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A Towards spectral modulation in biologically detailed EHC network architectures
A.1 Hexagonal spectral components based on non-negative generator factorization

Figure N1. We present grid firing maps corresponding to all columns of the G matrix which optimizes Eqn. 20 for a
random-walk generator Orw in an open field environment. The ordering (induced from the G matrix) is approximately
organized from large to small spatial scales. Note that hexagonal firing fields are evident across multiple spatial scales.

In the exposition in the main text, we associate generator eigenvectors with medial entorhinal grid cells. This association
abstracts away several known features of grid cells in order to facilitate a parsimonious analysis of the generator-propagator
framework. In order to pave the way for the implementation of spectral modulation in biologically plausible architectures,
we show how features such as non-negative activation functions and hexagonally organized firing fields may be incorporated.
Generator eigendecompositions correspond to the solution of the following constrained optimization problem:

argmin
G>G=I

||O �G⇤G>||2
F

(19)

where O is a generator and || · ||F is the Frobenius norm. In particular, if the matrix objective is minimized at zero and G

is orthonormal (i.e., G>
G = I) then O = G⇤G> implying that OG = G⇤. Therefore the columns of G are generator

eigenvectors and ⇤ is a diagonal matrix with eigenvalues being the only non-zero components. This is the scenario studied in
the main text where G

> = W models the linear readout from MEC to HC.
We augment the objective Eqn. 19 with a non-negativity constraint leading to

argmin
G>G=I,G�0

||O �G⇤G>||2
F

. (20)

In a recent theoretical study which unifies several models of grid coding via pattern formation theory, it was demonstrated
analytically that the imposition of a non-negativity constraint on an analogous matrix decomposition necessarily leads to
hexagonally organized grid fields55. We examined whether this principle also applies to the matrix decomposition of generators
(Eqn. 20). In Fig. N1, we present the firing maps drawn for the grid code matrix G which optimizes Eqn. 20 for a random-walk
generator Orw based on the Generalized Hebbian algorithm and ReLU activation functions. Hexagonally organized firing fields
were reliably observed at multiple spatial scales. In accordance with the analysis presented in Ref. [55], the emergence of
such hexagonally organized fields are apparently due to the fact that the spatial covariance of generators are similar to those
of difference-of-gaussian functions as commonly implemented for place cell activation maps in continuous attractor network
models. This is because generators tend to have a center-surround spatial structure “inhibiting” locally and “exciting” at
moderate ranges (note that this is “inverted” with respect to difference-of-gaussian place activation maps). Ref. [55] shows that
the resulting spatial covariance, in conjunction with a non-negativity constraint, leads to hexagonally organized firing fields.

A.2 Distributed spectral modulation across a modular, non-orthogonal grid code
Another assumption implicit in our model that is not reflected in the biological reality of the entorhinal cortex is that the
spectral components be orthogonal. Consider the generator similarity transformation O = GDG

�1 where G is not necessarily
orthonormal and D is not diagonal. This implies that the spectral modulation mechanism can no longer be directly applied
since the matrix exponential S(D) = e

�⌧
�1|D|↵ becomes computationally costly. In this section, we elaborate on an extended

model which implicitly “whitens” the incoming grid code thus facilitating spectral modulation in a distributed fashion. This
extension is based on the modular architecture of grid cells in entorhinal cortex30.
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Diagonalizing D = V ⇤V �1 implies that the generator decomposition O = GV ⇤V �1
G

�1 leads to the propagator
⇢t = ⇢0GV S(⇤)V �1

G
�1. However, spectral modulation via S(⇤) now applies to linear mixtures of grid cells based on V .

Consider the calculation of entries in the matrix GV S:

[GV S]
ik

=
X

j

GijSkkVjk (21)

[GV S]
ik0 =

X

j

GijSk0k0Vjk0 (22)

We note that this calculation requires two distinct spectral modulations (by Skk and Sk0k0 ) of the same grid component Gij . In
order to accommodate this computation in the pathway from MEC to HC, we construct a population G̃ of grid cells across grid
modules as

G̃i(jk) = Gik (23)

where i indexes spatial position, k indexes the grid module, and j indexes the cell within that module. In order to process a
full-rank decomposition of D, each grid module k is composed of nG copies of the same grid cell defined by k-th column of G
though a low-rank approximation may be sufficient in general. The aforementioned matrix entries of GV S then become

[GV S]
ik

=
X

j

G̃i(jk)VjkSkk (24)

[GV S]
ik0 =

X

j

G̃i(jk0)Vjk0Sk0k0 . (25)

Note that G̃ can be considered as a tensor of order 3 or a matrix (order-2 tensor) where the cell j and module k indices have
been collapsed to a single index (jk). The receptive field  k

j
the jth cell in module k can be expressed in functional form as

 
k

j
(xi) = G̃i(jk) . (26)

Indeed treating (jk) as a single cell-module index, we re-define the following cell-module spectral modulation matrix S̃ to
have entries

h
S̃

i

(jk)(jk)
= VjkSkk (27)

(28)

implying that

[GV S]
ik

=
X

j

h
G̃ S̃

i

i(jk)
. (29)

In particular, for (⌧,↵)-modulation, the cell-module spectral modulation matrix is

S̃(jk)(jk) = Vjke
�⌧

�1|⇤kk|↵ . (30)

In complementary fashion, we define the readout tensor W̃ according to
h
W̃

i

(jk)l
=

⇥
V

�1
G

�1
⇤
kl

. (31)

The modular spectral modulation circuit in matrix format is then

⇢t = ⇢0G̃ S̃ W̃ . (32)

A.3 Including generators in continuous attractor networks
Continuous attractor networks (CANs) have been used to model path integration19,56,57, spatial localization using landmarks18,20,
and spatial navigation55,58 in the entorhinal-hippocampal circuit. In this section, we discuss the relationship between CAN
models and the generator model. In summary, continuous-time Markov processes (such as the generator model) form a subset of
linear dynamical systems with specific constraints on the evolution matrix which ensure that the system state vector represents
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a valid probability distribution for all time. Therefore, the generator model can be conceptualized as a linearized “effective”
model of the evolution of a neural population’s firing rate vector encoding a spatial distribution. From this perspective, we
outline the relevant connections to firing rate CANs.

In CANs, the firing rate vector s of a recurrent network containing a finite1 population of N neurons evolves according to2

ṡ = �s+ F [W rec · s+ b]

ṡi(t) = �si(t) + F

2

4
NX

j=1

W
rec
ij

sj(t) + bi

3

5 (33)

where the recurrent synaptic weight matrix W
rec serves as the evolution operator and F is a rectified linearity. We use a left

matrix multiplication convention here in network equations which contrasts with the right matrix multiplication convention
used for master equations. A range of combinations of F and W

rec (e.g., reflecting short-range excitation and long-range
inhibition) can be specified which ensures that the system described by Eqn. 33 is an attractor network with a continuous set
of steady-state activity bumps19,20,59. In models of path integration in entorhinal cortex, the firing rate vector s describes the
activity of grid cells which are coupled to velocity-conjunctive cells v in the augmented dynamics equation

ṡ = �s+ F
⇥
W

rec · s+ gW
vel · v

⇤
(34)

where gi are gains which control the period of the corresponding grid cell.
In a study of planning based on the successor representation58, a network of grid cells s receives a representation of an

initial position and a goal position in a coordinate system corresponding to low-dimensional projection of the random policy
successor representation which we consider to be an SR grid code28. The network connectivity structure is constructed such that
the latent SR representation smoothly evolves from the initial state SR grid code to the goal SR grid code over time. A separate
population then continuously reads out the latent SR representation to a place code ⇢ resulting in a preplay-like mechanism. In
our notation, this attractor network model is governed by the differential equation:

⇢̇ = �⇢+ F
⇥
(1� ✏)W rec

⇢+ W
ff
s

in⇤ (35)

where the weight matrices W rec and W
ff correspond to recurrent and feedforward connections (from the SR grid population to

place cells) respectively. The network is parametrized by the input strength , and the decay rate ✏. The feedforward weight
matrix W

ff projects an SR grid code s to the preferred location of each unit ⇢i in an analogous fashion to the W matrix in our
formulation drawn from a generator eigendecomposition.

In the linear regime of F , ⇢ evolves according to

⇢̇ ⇡ �✏⇢+ ⇢
in (36)

with the ratio between  and ✏ controlling the speed at which the system evolves towards the input place code ⇢in ⇡ W
ff
s

in.
Incorporating a generator, we have

⇢̇ ⇡ �✏⇢+ ⇢O + ⇢
in

. (37)

These place cell dynamics are generated by the attractor network:

⇢̇ = �⇢+ F
⇥
(1� ✏)W hip

⇢+W
grid
⌧,↵

⇢+ W
in
⇢

in⇤
. (38)

This architecture has two distinct recurrent pathways corresponding to a “small-loop” within hippocampus (with weight matrix
W

hip) and a “big-loop” (implemented by weight matrix W
grid
⌧,↵ ) which filters hippocampal activity through the entorhinal

cortex. Notably, a common feature of continuous attractor models of EHC is long-range inhibition in the recurrent weights
W

hip. This stabilizes a “bump” of activity during self-localization. In our model, the same mechanism may serve to ensure
that sampling propagates away from a rodent’s location during diffusive exploration due to the strong inhibitory feedback
from the simultaneous concurrent activation of multiple non-local place cells. The big-loop is composed of two layers
W

grid
⌧,↵ = W

hip!ec
W

ec!hip which are specified by the propagator eigendecomposition e
⌧
�1

O = GS⌧,↵W . The weights
W

hip!ec ⌘ GS⌧,↵ transform a place code to a spectrally modulated grid code and W
ec!hip ⌘ W maps from a grid code to a

predictive map place code. There is a single two-layer feedforward pathway integrating input information ⇢in filtered through
the entorhinal cortex W

in = W
in!ec

W
ec!hip.

1See20 for the analogous definitions in terms of a “neural sheet” with an infinite number of neurons.
2Network models are usually endowed with a time constant parameter. We have set the intrinsic time constant of the network to 1 in order to avoid confusion

with the propagator time constant ⌧ .
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A.4 Aligning the distribution of spectral components with the medial entorhinal distribution of grid scales
Although our approach based on decomposing a discrete generator results in a discretization of spatial scales in the resulting
spectral components, this discretization of scales lacks a key feature that is well-established in the modularity of grid cell
populations in the medial entorhinal cortex. Namely, that the spatial scales of grid firing maps are successively separated by a
ratio of approximately

p
2 across distinct grid modules30 (Fig. N2A). We sought to examine whether this scale-ratio principle

posed an irreconcilable obstacle to our proposed spectral modulation mechanism. In a simulation-based experiment extending
that presented in Fig. 2, we spectrally modulated random-walk sequence generation using two distinct propagators constructed
from a dense population composed of all spectral components and a scale-ratio population composed of a randomly sampled
subset with spatial scales adhering to the scale-ratio feature of MEC grid modules (Fig. N2B). For the dense population,
sequence generation was shifted between diffusion and superdiffusion based on (⌧,↵)-spectral density formula (Eqn. 7). With
respect to exploration efficiency, superdiffusive sequence generation (↵ = 0.5) outperformed diffusive sequence generation
(↵ = 1) as expected (Fig. N2C). For the scale-ratio population G

sr, we optimized a spectral density by minimizing the
KL-divergence between the induced scale-ratio propagator P sr

↵
= G

sr
S

sr
↵
W

sr and the target (dense population) propagators
P↵=1 for diffusion and P↵=0.5 for superdiffusion:

S
sr
↵
= argmin

S

KL [Gsr
SW

sr||P↵] . (39)

The spectral density parameters in the diagonal matrix S were initialized according to the (⌧,↵)-spectral density formula. We
hypothesized that including a spectral optimization step may endow the scale-ratio population with the ability to adaptively
mitigate for the absence of spectral components which do not adhere to the scale-ratio modularity principle. In all cases, ⌧
was chosen to equalize the modal propagation across diffusive and superdiffusive propagators. As for the dense population,
superdiffusive sequences significantly outperformed diffusive sequences in terms of exploration efficiency (Fig. N2D). Fur-
thermore, the sequences generated by the scale-ratio population reflected the same qualitative structure as those generated the
dense population as predicted by our theory. Specifically, diffusive sequences (Fig. N2I, J) random-walked based on localized,
approximately Gaussian, propagators, and superdiffusive sequences (Fig. N2K, L) interleaved local steps with large jumps.
These simulations indicate that the scale-ratio modularity of MEC can be incorporated in our model. However we emphasize
that our theory does not necessarily predict this feature of the population grid code. In order to address this, we suggest that
efficient coding models employed to explain the scale-ratio principle in terms of hierarchical spatial encoding may be fruitfully
extended to the case of propagator encoding60,61.
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Figure N2. A. Sampling density of spectral components consistent with the scale-ratio modularity principle. B. Generator
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B Theory of generators and propagators
B.1 Generator constraints
A generator matrix O must satisfy the following constraints23

Oij � 0 , xi 6= xj (40)
Oii  0 (41)

|X |X

j=1

Oij = 0 (42)

for all states xi, xj 2 X . These three contraints have intuitive interpretations. The first constraint (Eqn. 40) implies an attractive
“force” between states, the second constraint (Eqn. 41) enforces a repulsive “force” from any state, and the third constraint
(Eqn. 42) ensures that the total state probability is conserved through time. That is, it is impossible for a particle stochastically
evolving in this state-space to “leave” the state-space.

B.2 Generator interpretation
We have modeled sequence sampling using a master equation (Eqn. 1, main text, omitting ⌧ for simplicity):

⇢̇ = ⇢O (43)

where the notation ⇢̇ indicates the time derivative of ⇢. This equation describes the continuous-time evolution of the state
probability vector ⇢ and has the solution

⇢t = ⇢0e
tO

. (44)
We consider its Taylor expansion in t around the zero timepoint

⇢t ⇡ ⇢0 +


d⇢t

dt

�

t=0

(t� 0) +
1

2


d
2
⇢t

dt2

�

t=0

(t� 0)2 + · · · (45)

= ⇢0 + ⇢0tO +
1

2
⇢0t

2
O

2 + · · · . (46)

Ignoring second-order terms above, we see that O plays the role of the time Jacobian in a linearization of the Markov process
dynamics. Put another way, the generator matrix O defines the state transition dynamics at very short timescales

Oij = lim
�t!0

P(Xt+�t = xj |Xt = xi)

�t
, i 6= j . (47)

Generators in our continuous-time formulation are analogous to stochastic matrices in discrete-time Markov chains and
transition matrices in reinforcement learning models.

B.3 Efficient propagation to non-local timepoints
The master solution ⇢t = ⇢0e

tO requires the computation of a matrix exponential. Therefore, in general, a direct calculation of
⇢t is infeasible since it requires an infinite sum over matrix powers:

e
tO =

1X

n=0

t
n

n!
O

n
. (48)

However, the solution (Eqn. 2) can be computed efficiently using the eigendecomposition of the infinitesimal generator O.
Consider the diagonalization O = G⇤W where ⇤ is a diagonal matrix containing the corresponding eigenvalues of O and
W = G

�1, then

e
tO =

1X

n=0

t
n(G⇤W )n

n!

= I + tG⇤W + 2�1
t
2
G⇤(WG)⇤W + · · ·

= I + tG⇤W + 2�1
t
2
G⇤2

W + · · ·
= G

�
I + t⇤+ 2�1

t
2⇤2 + · · ·

�
W

= G

 1X

n=0

t
n⇤n

n!

!
W

= Ge
t⇤
W . (49)
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The key observation is that the matrix exponential of a diagonal matrix ⇤ is relatively trivial since multiplying a diagonal matrix
by itself simply squares the individual diagonal values.

B.4 Generator eigenspectrum
Each eigenvalue �k = [⇤]

kk
defines the rate of the exponential decay in the corresponding eigenvector over time (note that

�k  0 for any generator matrix O). In the limit t ! 1, the contributions of all eigenvectors decay to zero since e
t� ! 0 for

� < 0 except the the zeroth eigenvector corresponding to the zero eigenvalue (for any t, et� = 1 if � = 0). Therefore, the
unique eigenvector with an eigenvalue of zero encodes the stationary density of the process in the limit as t ! 1. In particular,
it is the (elementwise) square-root of the stationary distribution.

B.5 The random walk generator
We describe the continuous-time random walk process on an undirected, weighted graph X . The random walk generator Orw

is constructed from the weight matrix X of the graph X . The weight matrix components Xij take a strictly positive value
whenever there is an edge connecting two states xi and xj , and is zero otherwise. With respect to the stochastic dynamics
of a random walk on X , the value Xij reflects how likely it is that a step occurs between these two states. Specifically, if
Xij > Xik, then the process is more likely to step to state xj than to xk from state xi. Given a weight matrix X , the random
walk generator Orw is defined as

O
rw
ij

=

(
Xij i 6= j

�
P

j0 6=i
Xij0 i = j

(50)

or Orw = X �D in matrix notation where D is the diagonal degree matrix of the graph X with entries Dii =
P

j0 Xij0 equal
to the “degree” of xi. From a graph-theoretical point of view, Orw ⌘ �LX where LX is the unnormalized graph Laplacian62.
Note that this implies that

P
j
O

rw
ij

= 0 for all xj 2 X consistent with the definition of a generator23.

B.6 To the spatial continuum limit in one dimension
Although we develop our model in the context of discrete state-spaces, it recovers an analogous continuous state-space model
in the continuum limit. We summarize the connection between graph random walks (Section. B.5) and diffusions in continuous
spaces. Localizing the master equation at a particular state xi 2 X , we have

⇢̇i =

|X |X

j=1

[⇢jOji � ⇢iOij ] (51)

This derivation implies that the time derivative of the xi state probability is given by the “current” of particles ⇢jOji jumping
into xi minus the “current” of particles ⇢iOij jumping away from xi. We analyze this local form of the master equation in
the special case where the state-space X is an infinite one-dimensional lattice embedded in the real line at spatial intervals
�x. This puts strong constraints on the form of the O-matrix – it can only be nonzero for neighbouring states. Assuming that
Oij =  is constant for neighbouring states only (i.e., Oij is only nonzero for j = i� 1 or j = i+ 1), the local form of the
master equation is

⇢̇i =

|X |X

j=1

[⇢jOji � ⇢iOij ]

= (⇢i+1 � ⇢i)| {z }
forward difference

+(⇢i�1 � ⇢i)| {z }
backward difference

=  [⇢i+1 + ⇢i�1 � 2⇢i]

= �x
2


⇢i+1 + ⇢i�1 � 2⇢i

�x2

�
(52)

Now consider the limit �x
2 ! 0 such that  is scaled in order to keep K = �x

2 constant. That is, as �x
2 ! 0, ! 1

in order to reflect the same transition rate K integrated over shorter and shorter spatial scales. The other component in the
above expression is the central finite difference scheme for the Laplacian operator r2 (the backward and forward differences
have been highlighted), therefore we arrive at the diffusion equation in the limit �x ! 0:

⇢̇ = Kr2
⇢ (53)

where ⇢ is now a function ⇢(x, t) of both space and time. This derivation highlights how the random walk generator O on a
lattice generalizes the diffusion operator Kr2 (in one dimension).
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B.7 Plane wave solutions in the continuum limit and mathematical conventions
The (continuous) diffusion equation (Eqn. 53) can be solved via separation of variables leading to a family of solutions in
the Fourier eigenfunction basis composed of plane waves e

ikx for real k. In analogy with the proposed EHC mechanism,
matrix multiplication by G (Fig. 2A) corresponds to the Fourier transformation of the initial condition. Then, spectral
modulation corresponds to multiplying each of the resulting spectral components (i.e., weighted plane waves parameterized
by wavenumbers) by e

�⌧
�1

k
2
t and the linear readout via W is the inverse transformation which superimposes the temporally

decayed plane waves to form the propagator at another timepoint. In the continuum limit, the wavenumber can be any positive
real number k 2 R+, however in discretizing the underlying space on a lattice (Eqn. 52), the wavenumbers are discretized.
Generator eigenvalues {�k}k=1,...,|X | are analogous to discretized wavenumbers. Specifically, � ⌘ �k

2 in the continuum limit
for some k. This convention implies that

p
|�k| ⌘ k. Note that this convention induces a reversal of spatial scale ordering.

In the continuum limit, the wavenumber k characterizes the frequency of the plane wave, so higher k corresponds to higher
frequencies and smaller spatial scales. Similarly, the absolute eigenvalues {|�k|}k=1,...,|X | share this ordering such that higher
|�k| corresponds to smaller spatial scales. However, the generator eigenvalues themselves are ordered in reverse since they are
confined to be negative real numbers. When plotting, we order spectral components, density values, and generator eigenvalues,
from smaller to larger spatial scale consistent with generator eigenvalue order. This ordering is inverted with respect to that of
wavenumbers in the continuum limit and generator eigenvalue magnitudes since |�k| = ��k. We use this unusual convention
in order to align the mathematical derivations with the linear algebraic analysis as closely as possible and to simplify the (⌧,↵)
parametrization.

B.8 Consistency of propagator sampling
We model sequence generation as sampling from the ⇢ at successive discrete time points. Note that the propagator can be
initialized at any time t and applied recursively

⇢t+�t1+�t2 = ⇢tGe
(�t1+�t2)⇤W = ⇢tGe

�t1⇤e
�t2⇤W = ⇢tGe

�t1⇤WGe
�t2⇤W = ⇢t+�t1Ge

�t2⇤W . (54)

This equation implies that propagation dynamics are congruent across time. That is, propagating from time t to time
t + �t1 + �t2 results in the same state distribution as first propagating by time interval �t1 and then by time interval
�t2. Therefore, sampling a state xt ⇠ ⇢0Ge

t⇤
W at time t is equivalent to sampling from from a time-step propagation

xt ⇠ ⇢t�1Ge
⇤
W . This implies that generating sequences of states via recursive sampling will result in state sequences that

accurately reflect the probabilistic dynamics defined by the generator O. Notably, this consistency is not guaranteed in the
turbulent regime (↵ > 1, see Section 2.6). Technically, this is due to the fact that turbulent propagators are analogous to
unstable Lévy distributions in the continuum limit24.

B.9 Embedding a transition matrix in a generator
We summarize a simple relationship between transition matrices governing discrete-time Markov chains and generator matrices
controlling continuous-time Markov chains. Given a generator O, we can re-express it in terms of a vector ⌘ = � diagO and a
transition matrix T :

Tij =

(
Oij

⌘i
i 6= j

0 i = j
(55)

⌘i =
X

j 6=i

Oij (56)

O = ⌘(T � I) . (57)

By construction, T is a transition matrix which defines the embedded discrete-time Markov chain generated by O
23. The

parameters ⌘ are known as the jump rates. This equivalence can be applied in the reverse direction. In simulations where the
generator OT is derived from a transition matrix T based on Eqn. 57, we consistently set the jump rate to ⌘ = 15 for all states
as a default.

B.10 Localizing states in time
The jump time Ji for a state xi is the time interval from when a random process arrives at state xi to when it leaves to another
state. Jump rates ⌘i are so-called because they parametrize the exponential distribution of jump times Ji ⇠ Exp(⌘i)23. In
particular, E[Ji] = ⌘

�1
i

. Jump rates determine a temporal localization of state occupation which can be explicitly observed
in the cumulative density function P (Ji  �t) = 1� e

�⌘i�t where �t is the time that the process remains at state xi after
arriving there. Note that the probability of remaining at a state decays exponentially over time according to the jump rate ⌘i.
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Given that Ji scales as viJi ⇠ Exp(v�1
i
⌘i) under positive vi > 0, decreasing the exponential parameter leads to an increase

in expected jump time (and vice versa). Notably, this slows (or speeds) down the generative process at state xi, increasing (or
decreasing) its temporal imprint while leaving the spatial relationship, encoded by the off-diagonal elements of the generator
O, relatively unchanged. This analysis highlights a key distinction between transition matrices and generators. In contrast to
(discrete-time) transition matrices, generator matrices contain an “extra” parameter for each state which controls each states
temporal representation.

C Further technical details
C.1 Motivating ↵-modulation based on the theory of stable distributions in the continuous domain
The stability parameter ↵ is judiciously introduced into the parametrized power spectrum (Eqn. 7, main text) based on the
theory of stable distributions in the continuous domain which characterize anomalous diffusion24. In probability theory, a
distribution p is stable if positive linear sums of random variables which are distributed according to this distribution are also
distributed according to p. This property is stated mathematically as aX + bY ⇠ p for all X ⇠ p, Y ⇠ p and a, b 2 R+. Stable
distributions form a family of probability distributions; many of which can only be expressed through the Fourier transform
i.e., through various parametrizations of the characteristic function ' of the distribution. One parameter in particular, usually
denoted ↵, interpolates between Gaussian distributions and a more general class of stable distributions known as symmetric
Lévy ↵-stable distributions according to the following characteristic function:

'↵,µ,c(k) = e
ikµ�|ck|↵ (58)

p↵,µ,c(x) =
1

2⇡

Z 1

�1
'↵,µ,c(k)e

�ikx
dk (59)

where µ is the mean of the distribution and c is a scale parameter. Comparing this characteristic function '↵,µ,c(k) of
symmetric Lévy ↵-stable distributions and the parametrized power spectrum (Eqn. 7, main text), we see the following parameter
equivalences

µ ! 0

c
↵ ! ⌧

�1

k ! �k . (60)

The µ parameter is zero in the random walk propagator since it is centered at the initial position. The scale parameter c is
analogous to the parameter ⌧ in the propagator where the tempo is paramerized in order to control the scale independent of
↵. Finally, the frequency k in the Fourier transform is equivalent to the generator eigenvalues with the integral transform
being performed by a continuous integral in the continuum limit and by matrix multiplication by W in the discrete state-space
formulation pursued through the main text.

We use the term stability for the ↵ parameter since it is technically relevant based on the theory of ↵-stable distributions
and descriptively appropriate with respect to the changes manifested in generated sequences as ↵ varies. Technically, the stable
property underpins the recursive consistency of propagation. That is, it implies that taking multiple steps in a sequence is
equivalent to taking one large step. Violating this property undermines the consistency between space and time as observed
in the turbulent regime (Fig. 8) which correspond to an unstable distribution in the continuum limit. Descriptively, diffusive
sequences are the “most stable” since they exhibit a constant equivalence between space and time in expectation whereas
superdiffusive sequences contain a degree of instability in this intuitive sense and turbulent sequences are apparently highly
unstable. We emphasize that the technical and intuitive senses of the term “stability” as used here are not completely aligned.
Superdiffusions are stable in the technical sense but, as we suggest, intuitively reflect a type of instability from a spatial
processing perspective. This latter, descriptive, conceptualization of instability is referred to as “anomalous” in the physics
literature (e.g., superdiffusions are a form of “anomalous diffusion”).

C.2 Relationship between propagators and successor representations
The successor representation (SR) M 28,39 is defined as

M =
1X

t=0

�
t
T

t = (I � �T )�1 (61)

where T is a transition matrix, I the identity matrix, and 0 < � < 1 is a discount factor. An entry Tij quantifies the probability
of an agent transitioning from state xi to xj in a single (discrete) timestep. In a Markov decision process, such a transition
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matrix T may be induced from an agent’s policy ⇡ in combination with the environment dynamics P via

Tij =
X

a2Ai

⇡(a|xi)P (xj |xi, a) (62)

where Ai is the set of actions available to the agent at state xi. Under an eigendecomposition of the transition matrix
T = UDU

�1 where D is diagonal, we have

M =
1X

k=0

�
k
T

k =
1X

k=0

�
k
UD

k
U

�1 = U

 1X

k=0

�
k
D

k

!
U

�1 = U(I � �D)�1
U

�1 = U
�
I � �

�1
D

�1
�
U

�1
. (63)

Therefore the SR M and the transition matrix T share eigenvectors28. We assume that there exists a generator matrix O such
that

T = e
O (64)

and therefore T is a propagator evaluated over one iteration t = 1. Then, we can express the SR M in terms of the generator
eigendecomposition O = G⇤W as

M =
1X

t=0

�
t
e
tO =

1X

t=0

�
t
Ge

t⇤
W = G

 1X

t=0

�
t
e
t⇤

!
W = G

�
I � �e

⇤
��1

W = G
�
I � �

�1
e
�⇤
�
W (65)

essentially by substituting G for U and e
t⇤ for D in Eqn. 63. Therefore the generator O, the transition matrix (or time-step

propagator) T , and the SR M can all be represented in the same basis set. If an eigenvalue �k is associated with the eigenvector
�k of the generator O, then the transition matrix T = e

O and SR M have eigenvalues e
�k and 1 � �

�1
e
��k respectively

associated to the same eigenvector �k. In particular, the power spectrum sSR associated with the successor representation is

sSR(�) = 1� �
�1

e
��

. (66)

C.3 State transition velocities: Lévy flights versus Lévy walks
In the physics literature, Lévy distributed jumps with infinite traversal velocities are known as Lévy flights and thus are
manifestly unphysical for objects with nonzero mass (such as foraging rodents)63. In contrast, if state traversals occur with
finite velocities, and no further jumps are possible during the cumulative time taken to traverse between states, then the resulting
process is known as a Lévy walk64. Sequence generation, which may occur at a sampling rate of over 200Hz in the EHC and
contain arbitrarily large state transitions, may be considered to approximate a Lévy flight when considered on a behavioral
timescale measured in seconds to minutes.

In the continuum limit, for an unbounded state-space, Lévy flights pose analytic difficulties since the expected jump
length variance diverges to infinity due to the nonzero probability of arbitrarily long jumps65. For example, the mean squared
displacement measure hr2(t)i = 1. Several methods have been proposed to circumvent this problem which may be collectively
referred to as pseudo mean squared displacement measures65. These methods are based on either (1) rescaling the time-space
relationship to avoid divergence asymptotically, or (2) smoothly eliminating the possibility of extremely long jumps by
adaptively bounding the state-space66. The discrete spatial domains considered here are all bounded and so, effectively, the
latter technique is imposed automatically67.

C.4 Generator-based sampling as a Markov chain Monte Carlo method
In Markov chain Monte Carlo estimation, samples are first generated by a Markov chain and are then used to construct a Monte
Carlo estimator. The challenging aspect of the first step is to design the Markov chain such that it will (eventually) emit a set
of samples which are representative of a target distribution p. If this is the case, then the associated Monte Carlo estimate
will be unbiased. There are many proposals for how this can be accomplished with the Metropolis-Hastings (MH) strategy
being the archetype17,68. Each iteration of a Metropolis-Hastings sampler is composed of two steps. First, a sample x

0 is drawn
from a proposal distribution q centered on the previously sampled value xt. Second, the sample x

0 is noisily accepted at a rate
determined by the acceptance ratio � / p (x0) /p (xt). If accepted, the next iteration is initialized at xt+1 = x

0, otherwise the
proposed sample is rejected and xt+1 = xt. Intuitively, the acceptance ratio is a noisy approximation of the curvature of the
target density p at xt. The accept/reject step encourages the chain to remain at xt if the gradient declines steeply (with a small
probability of exploration) otherwise the chain moves away from xt in order to find regions of high probability density. In
this way, samples are drawn in accordance with the density of p. With respect to the generator framework, we conceptualize
Metropolis-Hastings strategy as being analogous to sequence generation on a lattice based whereby the propagator corresponds
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to the proposal distribution q. For example, diffusive sequence generation based on a random walk generator Orw (Section B.5)
corresponds to the proposal distribution of the random-walk Metropolis MCMC algorithm in the continuum limit68.

Neurally, random walk propagation for MCMC estimation would require an EHC-extrinsic mechanism to accept or reject
samples. However, since generators can flexibly encode non-Euclidean structure, an arbitrary density p can be embedded within
a generator in a way that renders the accept/reject step unnecessary, as is the case in so-called “rejection-free” MCMC samplers.
Specifically, an arbitrary density p can be encoded in a generator such that diffusive sequence generation equilibrates to p. The
necessary generator is the negative Laplacian matrix O[p] = �L[p] which is defined over a lattice embedded in the ambient
space supporting p and approximates the curvature of the density �p on the embedded lattice62,69. The matrix L[p] is known
as the Laplacian matrix since it converges to the Laplacian operator � in the continuum limit on a Euclidean space or, more
generally, the Laplace-Beltrami operator on a manifold. Eigenvectors of L[p] form what is known as a Laplacian eigenmap
which has previously been encountered in non-linear dimensionality reduction69. Whereas previously Laplacian eigenmaps
were fitted to sampled data in order to recover an interpretable representation of p, here we are taking a generative perspective.
A propagator constructed from the negative Laplacian eigenmap �L[p] (including all spectral components) can be used to
sample from p. Sampling from this propagator as a proposal mechanism results in sequences x which will be distributed
according to p asymptotically. From the MH-MCMC perspective, this means that samples need not be rejected in order to
converge to the target density p. Geometrically, implementing MH-MCMC with an agnostic proposal distribution requires
an accept/reject step based on a sampled approximation to the curvature of p. In contrast, in generator-based sampling, the
curvature of p can be embedded in the spectral components of the O[p]-propagator.

C.4.1 Standard techniques to minimize sample autocorrelations in Markov chain Monte Carlo methods
The fundamental challenge in MCMC estimation is that it may take a long time for a high quality of set of samples to be
generated. The quality of samples are primarily determined by two factors17,68. First and foremost, the samples must be
representative of the target distribution so that the Monte Carlo estimator is unbiased. Second, the more uncorrelated the
samples are, the more accurate the Monte Carlo estimator for fewer samples. Fundamentally, both objectives are undermined by
the same issue, namely generative autocorrelations in the Markov chain. With respect to the former, generative autocorrelations
underpin an initialization bias implying that the chain has not “forgotten” where it started and therefore it has not converged.
With respect to the second objective, autocorrelations imply that, even when the chain has converged, successive samples
are strongly related and therefore each sample does not provide much extra information independent of the previous. Note
that generative autocorrelations are similarily problematic both for MCMC algorithms (such as Metropolis-Hastings) and for
generator-based sampling either in the diffusive or superdiffusive regime (Fig. 5F).

In order to extract a set of independent samples which are representative of the target distribution from an autocorrelated
sequence, heuristics such as “burn-ins” and “thinning” are applied in order to decorrelate the generated sequences with respect
to the initialization and at equilibrium respectively68. The former technique refers to removing an arbitrary number of initial
samples under the assumption that they are not drawn from the stationary distribution. Thinning the sequence refers to the
strategy of only accepting samples generated at a period greater than 1 in order to avoid correlations between successive
samples after convergence. Ideally, a sample sequence may be thinned according to the estimated autocorrelation time �tac.
These heuristics are problematic in that they reduce the number of samples available for estimation and thus exacerbate the
fundamental problem of Markov chain Monte Carlo methods, namely that they can take a relatively long time to become
effectively accurate. For example, thinning a sequence at a modest period of ten eliminates 90% of the samples and thus the
sampling chain must be run ten times as long in order to achieve the same estimator variance as that based on independent
samples. This motivates our proposal that the EHC may seek an alternative mechanism to minimize autocorrelated sequence
generation via spectral modulation.

C.5 Spectral minimization of generative autocorrelations
Assuming a set of samples are independently drawn from x

(i) ⇠ p(x), estimation uncertainty can be quantified by the sample
variance Vind [r̂] of the estimator r̂

Vind [r̂] = N
�1Vp [r] . (67)

where Vp refers to the variance of the distribution p. Therefore Monte Carlo estimators become more accurate as the number of
samples N is increased, converging in the limit as N ! 1. Unfortunately, directly generating independent samples from a
stationary distribution is not possible in general. In order address this problem, a widely employed approach, known as Markov
chain Monte Carlo, is to draw samples from random processes which converge on the target distribution in the limit of infinite
time68. Estimation based on sequences generated by the generator model falls into this category.

There are two major limitations of sampling algorithms based on Markovian dynamics such as the generator model or
Markov Chain Monte Carlo estimators17. First, assuming that the sequence is not initialized at the (unknown) stationary
distribution, then any samples generated prior to convergence will not be reflective of the target stationary distribution and
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thus suffer from an initialization bias. Second, equilibrium autocorrelations imply that, even after the chain has converged,
successive samples from the chain are correlated and thus are not independent (see Section C.4.1 for a more detailed discussion).
Fundamentally, both of these issues relate to the autocorrelation function of the generative sequence model. If the generated
sequences are strongly autocorrelated then they will take a long time to “forget” the initialization and then will still be correlated
at equilibrium. Statistically, these autocorrelations imply that the sample variance Vdyn [r̂] of a Markov chain Monte Carlo
estimator is proportional to the integrated autocorrelation time �tac

17

Vdyn [r̂] = �tacN
�1Vp [r] = �tacVind [r̂] (68)

where

�tac =
1X

�t=0

CX(0,�t) (69)

and CX(0,�t) is the autocorrelation function3 of the random state variable X at lag �t. Note that the Markov chain Monte
Carlo estimator achieves the same sample variance (Eqn. 67) of independent samples when �tac = 1 which is the minimum
possible value of �tac (since CX(0, 0) = 1).

Standard practice in Markov chain Monte Carlo estimation is to implement a range of heuristics to minimize the auto-
correlations within the set of samples used for estimation (see Section C.4.1 for a brief description). Fundamentally, these
heuristics are typically based on discarding many autocorrelated samples. In contrast, we have suggested that a better solution
for a biological agent endowed with grid-like representations is to directly minimize generative autocorrelations via spectral
modulation. In order to study the autocorrelation function for sequence generation in discrete state-spaces, we consider a
binary one-hot random vector X such that, on each time step t, Xi(t) = 1 if and only if state xi 2 X is sampled on time step
t. Otherwise the value of Xj , j 6= i, is zero. We refer to this random process as an occupator. The autocorrelation function
CX(0,�t) of a random process X at lag �t from an arbitrary initial time step 0 is the expectation

CX(0,�t) = hX(0)X(�t)i . (70)

This expression captures the repetitiveness, the degree of localization, or the periodicity in the values taken by the process X as
a function of time lag �t. The occupator autocorrelation is then

CX(0,�t) = hX(0) ·X(�t)i (71)

=

* |X |X

i=1

Xi(0)Xi(�t)

+
(72)

=

|X |X

i=1

hXi(0)Xi(�t)i . (73)

Since Xi(0)Xi(�t) = 1 if and only if state xi is sampled at time 0 and at lag �t,

hXi(0)Xi(�t)i = p(Xi(0) = 1, Xi(�t) = 1)

= p(x = xi, t = 0) p(x = xi, t = �t|x = xi, t = 0) . (74)

We show that CX can be expressed analytically in terms of the power spectrum s(�). Define the diagonal matrix S with
diagonal entries drawn from the power spectrum s(�). Then

CX(0,�t) =

|X |X

i=1

hXi(0)Xi(�t)i (75)

=

|X |X

i=1

p(x = xi, t = 0) p(x = xi, t = �t|x = xi, t = 0) (76)

=

|X |X

i=1

⇢0(xi)
⇥
GS

�t
W
⇤
ii

(77)

3Note that in the main text (e.g. Eqn. 9), we use the compressed notation CX(t) ⌘ CX(0, t) implicitly setting a time point of 0 if not otherwise stated.
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Define the tensor � of spectral components with entries

�kij = �k(xi) k(xj) (78)

recalling that �k = G·k and  k = Wk· are the column vectors of G and row vectors of W respectively. Then, the autocorrelation
function is

CX(0,�t) =

|X |X

k=1

|X |X

i=1

⇢0(xi)�kiis
�t

k
(79)

where ⇢0(xi) is an initial distribution of states. Given a spectrum s, this expression measures the probability that the sequence
generation process will return to a state for each lag �t. Linear constraints are necessary to ensure that a spectrally-modulated
propagator defines a valid transition matrix23. Specifically, for all i, j = 1 . . . |X |, we require that

|X |X

k=1

�kijsk � 0

|X |X

j,k=1

�kijsk = 1 . (80)

The first constraint ensures that all elements in the propagation matrix are positive and the second constraint ensures that each
row sums to one thereby preserving probability density under time evolution. Furthermore, spectrum bounds are necessary to
ensure that the stationary state distribution (encoded by the first eigenvector �1) in the diffusive regime is preserved:

s1 = 1 (81)
|si|  1 , i > 1 . (82)

In summary, the optimal spectrum smac defining the sequence generation process with minimal integrated autocorrelation
time �tac is defined as

smac = argmin
s

�tac(s) (83)

= argmin
s

X

�t

|X |X

k=1

|X |X

i=1

⇥
⇢0(xi)�kiis

�t

k

⇤

s.t.

8
>>><

>>>:

P|X |
k=1 �kijsk � 0

P|X |
j,k=1 �kijsk = 1

s1 = 1

|si|  1 , i > 1 .

(84)

In practice, we optimized for smac using standard minimization routines in SciPy70. Note that the integrated autocorrelation time
objective is dominated by the time-step dynamics �t = 1 (since CX(1) � CX(�t > 1)) which is linear in the spectrum. This
characterization of autocorrelation depends only on the time lag �t and is computed with respect to the prior state distribution
⇢0 at a distinguished initial time point t = 0. This prior may be taken to be a one-hot vector encoding physical position in
an environment or the stationary state distribution ⇢1. In the former case, minimizing �tac corresponds to eliminating the
initialization bias, whereas in the latter scenario, this procedure resembles equilibrium autocorrelation minimization.
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C.6 List of major symbols
symbol meaning

X state-space
x position or state, x 2 X

may be indexed by location (xi, xj , . . .) or time (x0, x1, . . . , xt)
x position or state sequence vector
O infinitesimal generator
⌧ tempo parameter controlling spatiotemporal scale
↵ stability parameter controlling non-locality
P propagator
⇢t position/state density at time t

1x position/state density with x one-hot
G grid cell matrix and generator matrix factor
S spectral modulation matrix

s(�) spectral modulation as a function of generator eigenvalue
sk spectral modulation value associated with spectral component k
W linear readout from MEC to HC and generator matrix factor
�k k-th generator eigenvector �k = G·k
P place cell matrix
⇤ generator eigenvalue matrix
� generator eigenvalue taking values � 2 (�1, 0]

intuitively associated with spatial scale
�k generator eigenvalue associated with eigenvector number k

note that lower eigenvectors have larger spatial scales
 k row vector of W ,  k = Wk·
� spectral tensor
CX autocorrelation function for random variable X

�t time displacement
�tac integrated autocorrelation time
smac minimal autocorrelation spectrum
X weight/adjacency matrix of a graph
LX unnormalized graph Laplacian associated with X

r2 Laplacian operator (r2 = r ·r where r is the gradient operator)
T transition matrix
M successor representation
� discount factor
⌘ jump rate
J jump time

d(t) spatial distance (e.g., Euclidean) as a function of time
K diffusion constant
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