncommutative generators.

In summary, we lay out three computational techniques for flexibly composing
two or more generators hierarchically, which we refer to as the commutative composition
(Appendix A.2), conjunctive composition (Appendix A.3.1) and interfacing composition tech-
niques (Appendix A.3.2). While the former is appropriate for composing commutative
generators, the latter flexibly composes noncommutative generators. The latter include
rotations in three dimensions, or rotations and translations, which are necessary when
internally modeling sensorimotor interactions with our physical environments, e.g., during
reaching or visually guided movements [30]. These commutation techniques are neurally
realized in the grid stacking architecture (Figure 1C). In the description for a simulated
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example for our model (Section 3.2), we describe how an alternative approach may be lever-
aged to produce sequential composition in a generator sequencing architecture (Figure 1D)
inspired by entorhinal replay [31].

3. Results
3.1. Composing Environment Information for Directed Exploratory Trajectories

Humans are capable of integrating sensory cues and structural knowledge of an envi-
ronment to generate sophisticated directed exploration strategies [36,37]. Indeed, situated
tasks encountered in real-world environments are often specified using several sources
of information and burdened with multiple constraints. Consider finding a route to your
favorite restaurant in a city. Novel information regarding roadworks blocking a major
intersection can be rapidly fused with an established representation of the city structure
in order to support adaptive spatial navigation. With respect to the hippocampus, this
motivates the investigation of how multiple cognitive maps (each representing a different
layer of information about the same environment) can be composed into a single repre-
sentation useful for downstream computation. We describe how this can be accomplished
mechanistically using generator compositionality. This mechanism accounts for the flexible
adaptation of policies to changes in the environment structure, goals and other sources of
information. Such a mechanism may be used, for example, to shift a random exploratory
process to a directed search strategy [37] or to encode a taxic gradient [38].

We use our model to simulate an example whereby an agent has learned that a goal
is not in a particular room of a four-room environment (lower-left room in Figure 2C),
thus the agent should not generate sequences which sample from that room. Stacking
the propagator of a random exploration generator Oexplore (corresponding to a random
walk process) with that of an “avoid room” generator Oavoid in a two-layer entorhinal–
hippocampal network (Figure 1C) generates the requisite trajectories (Figure 2C) in contrast
to the same network but with the “avoid room” propagator removed (Figure 2B). The
“avoid room” generator Oavoid was constructed by modifying a random walk generator
such that rows of the generator corresponding to states s in the avoided room were scaled
according to Os· ← cOs·, where v is a free parameter such that if c = 1 the room is
sampled during sequence generation and as c increases the room becomes increasingly
avoided. From a stochastic processes perspective, this generator modification corresponds
to reducing the dwell time specifically for states in this room to the point that the time
discretized sampling through the EHC tends not to activate these states [32]. A similar
mechanism (though scaling inversely) was previously proposed to model the attraction of
hippocampal trajectory events to goal locations [27]. The spectral components encoding the
“Explore” Oexplore and “Avoid Room” Oavoid generators exhibit heterogeneous multifield
activation patterns with variations in peak firing rates [39].

3.2. Combining Generators for Sequential Compositional Replay

Across several experiments taking place in relatively large and complex environments,
it has been observed that hippocampal reactivations can encode spatial sequences which
are segmented according to an environment topology [40] and are sometimes concatenated
to form extended trajectories across an environment [25]. This process of activation and co-
ordination of sequences requires a sophisticated generative neural architecture. We reason
that, given the causal influence of the mEC in the temporal organization of hippocampal
dynamics, grid populations may contribute to this functionality [24]. In particular, that
the grid sequencing network motif (Figure 1D) can support the temporal concatenation
of sequence generation in hippocampus. Mathematically, consider the composition of
generators corresponding to the central arm Ocentral and lateral arm Olateral of a T-maze
(Figure 1B):

ρt+1 = ρteτcentralOcentral+τlateralOlateral (17)
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where each generator encodes directed transitions in corresponding parts of the state-space
and otherwise implements a random walk. For example, the Ocentral generator is directed
in the central arm only. We simulated this model in a classic task environment in which
a rodent begins in the central arm and then must make a binary choice whether to go
left or right at the junction in order to acquire reward (Figure 3A). Sequences may be
primarily driven by separate grid populations which encode directed dynamics for distinct
topological segments of the maze (blue sequences in panel Figure 3A for the central arm
and the left arm of the maze). Notably, grid cells coordinated with place cells during rest
tended to be directionally modulated [41].The network architecture in Figure 1D facilitates
the temporal composition of these sequences. That is, this network generates an extended
sequence of place activations by first generating the sequence in the central arm, then
generating the sequence in the left arm. The spatial coverage of the composed sequences
was significantly higher than the individual segmented sequences as expected (Figure 3C).
This is consistent with the analysis of extended replays as observed in ripple bursts [25].
Sharp-wave ripples occurring in bursts of up to three distinct events were recorded in
CA1 during the quite awake state. The decoded trajectories were spatially contiguous,
consistent with the idea that they were coordinated to represent longer trajectories across
the environment (CT, Figure 3D). Notably, blocking the mEC input into hippocampal
subfield CA1 using optogenetics disrupted the spatial coordination of replay across ripple
bursts. This resulted in a spatially discontiguous, fragmented replay with a significantly
smaller spatial coverage (MT, Figure 3D), consistent with our simulations.

Figure 2. Neurocompositional mechanism for automatically integrating knowledge into exploratory
sequence generation. (A). Example generator components for the “Explore” (left) and “Avoid Room”
generators (right). (B). In a four-room environment, exploratory steps (20 samples represented by
colored lines) are generated from an initial position (red) in the top-left room. (C). We composed
(Equation (12)) an “Explore” propagator with an “Avoid Room” propagator which instructed the
sequence generation process not to sample the bottom-left room as seen in 20 sampled exploratory
steps. (D). The difference in spatial propagation densities generated by the “Explore” generator and
“Explore + Avoid Room” compositional generator. In particular, red indicates that the probability
of sampling this position is reduced in the compositional architecture due to the “Avoid Room”
generator. (E,F). The spatial propagation densities for the “Explore” and “Explore + Avoid Room”
sequence generators, respectively. As expected theoretically, sequence generation avoids sampling
the bottom-left room.
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Figure 3. (A). Spectral components of the generator matrix which generates directed sequences
through the central corridor. With respect to the activity profiles of grid cells, red (blue) reflects
higher (lower) activity respectively. (B). Spectral components of the generator matrix which generates
directed sequences through the lateral arm (specifically, the left arm). Note that these generator
components indicate variable grid cell activity profiles throughout the state-space beyond the locales
with directed dynamics (i.e., central arm or lateral arm). (C). Two separate sequences are generated
following initialization in the central corridor and at the junction (red). (D). Grid modules are
combined sequentially (Figure 1D) in order to form a compositional propagator generating extended
sequences (blue). (E). Following the analysis of [25], we compared the spatial coverages of the
individual (red) and composed (blue) sequences. This is the spatial extent covered by the generated
sequences as a percentage of the shortest path from the start location in the central corridor to the end
of either arm (where rewards were located in the corresponding experiments). The spatial coverages
of the composed sequences were significantly greater (p < 10−3, Mann-Whitney U test). Error bars
indicate standard error of the mean. (F). Composed sequences covered a significantly greater extent
of the environment similar to sharp-wave ripple bursts exhibiting extended replay, which require
medial entorhinal input [25]. MT refers to mice in which neurotransmitter release from MECIII
pyramidal cells to CA1 is inhibited; CT refers to control mice. Error bars indicate standard error of
the mean.

3.3. Hierarchical Sequence Generation Results in Rate-Mapping Place Codes

It has been observed that neural population activity representing a putative cognitive
map may also encode latent variables independent of their spatial sensitivities [42,43].
In particular, neural codes for spatiotemporal abstractions of experiences in a structured
environment have been shown to emerge in an unsupervised manner in both human
neuroimaging [44] and rodent electrophysiology [29]. Such a conjunctive coding of ex-
ternal spatial variables and internal abstracted variables facilitates the construction of
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sophisticated internal models which can support behavioral flexibility [45]. Indeed, many
computational algorithms for behavioral control emphasize the use of spatiotemporal
abstractions (e.g., hierarchical reinforcement learning) [46]. Naturally, these temporal ab-
stractions may evolve in time at different timescales under distinct dynamical rules, thus
motivating a compositional approach to sequence generation. For example, an animal may
seek to maintain an internal representation of its present context over a longer timescale
compared to encoding the detailed sensory representation of its current position during a
traversal of an environment [47,48]. Thus, we suggest that in internally simulating trajecto-
ries traversing a cognitive map, abstract representations of context and the sensory-specific
representations of position should be separately generated by distinct generators using
different time constants in the sequence generation model [27]. We demonstrate the feasi-
bility of such a mechanism using the stacked compositional architecture (Figure 1C) and
compare the predicted population code to place cell recordings from a rodent navigation
experiment designed to elicit the encoding of a latent environment variable [29].

In this experiment, mice were required to traverse through the same square maze four
times, though reward was only available (in a constant location) at the start of the first
lap (Figure 4A). In addition to their spatial selectivity, the activity of a subpopulation of
place cells was modulated by a preferred lap number. That is, the firing rates of these cells
were higher on a particular lap in its associated place field (Figure 4B). This neural coding
mechanism for spatiotemporal abstraction for distinct laps (or events more generally) is
termed event-specific rate remapping (ESR) [29]. In order to account for the receptive field
structure of ESR cells in our model, we simulated sequence generation using a stacked
network composed of a box generator Obox and a lap generator Olap, which modulated the
activation in a layer of ESR units which tiled a lap × box space (i.e., there was a distinct
ESR unit for each combination of a place in the maze and a lap number). While the place
code reflected an external environment variable, the lap number constituted an abstract
latent code. The box generator Obox was biased to generate a counterclockwise traversal
of the maze, while the Olap generator controlled the iteration through the laps. Thus, the
composition of these two generators led to the generation of multilap trajectories around
the maze according to the dynamics:

ρt+1 = ρteτboxObox+τlapOlap . (18)

No higher-order corrections were required since these generators commuted [Olap, Obox] = 0.
We modeled the distribution of firing rates of each cell in the population using the prop-
agated distribution initialized at each state in the lap × box space (Figure 4C). These
predicted firing maps qualitatively matched those observed in the ESR cells (Figure 4B).
In addition to their spatial selectivity, each unit had a preferred lap on which the firing
rate was maximized. Each ESR cell in the HC layer had a preferred conjunction of lap and
box position. Effectively, the distributed encoding of the composed generator in the mEC
embedded the HC cells in a lap × box space such that the circuit dynamics generated the
appropriate sequential activations corresponding to environment traversals (i.e., moving
through the “same” track for four laps). However, this embedding also engendered a non-
spatial generalization across lap space which resulted in a smaller number of activations of
ESR cells on nonpreferred laps. Note that this effect emerges from the generic compositional
architecture (Figure 1C) which can be applied to any combination of generators.
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Figure 4. (A). The four-lap experiment in [29]. Mice traversed the track counterclockwise and only
received a reward on the first traversal in each trial. (B). Model output from a stacked compositional
architecture combining a lap generator Olap and a track generator Otrack (Figure 1C). (C). Event-
specific rate remapping. A large proportion of place cells had a significantly higher firing rate on
a particular lap of the track as measured by calcium imaging [29]. Thus, the place population rate
coded for abstract events inferred from historical trajectories.

4. Discussion

We described and simulated a compositional generator mechanism for the EHC, which
envisioned grid modules flexibly recruited and deployed based on ongoing cognitive
requirements [27,49]. By comparing the model’s output to two datasets, it was shown how
distinct network architectures related to compositional sequence generation in the temporal
domain (in the form of extended replay) and hierarchically in the abstract spatial domain
(resulting in event-specific rate remapping for a latent state). In the second application of
our model, it was demonstrated that the composition of grid modules encoding a spatial
generator and a lap generator may underpin the empirically observed phenomenon of
event-specific rate remapping in hippocampal population activity. We further propose that
this general computational motif need not be restricted to event-specific rate remapping per
se; it may also be applied in alternate scenarios with different latent variables. However,
our simulations diverge from the present experimental data in two ways. First, while
ESR was observed in the hippocampus, no piece of data was acquired from the entorhinal
cortex, which could be directly related to generator encoding [29]. This stands in contrast
to our simulation of extended replay (Figure 3) which was shown to be causally dependent
on the mEC input [25]. In particular, our model would predict distinct grid modules
with activity profiles evolving over different timescales. However, this seems broadly
consistent with the established role of the entorhinal cortex in regulating the temporal
structure of hippocampal sequence generation [24]. Second, our model pertains to offline
hippocampal reactivations whereas ESR was observed online as the rodent was traversing
the environment [29]. It seems unlikely that ESR would be abolished in hippocampal replay
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given that a core feature of replay is the specific ordered reactivation of neural ensembles
which were active in the awake mobile state. Thus, in order to create a bridge between
theory and experiment, a natural avenue for further investigation would be to perform
simultaneous recording in the entorhinal cortex and to establish whether ESR is preserved
in hippocampal reactivations during sharp-wave ripples.

At the circuit level, the distinct network architectures associated with grid module
composition may be translated into predictions for grid module organization in the mEC.
For example, grid module stacking (Figure 1C) suggests that grid modules, encoding
different generators or higher-order corrections, should be connected in a feedforward
pathway. An empirical challenge to our model is the apparently tight coordination across
grid modules. Even in the absence of sensory input, the correlational structure of population
activity across grid modules is preserved [50]. We consider two possibilities. First, the
tight correlational structure across grid modules has been observed in simple foraging
tasks which obviate the need for cognitively sophisticated computations. Potentially,
recording grid cells in relatively complex tasks may reveal flexible transients in grid
module correlation patterns. Second, gridlike coding has been recorded in many cortical
areas beyond the entorhinal cortex using functional magnetic resonance imaging [51]. It
is possible that grid population activity in these regions do not exhibit a similarly tight
correlational structure as in the entorhinal cortex and thus may more readily admit the type
of compositional mechanisms we propose. Furthermore, the proposed neural architecture
for noncommutative compositions based on Lie theory remains untested since neural
recordings have not been made while noncommutative structural representations are
experimentally manipulated. Potentially, this challenge may be overcome in rodent virtual
reality paradigms whereby arbitrary rotations and translations in sensory input may be
carefully controlled.

Technically, the sequence generation model is based on an exponential mapping from a
representation of the infinitesimal transition structure of a dynamical system (encapsulated
by a generator) to a distribution over states or positions at an arbitrary time point (i.e., the
propagator) [32]. Using an efficient spectral encoding of these latent dynamics, multiple
generators can be parsimoniously composed by stacking or sequencing in order to generate
a variety of distinct distributions of state-space trajectories. The exponential mapping
between generators and propagators is analogous to the exponential map in Lie theory
connecting Lie groups to Lie algebras [28]. Generators form elements of a Lie algebra
while propagators form the associated Lie group. Groups mathematically formalize the
concept of symmetries in a space upon which they act via a group action. In the present
context of dynamical systems, propagators correspond to a group of symmetries acting
upon the set of distributions of states in the system. This perspective highlights connections
to recent work in unsupervised learning seeking to extract disentangled representations
from a given source of data [52,53], which coalesced around the concept of identifying
independent symmetries within a dataset [54–56]. With respect to our work, each of these
symmetries would be identified with a particular generator and associated grid module,
which could then be generatively composed in the EHC architectures we have outlined. A
possible line of future work is to extend such disentangled learning algorithms to the case
of noncommutative generators (i.e., [O1, O2] 6= 0) by adapting the Zassenhaus expansion
(see Appendix A.3.2) for the deep learning context.

In contrast to unsupervised learning and the generative perspective presented here,
alternative approaches to compositionality in cognitive maps have been developed based
on reinforcement learning algorithms [4,9,57] centered around the linearization of the
Bellman equation in Markov decision processes [4]. The most pertinent of these models
constructed a variation on the successor representation [58], referred to as the default repre-
sentation, which similarly exhibited periodically organized firing fields [57]. The default
representation suffers a degree of inflexibility in its dependence on some aspects of an
environment structure which may be circumvented by using the Woodbury matrix identity
for compositionally constructing a cognitive map from component elements. However, a
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drawback of the Woodbury identity as a compositional mechanism is that the representa-
tion of each element depends on the other elements in the composition. For example, the
vector representation vA of an element A depends on B in the composition vA(B) ◦ vB and
must be modified if composing with C as in vA(C) ◦ vC. This necessity for a multiplicity of
representations of the same object undermines the flexibility and efficiency associated with
compositional representation [1,2]. Indeed it is hypothesized that nonlinear computations
would be required for a fully compositional theory of grid coding [57]. We suggest the
higher-order terms in our model, inspired by the Zassenhaus expansion for exponential
maps and reflected in generator interfaces in our model (Appendix A.3.2), may provide the
requisite nonlinearities.

We focused on addressing how composition may manifest in the generation of se-
quential hippocampal reactivations given some of the known neural response profiles and
circuitry of the entorhinal–hippocampal circuit. An important issue for future work is how
the brain chooses which internal sequence generators to compose in what combinations,
given a particular target cognitive computation. Given a multiplicity of distinct generators,
the variety of different mechanisms by which they may be combined and the flexibility
to compose regardless of the commutative structure of the associated dynamical systems
indicate that a large combinatorial space of possible internal simulations may be activated.
We suggest that the recruitment and organization of grid modules for composition may
be mediated via higher-order cortical input according to cognitive control mechanisms.
Indeed, recent human planning experiments have shown how humans manipulate their
internal task representations in order to simplify the associated planning computations [59],
thus demonstrating the utility of such a brain circuit mechanism. Potentially, such com-
putational principles may be generalized beyond spatial cognition tasks to address more
general compositional problems in cognition [60].
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Appendix A. Compositional Mechanisms

Appendix A.1. Composing Noncommutative Propagators via Symmetrization

Consider the case of two noncommutative propagators P and P′ such that [P, P′] 6= 0
then P ∧ P′ and P′ ∧ P correspond to two distinct dynamical systems. However, a mixture
of the two, 1

2 P ∧ P′ + 1
2 P ∧ P′ symmetrizes the contribution of the component propagators,

resulting in a composed propagator such that the order in which the propagators are
considered is irrelevant. We denote this symmetrized propagator composition as

P ∧sym P′ :=
1
2

P ∧ P′ +
1
2

P ∧ P′

=
1
2

GetΛWG′etΛ′W ′ +
1
2

G′etΛ′W ′GetΛW. (A1)

Appendix A.2. Commutative Composition for Compatible Generators

We define a compatible composition as the composition between two structural repre-
sentations encoded within the same spectral representation. If two generators O1 and O2
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commute, O1O2 = O2O1, then they can be simultaneously diagonalized. That is, there
exists matrices G and W, such that

O1 = GΛ1W (A2)

O2 = GΛ2W. (A3)

In this case, the matrix exponential formula (Equation (16)) reduces to

et[O1+O2] = etO1 etO2

= GetΛ1WGetΛ2W

= GetΛ1 etΛ2W

= Get(Λ1+Λ2)W (A4)

Note that this implies that sequence generation based on the composition of any
number of compatible generators may be accomplished by spectral modulation, thus,
delivering an extremely efficient compositional mechanism.

Appendix A.3. Noncommutative Composition for Generators

Appendix A.3.1. Conjunctive Generator Composition

In the propagation via conjunction approach, the generators to be combined, O and
O′, are replaced by their summary conjunctive generator OC := O + O′. In this case, the
propagator circuit makes use of a specialized eigendecomposition OC = GCΛCWC in order
to precisely generate state-space dynamics according to the composition of O and O′:

ρt = ρ0et(O+O′) = ρ0GCetΛC WC. (A5)

Although suitable for composing noncommutative generators, this amalgamation of gener-
ators is inflexible; thus, one would expect such a representational strategy would only be
employed for commonly encountered generative processing.

Appendix A.3.2. Interfaces for Noncommutative Generator Compositions

Consider two generators O and O′ which do not commute (i.e., their Lie bracket
is nonzero):

[O, O′] := OO′ −O′O 6= 0. (A6)

This implies that O and O′ cannot be simultaneously diagonalized and thus composed for
sequence generation via spectral modulation (Equation (A4)). However, it is possible to
approximate the composition of these generators using the Zassenhaus expansion [61,62]:

eX+Y = eXeY
∞

∏
n=2

eZn(X,Y)

= eXeYeZ2(X,Y)eZ3(X,Y) · · · eZn(X,Y) · · ·
(A7)

with terms

Z2(X, Y) =
1
2
[X, Y] (A8)

Z3(X, Y) =
1
3
[Y, [X, Y]] +

1
6
[X, [X, Y]] (A9)

· · · = · · · (A10)

which can be computed in various ways (e.g., via comparison with the Baker–Hausdorff–
Campbell formula). The matrix exponential et(O+O′) can then be approximated as:

et(O+O′) ≈ etOetO′ et2Z2(O,O′)et3Z3(O,O′) · · · . (A11)
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Based on the eigendecomposition of the generators O, O′, Z2, Z3, . . ., the propagator can
then be expressed by concatenating the propagators associated with each of the composed
generators along with commutators contributing higher-order corrections:

ρt = ρ0GetΛWG′etΛ′W ′G2et2Λ2W2 · · · . (A12)

We refer to this as an interfacing generator composition. This method makes use of a series of
spectral decompositions of generator commutation relations (captured by the Lie brackets)
in order to approximate the matrix exponential et(O+O′) to arbitrary precision. Note that the
higher-order corrections (Equation (A11)) vanish when the Lie bracket is zero [O1, O2] = 0
for compatible composition and the relation et(O+O′) = etOetO′ is exact.
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