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The entorhinal–hippocampal circuit (EHC) is thought to 
contribute to a diverse range of cognitive functions1,2. An 
important motif within this circuit is the sequential nonlocal 

reactivation of hippocampal place codes3,4. The archetypal instan-
tiation of this functionality is ‘replay’, which refers to a temporally 
compressed representation of a previously experienced trajec-
tory embedded within hippocampal sharp-wave ripples (SWRs)5. 
Initially observed during sleep, replay is thought to subserve 
long-term memory consolidation in neocortical networks6. More 
recently, sequential nonlocal hippocampal reactivations have been 
observed that do not fit with this classical definition of replay7. 
While rodents quietly rest, ensemble place cell activity appears to 
random walk through a cognitive map of a familiar environment 
instead of veridically replaying a rodent’s physical traversals8. In 
the awake immobile state, SWR-related trajectory events encode 
new goal-directed routes9. During active movement, an alterna-
tive form of sequential nonlocal reactivation may also occur. Theta 
sequences, which typically phase precess through local positions, 
may sweep ahead to remote locations along potential paths available 
to the rodent10–12.

Spanning these diverse forms of sequential hippocampal  
representation, we consider a unified algorithmic theme concep-
tualizing the hippocampus as a sequence generator13, contributing 
sample trajectories drawn from cognitive maps to computations 
being executed downstream in the cortex. Establishing neocorti-
cal memory traces via synaptic plasticity may be characterized as 
a learning process extracting information from experiential replay 
during sleep14. Hypothetical environment trajectories, encoded 
in SWRs or theta sequences, may be thought of as samples of 
possible future behaviors that are input into a planning algo-
rithm for the purposes of optimizing exploration and prospective 
decision-making15,16. We suggest that this generalized perspective 
imposes a substantial computational obligation on the EHC as a 
generative sampling system since the performance of algorithms 

can vary substantially depending on the statistical and dynamical 
structure of the input samples17. This motivates our computational 
hypothesis that hippocampal sequence generation is systemati-
cally modulated to optimize the resulting sampling regime for the  
current cognitive objective. Since previous computational EHC 
models have tended to focus on relatively specific applications such 
as localization18–20 or vector-based navigation21, the necessity to 
modulate sequence generation between cognitive algorithms is not 
addressed. Therefore, the broader computational viewpoint taken 
here raises unique theoretical questions, such as what alternative 
modes of hippocampal sequence generation are to be expected? By 
what neural mechanism can such distinctive dynamics be system-
atically regulated? And how can this be efficiently achieved for large 
relational spaces (for example, graphs) that may be nonspatial in 
nature22?

We develop an algorithmic framework and associated neural 
mechanism by which distinct dynamical modes of sequence gen-
eration may be parsimoniously realized in a pathway between grid 
cells in the medial entorhinal cortex (MEC) and place cells in the 
CA1 subregion of the hippocampus2. The critical technical innova-
tion is the characterization of grid cells as encoding infinitesimal 
generators of hippocampal sequence generation. A generator is a 
mathematical object that specifies how a system evolves in continu-
ous time23,24. Conceptualizing hippocampal sequence generation 
as a dynamical system operating over a cognitive map, genera-
tors then determine the probabilities with which a given position 
will be reactivated at any time. We propose that MEC grid cells 
encode generators in a decomposed format. This enables a simple 
neural mechanism to flexibly interpolate hippocampal sequence 
generation between qualitatively and quantitatively distinctive 
regimes from random walks with Lévy jumps to generative cycling  
(Fig. 1a–e). In a phenomenological linear network model of hippo-
campal sequence generation, we demonstrate the systematic modu-
lation of grid cells arrayed dorsoventrally as a function of spatial 
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scale in the MEC layer and the consequential effects on place cell 
activity. In simulating this model, we show that our theory recon-
ciles a diversity of empirical observations in sequential hippocam-
pal reactivations.

results
Spectral modulation in an entorhinal–hippocampal network 
model of sequence generation. How might sequences of positions 
in an environment or, more generally, states of an internal world 
model be simulated within the brain? This question can be posed 
formally within a generative probabilistic framework as how to 
sample state sequences x = (x0, x1,…, xt) from a probability dis-
tribution p(x) defined over state-space X . A typical example con-
sidered in this study is the sequence distribution p(x) based on the 
hypothetical decision-making policy of a rodent in an experimental 
task (Fig. 1f) as this will allow us to relate sequences generated by 
our model to the sequential nonlocal reactivations encoded in hip-
pocampal place cells. We consider the state-space X  to be discrete as 
this allows us to study both continuous spatial domains (via discret-
ization) and inherently discrete spaces (for example, graphs) in a 
common formalism based on matrix-vector products. When study-
ing discretized continuous state-spaces, we interpolate discrete 
probability distributions where appropriate. Analogous techniques 
in purely continuous domains replace matrix-vector products with 
integral transforms24. Therefore, our model may in principle be 

applied across a wide range of cognitive maps, relational spaces, 
mental models or intuitive physics models22,25.

An internal simulation is initialized based on a distribution p(x0) 
over states at an initial time t = 0. We compactly denote this distri-
bution over initial states as ρ0 = p(x0). How can this initial distri-
bution (for example, a rodent’s initial position in an experiment) 
be combined with dynamics information (the rodent’s behavioral 
policy) to compute the state distribution ρt = p(xt) at an arbitrary 
timepoint t in the future (where the rodent will be)? To answer 
this question, we need to understand how the state distribution ρ 
evolves in time. This is characterized by its time derivative ρ̇ =

dρ

dt . 
Assuming that the dynamics depend only on the current state and 
that they do not change over time, the evolution of a state distribu-
tion ρ is determined by a master equation

τρ̇ = ρO (1)

where O is a matrix known as an infinitesimal generator23,26. The 
generator O encodes stochastic transitions between states at short 
timescales (see Supplementary Math Note for details). For example, 
in a T maze, an entry in O could encode the local bias for a left turn 
at a critical junction leading to reward acquisition (Fig. 1f). The 
tempo parameter τ modulates the speed of the simulated evolution. 
The master equation (equation (1)) indicates that a dynamical sys-
tem is economically encoded in an initial state distribution ρ0 and a 
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Fig. 1 | in different neurophysiological, behavioral and cognitive states, distinct modes of sequence generation are active in the entorhinal–hippocampal 
system. Drawing on the empirical and computational literature, we depict several modes of sequence generation supported by our model in a rodent 
experiment example. each circle corresponds to a hippocampal place representation, and connecting lines indicate a place activation sequence. a, The 
exploration patterns of animals35 and humans48, as well as hippocampal place trajectories36, interleave large ‘jumps’ between environment positions with 
local steps consistent with search efficiency optimization. This distinctive regime of sequence generation is referred to as superdiffusive. b, Motivationally 
salient locations are over-represented in hippocampal activity, as reflected in place activations at the reward location R9,11. c, Generative cycling refers to 
the alternating representation of future possibilities in the hippocampal code that occurs during prospective decision-making12. Here, the rodent evaluates 
the candidate behavioral trajectories of turning right (pink) or left (gray) at the junction. d, Diffusive random-walk trajectories are observed in hippocampal 
reactivations during rest8. Colors indicate the successive time steps at which each position is expected to be sampled along each trajectory (from yellow 
to red). Diffusion indicates that, on average, each sampled position will be spatially displaced from the previous one by a similar distance. e, In hierarchical 
reinforcement learning and human decision-making49, environments may be processed across multiple spatiotemporal scales, for example, using room 
abstractions in this four-room world. f, In this T-maze task, where a rodent seeks reward R to the left (avoiding the right turn leading to no reward, !R), the 
behavioral policy of the rodent is encoded in the generator O, which biases sequence generation to the left xL at the junction xJ. Sequence generation of 
hypothetical behavioral trajectories xR is then biased toward the reward.
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generator O since the distribution ρt of possible states of the system 
at any time t can be retrieved from this information.

The master equation (1) has an analytic solution:

ρΔt = ρ0e
τ−1ΔtO. (2)

Given an initial state distribution ρ0, the propagator eτ−1ΔtO is 
a time-dependent matrix that evolves ρ0 through the time interval 
Δt to ρΔt by propagating the initial state probability mass ρ0 across 
the state-space under the dynamics specified by O. Fixing Δt = 1, 
the propagator Pτ = eτ−1O can be applied iteratively to generate 

state distributions on successive time steps as ρt+1 = ρteτ−1O. State 

sequences characterizing the simulated evolution of the system can 
therefore be generated by recursively applying this time-step propa-
gator Pτ and sampling

xt+1 ≈ 1xtPτ (3)

where 1x is a one-hot vector indicating that state x is active with a 
probability of one. This will result in state sequences x that accu-
rately reflect the generative distribution of sequences p(x) defined 
by the generator O and initialization ρ0 (Supplementary Math Note).

Directly computing the propagator Pτ =
∑

∞

n=0 (n!)
−1 (

τ−1O
)n 

is challenging since it requires an infinite sum of matrix powers. In 
the Supplementary Math Note, we show that Pτ can be computed 
efficiently using a generator eigendecomposition O = GΛW as

Pτ = Geτ−1ΛW. (4)

Furthermore, the facility to freely modulate the tempo τ of 
propagation is a highly desirable property. This would enable coarse 
hierarchical sequence generation to be run expeditiously rather 
than at the true rate of evolution of the external world or, if time 
allows, an internal simulation could be slowed down for a more 
fine-grained analysis27–29. We show that, given this representation 
(equation (4)), the tempo τ can be efficiently manipulated via a 
computational mechanism that we refer to as spectral modulation. 
Since Λ is the diagonal matrix of O eigenvalues, its exponentiation is 
trivially accomplished by exponentiating the eigenvalues separately 
along the diagonal 

[

eτ−1Λ
]

kk
= eτ−1λk. Multiplication by the G 

matrix projects a state distribution ρt on to the generator eigenvec-
tors ϕk = [G].k, which we refer to as the spectral components of the 
propagator. Note that we use this term as a broad reference for gen-
erator eigenvectors or components of alternative generator decom-
positions, potentially constrained by other considerations such as 
nonnegativity, which facilitate spectral modulation (Supplementary 
Math Note). In this spectral representation, time shifts simply cor-
respond to rescaling according to the power spectrum

sτ(λ) = eτ−1λ. (5)

Each spectral component ϕk is scaled by sτ(λk) based on its eigen-
value λk. Finally, W projects the spectral representation of the future 
state distribution ρt+1 back onto the state-space X . This spectral for-
mat factorizes time and position within an environment such that a 
linear readout can generate a propagator for any timescale.

We apply the spectral propagator (equation (4)) recursively to 
generate state sequences according to

xt+1 ≈ 1xtGSW (6)

where S = eτ−1Λ is the power spectrum matrix. This generator-based 
model of sequence generation can be minimally realized in a 
linear feedback network model of EHC (Fig. 2a) in which the  

activity profiles of the network units are qualitatively consistent 
with those of grid cells in the MEC and place cells in the hippocam-
pus. Specifically, we equate the spectral components ϕk (columns  
of G) with grid cells topographically organized by spatial scale along 
the dorsoventral axis of MEC (Fig. 2b)30. The linear readout W from 
the MEC layer to the hippocampal layer embeds the the future state 
distribution ρt+1 in a predictive place code28. See the Supplementary 
Math Note for further considerations regarding biological plausibil-
ity and connections to other EHC models.

The critical mechanism of spectral modulation, which sets the 
tempo of propagation, is the systematic regulation of MEC grid cell 
output as a function of spatial scale according to the power spec-
trum s. At the implementation level, we hypothesize that spectral 
modulation may be accomplished via gain control or grid rescaling 
according to top-down cortical input. An example of the latter would 
be if a small-scale grid firing map is enlarged to a medium scale 
to increase MEC power at medium scales and reduce MEC power 
at small scales. Notably, grid modules appear to have the capacity 
to rescale independently30, do so as a function of experience and 
presumed cognitive processing31 and cause a consistent rescaling of 
place fields in the hippocampus when the grid scale is perturbed32. 
More generally, several empirical results support the critical contri-
bution of entorhinal input toward the coherent temporal organiza-
tion of hippocampal activity33,34. Indeed, beyond tempo control set 
by τ, we study several other parametric and nonparametric classes of 
power spectra with highly distinctive causal effects on hippocampal 
sequence generation. Each of these EHC settings will be motivated 
as an optimized operational mode for a particular cognitive process.

Foraging in an open environment. Consider a rodent foraging 
in a large open environment. Without cues indicating where food 
may be located, its exploration process must search each loca-
tion. How might it generate the next environment position to 
inspect? Approaches to this problem range in terms of computa-
tional complexity from serial visitations minimizing repetitions 
(imposing increasingly burdensome memory and planning costs) 
to random sampling (requiring no memory). Although generators 
could be adaptively designed to implement sophisticated forms of 
uncertainty-driven exploration (for example, based on Gaussian 
processes), here we focus on maximizing the efficiency of random 
sampling in the low-complexity limit. Assuming a random-walk 
generator Orw (suggesting the rodent has no information as to where 
food may be located), we study the effect of spectrally modulating 
tempo in generating the next position to visit. If the rodent repeat-
edly samples target states at large spatial scales (τ → 0) then it will 
repeatedly traverse the environment expending too much energy. 
In contrast, a small-scale search pattern (τ ≫ 0) will lead to the 
rodent oversampling within a limited area and taking too long to 
fully explore the environment. Defining exploration efficiency as 
the fraction of the environment visited per cumulative distance tra-
versed, neither tempo regime delivers a satisfactory return.

This ubiquitous conundrum has been extensively studied in the 
foraging literature, leading to the Lévy flight foraging hypothesis35. 
Theoretical analysis and simulations have shown that exploration 
efficiency is maximized by interleaving jumps (that is, sampling 
successive positions separated by a large distance) with local search 
patterns. Effectively, this strikes an balance between local searches 
(τ ≫ 0) and global reorientations to new positions in an environ-
ment (τ → 0). It is proposed that these distinctive search dynamics 
are naturally selected for in animals across a wide variety of eco-
logical niches due to their universally advantageous properties and 
draws its name from the Lévy distribution, which characterizes the 
distribution of possible next positions in a Euclidean space35. This is 
a heavy-tailed distribution and therefore in addition to a high prob-
ability of sampling a nearby position, it has a small probability of 
generating a large jump to a more distal region.
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We show that analogous heavy-tailed propagation distributions 
can be accessed in our model via an alternative form of spectral 
modulation, thus providing a mechanistic account regarding how 
such sampling may be accomplished in the EHC. Based on math-
ematical considerations (Supplementary Math Note), we introduce 

the stability parameter α, which determines the entorhinal power 
spectrum sτ,α according to

sτ,α(λ) = e−τ−1
|λ|α

. (7)
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Fig. 2 | Spectral modulation of grid cell activity alters the statistical structure of hippocampal sequence generation. a, Abstract eHC model. ρt and ρt+1 
are the propagation distributions over environment position at time steps t and t + 1, respectively. The weight matrices G and W are identified with the 
generator decomposition O = GΛW. s(λ) is the power spectrum expressed as a function of the generator eigenvalue λ associated with each unit (that is, 
spectral component) in the MeC layer. HC, hippocampus. b, Firing maps of units in the MeC layer that exhibit periodic tuning across a range of spatial 
scales reminiscent of grid cells. Spectral components are equivalently ordered by their eigenvector numbers k and generator eigenvalue magnitudes |λk| 
from large to small scale. c, Characteristic changes in the power spectrum associated with the diffusive and superdiffusive regimes are highlighted by the 
corresponding power ratios relative to a baseline. τ-modulated diffusion (α = 1, τ = 0.5, thick red line) results from a downweighting (or upweighting) of 
small-scale (or large-scale) spectral components while α-modulated superdiffusion (α = 0.5, τ = 1, thick blue line) upweights both small- and large-scale 
components but suppresses them at medium scales. d, Diffusive (α = 1, red lines) versus superdiffusive (α = 0.5, blue line) propagation densities 
ρτ,α = 1x0GSτ,αW in a linear track environment where x0 corresponds to the location of the rodent. By modulating the tempo τ = 0.5, diffusive propagation 
can sample over larger distances (thick red line) compared to the baseline diffusion (τ = 1). However, only superdiffusive propagation facilitates an 
extraordinary jump to the reward (R). Note that these continuous propagation densities have been interpolated from the discrete propagation vectors 
output by our model. Further technical details are presented in extended Data Fig. 5. e,f, Single diffusive (e) and superdiffusive (f) sequences in an open-box 
environment. The color code from yellow to red reflects the sampling iteration (from the initial sample to the final). Sequences are initialized at the center 
of the environment. g,h. Multiple diffusive (g) and superdiffusive (h) sequences, each distinguished by color. i, Mean and standard error of exploration 
efficiency for individual trajectory simulations (n = 20). j, Parallelized exploration efficiency across all the trajectories in g and h. k, Cumulative histogram of 
step sizes for diffusive trajectories (red) and superdiffusive trajectories (blue). An event refers to the successive representation of two different locations. 
Step size is measured by euclidean distance. Therefore, the x axis reflects the euclidean distance between successively sampled locations during sequence 
generation. l, Statistical analyses of hippocampal recordings in Pfeiffer and Foster, Science (2015)36 indicated that hippocampal trajectory events were 
superdiffusive since the distribution of step sizes between state activations (blue) was heavy tailed. This qualitatively matched the simulated cumulative 
histogram for superdiffusions in k in contrast to the prediction (red) based on simulated sequences composed of states separated by equal step sizes. In our 
model, the latter corresponds to diffusive sequence generation with τ varied to match the velocities exhibited by the recorded trajectory events.
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For α = 1, the power spectrum is unchanged, sτ,1 = sτ (compare 
equation (5), Fig. 2c). This results in random walks that correspond 
to diffusions in continuous spaces; therefore, we refer to the α = 1 
regime as diffusive (Supplementary Math Note). Setting α < 1, the 
linear readout from the MEC layer in our circuit model reflects a 
propagator with probability mass smoothly redistributed to remote 
positions from the nearby positions (Fig. 2d). Sequence generation 
with α < 1 is referred to as superdiffusive (Methods). Although both 
superdiffusive and diffusive sequence generation are ultimately 
truncated by the limited extent of an environment, they are dif-
ferentially sensitive to the possible range of spatiotemporal scales. 
Stability modulation results in a scale-invariant sampling process 
since sampling can occur at any spatiotemporal scale simultane-
ously on each iteration. In contrast, τ specifies a limited range of 
spatiotemporal scales and therefore tempo modulation can never 
lead to scale invariance. This suggests that α and τ modulation 
have fundamentally distinct effects on the statistical structure of 
sequence generation (Extended Data Fig. 1).

We compared diffusive (α = 1, Fig. 2e) and superdiffusive (α = 0.5, 
Fig. 2f) sampling in an open-box environment typically used in rodent 
foraging experiments8,36 postulating that EHC generates candidate 
exploratory trajectories that the rodent subsequently pursues physi-
cally. Whereas diffusive behavioral trajectories failed to fully explore 
all areas in the simulated window of time (Fig. 2g), superdiffusive 
trajectories visited positions in an approximately homogeneous dis-
tribution across the entire arena (Fig. 2h), thus highlighting the flex-
ibility with which superdiffusions adapt to an arbitrary environment 
scale. With respect to the standard measure of exploration efficiency, 
superdiffusions explored more positions in the open environment as 
a function of distance traversed than diffusions (Fig. 2i,j). This is also 
the case for structured state-spaces, such as compartmentalized envi-
ronments with obstacles (Extended Data Fig. 2). Consistent with our 
theoretical arguments and simulations, superdiffusive sequential acti-
vation of hippocampal place cells (Fig. 2k,l) and superdiffusive rodent 
behavioral trajectories have been observed8,36 in foraging experiments 
where rodents are required to explore environments with essentially 
random distributions of food locations.

Goal-directed trajectory events with heterogeneous jumps. We 
relate our model operating in the superdiffusive regime to het-
erogeneous sequences of hippocampal representations exhibit-
ing jump transitions to motivationally salient locations9,11. In the 
first experiment we simulated, SWR-related place cell activity 
in the CA1 subregion of the dorsal hippocampus was recorded 
from rats engaged in alternating random foraging and spatial 
memory tasks9. In the spatial memory task, a single reward loca-
tion in the open square arena was repeatedly baited and thus the 
rat could remember this predictable home location and engage in 
goal-directed navigation to acquire the reward. The application of 
neural decoding analyses revealed the rapid sequential encoding of 
positions across the environment while the rats were task engaged 
but immobile (Fig. 3a–d). This study provided evidence that the 
hippocampus encodes new goal-directed paths to memorized loca-
tions that were over-represented in the generated trajectories (‘away 
events’, Fig. 3b,d). We simulated the generation of trajectory events 
in this experiment with our model to demonstrate the computa-
tional mechanism by which a memorized location may be stored 
in a generator representation and remotely activated exclusively in 
the superdiffusive regime. We subtly manipulated a random-walk 
generator O leveraging a distinguishing feature of the generator–
propagator formalism, namely the ability to independently modify 
the spatial and temporal statistics of sequence generation in a spa-
tially localized manner (Supplementary Math Note). Specifically, 
we controlled the remote activation of the rewarded home loca-
tion by scaling the generator transition rates at home states accord-
ing to v−1Oh·, where h indexes home states xh ∈ X  and v is a  

scalar specifying their motivational value (Methods). Initializing 
the rodent’s position away from the home location and activating 
superdiffusive sequence generation in our EHC model (Fig. 3e–h) 
results in trajectory events reflecting random walks with biased 
jumps to the rewarded location (Fig. 3f,h). Using the same genera-
tor in the diffusive regime (Fig. 3i–l) does not over-represent the 
home location (Fig. 3j,l). Comparing propagators between sequence 
generation regimes explains this remote activation as the localized 
increase in sampling probability exclusively at the home location in 
the superdiffusive regime (Fig. 3m–p).

In another study of multi-goal foraging in a circular track envi-
ronment11, it was observed that theta sequences exhibited a strong 
dependency on the currently targeted goal. As the rodent initialized 
their behavioral trajectory, theta sequences exhibited a nonlocal, 
nondiffusive pattern of activation. Place cells near the goal desti-
nation were frequently active along with place cells near the rat’s 
actual position within individual cycles. We constructed a genera-
tor O, which encoded a goal-directed policy of clockwise movement 
around this circular track, with turn-offs to the three goal locations 
located at the intervals G1, G2 and G3. Assuming that the rodent is 
located at the start position, we generated sequences in the diffusive 
(α = 1, Fig. 4a) and superdiffusive (α = 0.5, Fig. 4b,c) regimes. We 
observed that the latter had a strong tendency to generate jumps to 
goal locations interleaved with local roll-outs as observed empiri-
cally (Fig. 4d,e). This effect emerges from the fact that remote goal 
locations are over-represented in superdiffusive propagation  
(Fig. 4f). Taking the distance around the track to the furthest 
encoded location as the look-ahead distance, the distributions of 
look aheads scaled with the distance to the target goal as recorded 
in theta sequences (Fig. 4g). After placing the rodent at locations 
along the circular track before each of the goal turn-offs, and with-
out changing any parameters, the sequences exhibited short-range 
look aheads over similar distances(Fig. 4h).

These effects emerge from the specific combination of superdif-
fusive sequence generation and a goal-sensitive generator. In the 
linear track (Fig. 2b–d) and open-box (Fig. 2e–h) simulations where 
random-walk generators were used, it was shown that the superdiffu-
sive regime engenders spatially extended jumps between states. Due to 
the metric correspondence between space and time (set by a specific 
velocity), this can be equivalently stated as superdiffusions generat-
ing large jumps through time13: that is, superdiffusive sequence gen-
eration interleaves state transitions over short timescales (resulting in 
small spatial steps) with state transitions over long timescales (result-
ing in large jumps). Since a goal-directed policy results in goal loca-
tions being over-represented in the stationary distribution of internal 
simulations, the probability of sampling such states in a superdiffu-
sion is relatively high. Therefore, as observed in Fig. 4f, superdiffusive 
propagation specifically over-weights the goal locations (regardless of 
the current position of the rodent, Extended Data Fig. 3).

Generative cycling emerges from minimally autocorrelated sam-
pling. A critical element of many planning algorithms is prospec-
tively evaluating possible future trajectories. To accomplish this, 
model-based simulations are often used such as in Monte Carlo 
Tree Search37. These methods rely on sampling sequences of states 
in a state-space, retrieving rewards associated to those states and 
computing Monte Carlo estimates of choice-relevant objectives. For 
example, an agent can produce an estimate r̂ of the average reward 
expected to be accrued based on sampled states (x1,…, xN) and a 
reward function r(x) as

E [r] ≈ r̂ = 1
N

N
∑

i=1
r (xi) (8)

and then input such estimates into an action selection algorithm. 
Sequentially sampling states from a propagator, retrieving the  
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associated rewards and estimating the expected average reward via 
equation (8) forms a Markov chain Monte Carlo (MCMC) algo-
rithm in the service of planning (Supplementary Math Note).

The quality of an MCMC estimator (equation (8)) is quantified 
by its sample variance Vdyn [̂r], which reports how variable the esti-
mate will be across different sample sequences17. A major source of 
sample variance in MCMC, which also afflicts the generator model 
in both the diffusive and superdiffusive regimes, is generative auto-
correlations. Technically, the sample variance is proportional to the 

integrated autocorrelation time Δtac (equation 68, Supplementary 
Math Note):

Δtac =
∞
∑

t=0
CX(t) (9)

where CX(t) is the autocorrelation function of the state variable X  
at step t. Intuitively, Δtac is the average number of iterations that a 
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Fig. 3 | Simulating the over-representation of remote, motivationally salient, locations. a–d, (first row) empirical data from Pfeiffer and Foster, Nature 
(2013)9 (reproduced from ref. 9, Nature Publishing Group). e–h, (second row) Superdiffusion simulations. i–l, (third row) Diffusion simulations.  
m–p, (fourth row) Propagators for away events in superdiffusive and diffusive regimes. These are plotted for single location initializations (m,n) and for 
multiple location initializations (o,p). a,e,i, (first column) empirical and simulated trajectory events (black lines) while the rodent was located (red circles) 
at the home location (blue square). b,f,j, (second column) empirical and simulated trajectory events while the rodent was located away from home.  
c,g,k, (third column) estimated sampling density for home events (home location indicated by dotted white square). d,h,l, (fourth column) estimated 
sampling density for away events. This set of panels contains the key comparison. Note that only superdiffusive away events (h) but not diffusive away 
events (l) remotely show over-representation in the home location consistent with the data (d). In our generator model, this is explained by the remote 
propagation probabilities that are exclusively observed in the superdiffusive regime (m,o). Diffusive propagators with sufficiently low tempos (thereby 
sampling over large spatial scales) can jump from away locations to the home location. The critical distinction is that superdiffusive propagation does 
not require delocalization to a large spatial scale to jump to the home location. Superdiffusions can uncover motivationally salient locations stored locally 
within the generator regardless of spatial distance.
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sampling algorithm requires to generate a single independent sam-
ple. Although samples may be generated on each iteration t = 1,2,3, 
we can expect new independent samples to be generated on itera-
tions t = Δtac, 2Δtac, 3Δtac. Standard practice in MCMC estima-
tion, such as with the Metropolis–Hastings algorithm, is to simply 
discard autocorrelated samples (see Supplementary Math Note for 
further details). This brings into focus a sharp trade-off between 
sampling time and estimation accuracy, which necessarily burdens 
any cognitive function dependent on Monte Carlo estimation15.

We show that a fundamentally different solution to the 
autocorrelation problem of MCMC estimation is available for 
generator-based sampling. The need to dispose of correlated sam-
ples may be obviated by directly optimizing the power spectrum 
to minimize autocorrelations in the emitted sequences. The result-
ing sequences are then composed of approximately independent 
samples, thus facilitating rapid online simulation, estimation and 
responsive action loops. Technically, we show that the integrated 
autocorrelation time Δtac of the state variable X can be expressed 
analytically in terms of the power spectrum s(k) (where k indexes 
the spectral components), and the constraints necessary to ensure 
that the resulting propagator is valid are linear (Supplementary 
Math Note). Therefore, the minimally autocorrelated power spec-
trum smac(k) can be identified using standard optimization rou-
tines. We hypothesized that minimally autocorrelated sequence 
generation should result in a sampling process that methodically  
shifts between the most salient points of divergence under  

dynamical evolution of the system. As a counterpoint, consider 
the genesis of autocorrelations in diffusive sequences (Fig. 2e,g). 
In diffusions, nearby states tend to be closely associated within the 
sampling dynamics due to overlapping propagation distributions. 
Therefore, there tend to be relatively likely paths back to previously 
visited states leading to a large integrated autocorrelation time Δtac. 
A minimally autocorrelated sequence generation can avoid this pit-
fall by restructuring its propagation dynamics to successively sam-
ple states that do not admit likely paths between them.

We studied this computational hypothesis in the context of a spa-
tial alternation task where a rodent was required to make a binary 
decision at a junction leading to a reward or not12. Alternating repre-
sentations of hypothetical future trajectories were identified at sev-
eral levels of neural organization in the dorsal hippocampus while 
the rats approached the critical junction (but not after the junction 
turn). In particular, place cells encoding the left and right arms 
fired in an alternating fashion within the theta band. Assuming that 
the rodent would initiate planning as it approached the junction 
where it is required to make a decision, we assumed that hippo-
campal sequence generation would shift to a regime of minimally 
autocorrelated sampling (Fig. 5a). The power spectrum smac, which 
minimized the integrated autocorrelation time (equation (9)) bore a 
dissimilar profile to the parametrically modulated power spectra sα,τ 
(Fig. 5b). The most notable distinction was the emergence of coun-
terweighted spectral components across spatial scales. The heaviest 
negative weighting applied to the spectral component encoding a 
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Fig. 4 | theta sequences generated during a goal-directed foraging experiment exhibited nonlocal transitions in place coding. Within individual theta 
cycles, sequences of place representations in the hippocampus emanated from the current position of the rodent (X) and proceeded anticlockwise around 
the track with characteristic jumps to one of three goal locations where food was available (labeled G1, G2, G3) (from Wikenheiser and Redish, Nature 
Neuroscience (2015)11. each circle corresponds to a decoded location, and the color indicates the temporal order within the sequence (from yellow to red). 
a, Diffusive sequence generation (α = 1) typically proceeds with localized sequential place activations regardless of the target goal location. b,c, Shifting to 
the superdiffusive regime (α = 0.5), sequence generation activated local place representations as well as remote goal locations (goal 1 in b and goal 2 in c) 
but not intervening locations. d,e, empirically observed patterns of place activation in theta sequences. Superdiffusive goal-directed sequence generation 
matches the key qualitative features with goal-directed sequences representing local positions near the animal, as well as jumps to goal locations 
that were over-represented within theta sequences. Panels d and e reproduced from ref. 11, Nature Publishing Group. f, Diffusive propagator and the 
superdiffusive propagators from the initial X location are plotted. The jumps to goals are explained by the unique bumps in the superdiffusive propagators 
at the remote goal locations. g, The same stability parameter (α = 0.5) generated nonlocal, goal-jumping trajectories (model) with varying look-ahead 
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(model) and error bars reflect the standard error (n = 50 simulated trajectories). h. Near the goal locations, look-ahead distances were the same across 
goals, as superdiffusive sequence generation is attracted to goals and thus automatically alters the look-ahead distance.
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high-level hierarchical decomposition of the environment that we 
refer to as the dominant spectral component (DSC) (Fig. 5c).

Despite the fact that the minimally autocorrelating propagator 
(Fig. 5d) samples states in both arms at the junction similar to a 
diffusive propagator, minimally autocorrelated sequence generation 
subsequently deviated radically from diffusion. Sequences gener-
ated under minimally autocorrelated spectral modulation (orange, 
Fig. 5e) were strongly reminiscent of the reported generative cycling 
phenomenon in that successive state samples were repeatedly drawn 
from the opposing arm in the maze12. These stood in stark contrast 
to diffusive sequences generated both before and after the junction 
(red, Fig. 5e). Diffusively propagating into one of the arms means 
that it is relatively likely that a sequence will remain in that arm 
for a long time thus increasing the generative autocorrelation. This 
would indicate that the rodent’s internal simulation does not have 
sufficient diversity (in particular, it has not sampled the other arm) 
to make an informed decision. As predicted, estimated autocorrela-
tions (Fig. 5f) were lower in generatively cycling sequences (orange) 
compared to the diffusive (red) or superdiffusive (blue) regimes. In 
contrast to diffusive propagation (Fig. 5g), minimally autocorrelated 
sampling leverages the hierarchical structure of the environment  
to generate sequences that efficiently sample across dynamically 

divergent components of the environment based on repulsive prop-
agation (Fig. 5h).

Diffusive hippocampal reactivations for structure consolidation. 
In contrast to the superdiffusive sequences observed during ran-
dom and goal-directed foraging, offline hippocampal reactivations 
exhibit a diffusive operational mode during rest8. In an experiment 
where rats foraged for randomly dropped food pellets, spatial tra-
jectories were decoded from SWRs during a postexploration rest 
period (‘sleep SWRs’) as well as during immobile pauses in active 
exploration (‘wake SWRs’). The SWR sequence generation regime 
is statistically identified by estimating the mean displacement 
function (MD) MD(t) = ⟨||xt − x0||⟩ from the decoded position 
sequences x = (x0,…, xt) (Methods). On a log–log plot, the MDs 
of diffusions and superdiffusions are linearly related to time with 
different slopes α−1 determined by stability24. By studying the slope 
of estimated MDs, it can therefore be concluded that while wake 
SWRs were superdiffusive (α < 1, consistent with rodent move-
ments), sleep SWRs encoded random walks (α = 1). Furthermore, 
sleep SWRs were recorded over a range of velocities as parametrized 
by tempo τ in our model (with τ decreasing as velocity increases). 
Notably, SWR trajectory velocity was uniquely related to fast gamma 
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power suggesting that it may vary as a function of MEC input8,38. 
We reconcile these two SWR modes within our model from two 
perspectives. Mechanistically, we show that spectral modulation can 
interpolate between the distinct statistical regimes of SWRs associ-
ated with sleep versus wake by fitting the empirical MD measure-
ments as a function of stability α (Fig. 6a) and that the empirical 
sleep SWRs step distributions (Fig. 6b) are well-approximated by 
diffusive propagators (Fig. 6c).

Furthermore, in support of our computational hypothesis that 
the statistical dynamics of sequential hippocampal reactivations 
are flexibly altered between exploration or planning in the wake 
state and memory consolidation during rest, we studied perfor-
mance metrics for exploration, learning and Monte Carlo estima-
tion algorithms based on the sequence generation of input state 
sequences (Fig. 7a–d). We simulated a learning process whereby 
an environment representation, formalized as the successor rep-
resentation (SR), is acquired through error-driven learning based 
on state sequences28,39. The SR is a predictive state representation 
whereby the representation of each state encodes the rate at which 
other states will be visited in the future (Supplementary Math 
Note). While superdiffusions provide better exploration efficiency  
(Fig. 7b), and minimally autocorrelated sampling exhibits the 
best sampling coverage (Fig. 7d), both are conspicuously infe-
rior in terms of the SR consolidation accuracy (Fig. 7c). Diffusive 
sequence generation resulted in the best learned approximation to 
the random-walk SR (Fig. 7e–l). Note that this result can be under-
stood theoretically as diffusions embody fundamental spatial biases 
in their statistical structure (Methods). Although we focused on 
consolidating the random-walk SR as reflecting a homogeneous 
predictive map in the absence of salient states such as rewards or 
landmarks, diffusive sequence generation is also relatively opti-
mized for consolidating directed predictive maps (Extended Data 
Fig. 4).

Dysregulated entorhinal input degrades spatiotemporal consis-
tency of hippocampal activity. To flexibly shift between different 
regimes of sequence generation, our model requires that the spec-
tral modulation of MEC activity be coherently balanced across grid 
modules. Dysregulated entorhinal activity may imbalance spectral 
modulation, thereby disrupting the spatiotemporal structure of  

hippocampal representations. In particular, spectral modulation 
with stability α > 1 defines a pathological regime of sequence gen-
eration that we refer to as turbulence. Despite seemingly minor 
differences in the power spectra from diffusion α = 1 to turbulence 
α = 2 (Fig. 8a), the sequences generated differ greatly. Turbulent 
sequences are highly irregular and fail to reflect the structure of 
the underlying space (Fig. 8b). In simulation, increasingly turbu-
lent sampling propagates approximately uniformly across states 
independent of the initial position and propagators may even fail to 
preserve the state probability density. We suggest that the erroneous 
modulation of grid cell activity may therefore contribute to psycho-
pathologies in cognitive processes dependent on coherent sampling 
from internal representations.

In particular, a core positive symptom of schizophrenia is con-
ceptual disorganization. Identifying conceptual representations 
with nodes in an internal semantic network, this formal thought 
disorder is indicative of a progressive degradation of the relational 
structure between nodes during sequence generation consistent 
with that observed in the generator model as EHC dynamics is 
shifted deeper into the turbulent regime. The resultant disor-
der in the hippocampal layer of our model is reminiscent of that 
observed in mouse models of schizophrenia40. In one study, electro-
physiological recordings of neural activity in the CA1 hippocam-
pal subregion of forebrain-specific calcineurin knockout mice were 
acquired as the mice freely explored40. Such knockout mice had 
previously been shown to exhibit several behavioral abnormalities 
reminiscent of those diagnosed in schizophrenia such as impair-
ments in working memory and latent inhibition. The knockout of 
plasticity-mediating calcineurin leads to a shift toward potentia-
tion and we sought to highlight a possible mechanism by which the 
resulting over-excitability may disrupt hippocampal SWRs through 
the lens of our theory. In particular, we model the effect of calcineu-
rin knockout as an imbalance in the spectral regulation of entorhi-
nal input into the hippocampus. Notably, the relationship between 
the temporal displacement of spikes between distinct cells given the 
spatial displacement of their place fields was abolished under cal-
cineurin knockout40. This is the key quality of turbulent sequence 
generation. We made a direct quantitative comparison based on 
a spiking cross-correlation analysis41. In the diffusive regime, the 
cross-correlations between place cells as a function of the distance 
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between their place fields embodies the expected relationship 
between spatial and temporal displacements across the population 
code whereby place cells at a greater distance from one another tend 
to activate after larger time intervals (Fig. 8c). Performing the same 
analysis with the same grid code but with a turbulent spectral mod-
ulation returns qualitatively distinct results (Fig. 8d) in which the 
cross-correlation is essentially independent of place field distance 
consistent with a complete loss of sensitivity to the underlying spa-
tial structure in sequence generation. While the former reflects the 
characteristic ‘V’ pattern observed in healthy hippocampal activ-
ity (Fig. 8e), the latter replicates the key characteristic of disordered 
hippocampal sequences recorded from this mouse model of schizo-
phrenia40 (Fig. 8f).

Discussion
Sequential hippocampal reactivations traversing cognitive maps are 
viewed as a potential neural substrate of internal simulation at the 
systems level5,13,42. We have sought to address some of the apparent 
variability in the structure and statistics of sequence generation in 
the EHC8,9,11,12,36,40,41. Our contributions are threefold. A principled 
motivation for activating distinct sequence generation regimes 
depending on the current cognitive process was established through 

simulation and technical arguments. A linear feedback network 
model of EHC was proposed that implements the new technique of 
spectrally modulating sequence generation. This provides a mecha-
nistic account of how random-walk processes may be smoothly 
interpolated with superdiffusive foraging patterns and minimally 
autocorrelated sampling. Applications of this model across a vari-
ety of environment geometries, behavioral states and cognitive 
functions were shown to explain variations in the spatiotemporal 
structure of hippocampal sequence generation and behavior across 
a number of experiments.

An open computational question is how might the optimal 
sequence generation regime for a particular cognitive algorithm 
and environmental scenario be identified within the brain. We sug-
gest that this arbitration problem is subsumed within the frame-
work of computational rationality that seeks to understand how 
the parameters of resource-limited algorithms may be optimized43. 
Previous analyses within this broad remit have focused on opti-
mizing the distribution from which samples are drawn during 
decision-making44 or how state sequence propagation should be ini-
tialized and directed for reinforcement learning16. Generators may 
be custom designed to embed such desirable algorithmic features 
within sequence generation.
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Our neural network model is designed to provide conceptual 
clarity regarding how entorhinal spectral modulation may explain 
variations in hippocampal sequence generation. An integration of 
other anatomical and functional features of the broader entorhi-
nal–hippocampal system into this model is warranted. Inspiration 
may be drawn from continuous attractor network models of theta 
sequences and replay45 and MEC electrophysiological recordings 
that have gleaned evidence that MEC input plays a causal role in 
refining the temporal organization of hippocampal activity33,34. Our 
simulations are based on sampling from the propagated state distri-
bution on each network iteration assuming a noisy readout to the 
hippocampal code. Possible extensions of this model include the 
sampling of multiple steps, or subsequences, on each iteration that 

may be regulated by intra-hippocampal processing between CA3 
and CA1 (refs. 7,34). Indeed, a more comprehensive generalization of 
our model would also operationalize the spectral modulation mech-
anism along the trisynaptic pathway based on the projections from 
MEC layer II (ref. 46). With respect to theta–gamma coupling38,47, 
sequence generation may be embedded within gamma oscilla-
tions alternating between hetero-associative and auto-associative 
intra-hippocampal dynamics36.

The causal relationship between the power spectrum of MEC 
activity and the statistical dynamics of hippocampal sequence  
generation is a core prediction of our model that has not been 
directly tested to our knowledge. In particular, spectral modulation 
between diffusive sequence generation (associated with learning and 
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Fig. 8 | Dysregulated spectral modulation cause pathological forms of hippocampal reactivations. a, An imbalance in the entorhinal power spectrum 
(purple line) results in turbulent sequence generation. b, As demonstrated in an open-box environment, the resulting trajectories essentially sample 
randomly and thus are inconsistent with the spatiotemporal structure of the environment. c,d, Propagator cross-correlograms organized as a function 
of place field distance in the diffusion (c) and turbulent (d) regimes. e, The same analysis of electrophysiological recordings in the rodent hippocampus 
revealed the characteristic V structure as in the structurally consistent diffusion regime (c) (Karlsson and Frank, Nature Neuroscience (2009); image 
reproduced from ref. 41, Nature Publishing Group). Intuitively, the V structure reflects the fact that it takes time for the process to diffuse over space as a 
function of the distance between locations. f, In a genetic mouse model of schizophrenia (Suh et al., Neuron (2013)40), the time interval between place cell 
activations in mutant mice did not reflect the spatial distance between the corresponding place fields, and the resulting cross-correlograms resembled 
those computed in the turbulent regime (d).
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consolidation during rest) and superdiffusive dynamics (expected 
during active exploration and goal-directed behavior) specifies dis-
tinct profiles of total grid population activity along the MEC dor-
soventral axis potentially underpinned by variations in neural gain 
and grid rescaling. Furthermore, minimally autocorrelated hippo-
campal sequence generation (appropriate for sampling-based plan-
ning and inference) specifies new nonparametric spectral motifs 
that may be identifiable experimentally.
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Methods
Simulation details. Linear track simulation. Propagator simulations were based 
on a generator defining random walks on a discretized linear track state-space 
composed of ten states. Propagation densities were interpolated between states. The 
(τ,α)-modulated power spectrum sτ,α(λ) is defined as

sτ,α(λ) = e−τ−1
|λ|α

(10)

and the relative (τ,α)-modulated power spectrum rτ,α(λ) is then

rτ,α(λ) =
sτ,α(λ)

s1,1(λ)
(11)

The latter is normalized for each propagator to facilitate comparisons across 
propagators

r̄τ,α(λ) =
rτ,α(λ)

∑
k rτ,α(λk)

(12)

This measures the fraction of the total power spectrum accounted for by each 
spectral component relative to the baseline (τ = 1, α = 1) (Fig. 2).

Pfeiffer and Foster, Science (2015). A square enclosure containing no obstacles 
was represented by a 50 × 50 lattice of states. The stability parameter was set to 
α = 1 and α = 0.5 for diffusive and superdiffusive exploration, respectively. The 
tempo parameter was set to τ = 1 in both cases. The simulation results reflect 20 
sequences composed of 75 samples each. Superdiffusive exploration was more 
efficient than diffusive across a range of parameter values and changes in the size 
of the environment. The performance advantage of superdiffusion diminished as 
the environment size was reduced as all states became locally accessible to diffusive 
exploration and global repositioning was rendered unnecessary. In Fig. 2k, the step 
size was computed using the Euclidean distance between states embedded within 
an ambient continuous space.

Pfeiffer and Foster, Nature (2013). The square arena containing no obstacles was 
discretely represented by a 25 × 25 lattice of states (Fig. 3). The random-walk 
generator Orw (Supplementary Math Note) on this graph was modified to embed 
the rewarded home location by scaling the generator transition rates at home states 
according to

Oh· ← v−1Oh· (13)

where h indexes home states xh ∈ X  and v is a scalar quantity specifying the 
motivational value of home states. This leverages a unique property of the 
generator formalism whereby the temporal localization of states can be controlled 
independently of spatial structure (Supplementary Math Note).

In our simulations, the stability parameter was set to α = 1 and α = 0.5 for 
diffusive and superdiffusive sequence generation, respectively. The tempo 
parameter was set to τ = 5 in both cases and the motivational value parameter 
v = 100. Trajectory events were simulated via sequence generation emanating from 
a home location (‘home events’) and four away locations (‘away events’). The home 
location was specified as four adjacent states close to the center of the environment 
and the four away locations were placed in each corner. Twenty home events and 
ten away events per away location, each composed of ten samples, were generated. 
Sampling density was estimated from these trajectory events as the number of 
samples of each state divided by the total number of samples. This function was 
computed for each combination of condition (home and away) and sampling 
regime (diffusive and superdiffusive). The results were robust to variations in 
simulation parameters and the number of trajectory events.

Wikenheiser and Redish, Nature Neuroscience (2015). The circular track was 
discretized into 24 states with three further states connected at regular intervals on 
the outside of the circle serving as the goal locations (Fig. 4). Consistent with the 
behaviors acquired by the rats during task training, the generator used reflected a 
goal-directed behavioral bias in favor of anticlockwise movement around the track 
and turn-offs to goal locations. For sequence generation targeting a particular 
goal, the generator reflected a bias toward staying at the goal location once it was 
reached to reflect the time taken for the reward to be delivered, consummatory 
behaviors and trial termination. In the multi-goal scenario (Extended Data Fig. 
3), the generator transition structure facilitated a return to the main track after 
goal arrival thus enabling multiple goal locations to be visited. Simulations of theta 
sequences (for both the individual sequence plots and look-ahead estimations) 
were composed of five iterations to match the number of decoded positions in 
the figure panels from ref. 11. As usual, stabilities α = 1 and α = 0.5 were used for 
diffusive and superdiffusive sequence generation, respectively, with τ = 1 in both. 
Look-ahead distances were computed as the distance from the initial position 
to the furthest sampled position. The initial position was the start location 
marked by an X in the ‘trajectory initiation’ simulations (Fig. 4g). In the ‘goal 
arrival’ simulations, the initial position for a particular targeted goal was located 
in the center of the preceding track segment. The mean and standard error of 

the look-ahead distances were estimated from 50 samples (an arbitrary number 
ensuring a stable estimate). The spatial scale (that is, the numeric distance between 
two adjacent states) was set to roughly match that of the circular track used in the 
experiments.

Kay et al., Cell (2020). We assumed that the rodent’s decision-making policy 
reflected a directed run to the junction, a random choice to turn left or right, 
followed by a directed run to the end of the maze arm where a reward might be 
available (Fig. 5). A small transition rate opposing the directed transitions was 
added to ensure reversible and aperiodic propagation dynamics and numerically 
stable analyses. We initialized the spectrum in the diffusion regime and applied 
standard minimization routines (scipy.minimize) to solve the constrained 
optimization problem (equation 84, Supplementary Math Note). We minimized 
the integrated autocorrelation time summed over nine lags. Autocorrelations were 
estimated from 100 generated sequences of 20 iterations each.

Note that the planning objective (equation (8)) is based on the average-reward, 
infinite-horizon formulation of the Markov decision process51. This facilitates a 
simpler exposition and a more direct analogy to MCMC methods. For episodic and 
discounted MDPs, a similar but more complicated analysis may be pursued. In this 
case, the expected cumulative reward forms the value function objective requiring 
Monte Carlo estimation over sampled sequences. This may be accomplished 
via MCMC over the joint distribution over states across time points, or else by 
applying sequential Monte Carlo methods. The integrated autocorrelation time Δtac 
remains the key objective for sampling optimization since it is also reflected in the 
sample variance of the expected cumulative reward value function estimator.

Stella et al., Neuron (2019). We hypothesized that, although the rodents’ physical 
experiences conformed to superdiffusive trajectories, the EHC recapitulated 
the environment experiences in the form of diffusive trajectories to facilitate 
accurate spatial consolidation, reconsolidation and maintenance processes during 
sleep. This is because diffusive replay embodies fundamental inductive biases 
regarding space, namely that space has a smooth, localized and isotropic structure. 
In contrast, superdiffusive trajectories are superior for foraging as shown in 
simulation (Fig. 7) and theoretical studies35. Therefore, we also conjectured that, 
in contrast to sleep SWRs, SWRs occurring during immobile periods interleaved 
with active foraging (that is, ‘wake SWRs’) may reflect nonlocal, superdiffusive 
spatial trajectories to leverage a cognitive map of the environment in support of 
exploration. In particular, a superdiffusive sequence of positions may be generated 
during pauses, which the rodent can then follow physically to search for the food 
pellets.

Although rodents were familiar with the foraging environment at the time 
of the electrophysiological recordings and thus only a modest amount of new 
information may be required to be consolidated, theoretical and computational 
studies have shown that offline replay is crucial to maintaining precise storage 
and retrieval mechanisms for previously learned information14. This need is 
particularly pressing to avoid interference due to ongoing cortical plasticity as 
well as the consolidation of new information such as that drawn from experiences 
in new environments as is the case in the protocol of the current experiment. 
Furthermore, from a spatial cognition perspective, offline replay may contribute 
toward ‘map refinement’8. That is, increasing the accuracy and resolution, and 
reducing any residual uncertainty, with respect to the structure of cognitive maps 
that may already be consolidated to a degree.

To show that our model supports the switching of the desired hippocampal 
sampling regime between diffusion for consolidation to superdiffusion for 
exploration based on monosynaptic input into the CA1 region, we modeled the 
MD curves of generated sequences under diffusion and superdiffusion. These 
curves were plotted as a function of the time interval Δt and compared to the 
empirical MDs for sleep and wake SWRs, respectively (Fig. 6a). The MD curves 
of sequence generation under the generator model were analytically computed 
(equation (17) and Methods) as a function of the stability parameters α and 
diffusion constants K estimated in ref. 8 (Fig. 6a). To focus on stability modulation, 
which specifically distinguishes between diffusion and superdiffusion, we averaged 
the empirical data over trajectory velocities (parametrized by the τ parameter 
in our model). In addition to SWR trajectories, we also plot the MD curve for 
the median velocity behavioral trajectories (‘behavior’, Fig. 6a). The spatial scale 
parameter σ was set to four to approximately match the ratio between the spatial 
(y axis) and temporal (x axis) scales. This parameter can be thought of as defining 
what constitutes a centimeter in our simulation and does not affect the relative 
slopes in MD.

Sampling optimization. A ‘ring-of-cliques’ state-space with five cliques composed of 
ten states each was studied (Fig. 7a). The definitive feature of this state-space is that 
it exhibits a community structure. Within each clique, states are densely connected, 
however, only sparse connections are available between cliques. Rings of cliques are 
commonly studied in the field of social psychology as a proxy for social networks, 
and it is known that human structure learning is sensitive to such community 
architectures50. Propagators were based on the random-walk generator on this 
state-space. The power spectrum was parametrized such that the propagator shape 
was approximately equalized across conditions. This was accomplished by equating 
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the modal probability (that is, the ‘height’) of the propagator distributions. In 
particular, the stability parameter was set to α = 1 for diffusion and α = 0.3 for 
superdiffusion. These settings were paired with tempo parameters of τ = 20.7 
and τ = 3.1, respectively. The integrated autocorrelation time over nine lags was 
minimized for the minimal-autocorrelation propagator. See Extended Data Fig. 7 
for a visualization of sample sequences.

For exploration, a single sequence of 100 samples was generated and 
interpolated into a complete behavioral trajectory. For SR consolidation, sequences 
of 50 states were generated. The learned SRs (Fig. 7f–h) reflect the estimated SR 
after 500 sequences. For sampling, ten sequences of ten states each were generated 
(resulting in 100 states sampled in total). These are conceptualized as chains 
running in parallel as is commonly implemented in MCMC algorithms and 
thus the sampling coverage was computed by integrating over the ten sequences 
generated. For exploration and sampling, all sequences were initialized at a fixed 
state presumed to correspond to the position of the agent in the environment 
while, for learning, sequences were randomly initialized according to the stationary 
distribution as if randomly sampling from memory during sleep. All curves reflect 
the mean and standard error over 50 simulations.

The performance rank order across generative regimes for each measure 
was robust with respect to variations in τ and α, the number of sequences and 
sampling iterations, and the parametrization of the environment (that is, changes 
to the number of cliques or the number of states per clique). With regards to the 
latter, it seemed that the graph diameter was an important factor in determining 
the gain in exploration efficiency for the superdiffusive regime relative to the 
minimal-autocorrelation regime (Fig. 7b). The graph diameter measures the 
minimum distance the agent must travel in the worst-case scenario. In the 
ring-of-cliques model, the graph diameter scales with the number of cliques. 
As the graph diameter increased and, consequently, large nonlocal ‘jumps’ were 
more heavily penalized for distance, superdiffusions tended to excel. Therefore, 
one would expect that superdiffusive dynamics may be less important in 
small-world networks that are characterized by connectivity structures admitting 
a short path between almost all pairs of nodes. Such networks are inconsistent 
with Euclidean spaces but are notably over-represented in social and transport 
networks. We also observed that running multiple chains in parallel increased 
the minimal-autocorrelator performance in sampling coverage relative to 
superdiffusions (Fig. 7d). This suggests that, consistent with MCMC intuitions, 
there is a cumulative effect of sampling diversity when autocorrelations are 
minimized. That is, the evolution of each chain increasingly diverges from other 
chains oversampling iterations. More formally, the sample cross-correlation across 
chains is low due to the generative minimum autocorrelation property.

The structure consolidation results can be understood theoretically. Diffusion is 
a random process with zero drift and finite scale (measured as propagation variance 
as a function of time). Therefore, it encapsulates inductive biases regarding spatial 
structure that space is isotropic and has a scale that distinguishes between local and 
global structure. Moreover, from an information-theoretical point of view, it is the 
simplest such random process, being the unique maximum entropy process with 
these properties52. This suggests that diffusive sequences implicitly encode isotropy 
and scale, and nothing else. In contrast, the distinguishing feature of superdiffusive 
Lévy flight processes in unbounded Euclidean spaces is the infinite variance of 
its heavy-tailed propagation distribution24. This means that extraordinarily large 
jumps may be generated and so the downstream learning process is unable to 
distinguish between local structure (learned from individual small jumps within 
short time periods) and global structure (learned from the accumulation of many 
small jumps over a period of time).

Karlsson and Frank, Nature Neuroscience (2009) and Suh et al., Neuron (2013). The 
diffusion and turbulence regimes were parametrized by α = 1 and α = 2, respectively, 
with τ set to 20 in both cases. In a linear track environment, 100 state sequences 
with 100 steps were generated in each of these stochastic regimes. The average 
spiking activity of each place cell (each encoding a distinct state) was taken to be 
the output propagator density. The Euclidean distance between states (assuming the 
underlying graph is embedded in an ambient continuous space) was taken to be the 
distance between place fields. The relative spike timings were offsets in the number 
of steps within the generated sequences. Given these modeling assumptions, we 
computed normalized cross-correlograms of place cell activity as a function of 
the distance between place fields41. The key qualitative distinction between the 
cross-correlograms was robustly observed regardless of modifications to the other 
model parameters (for example, τ, number of sequences, number of steps).

In Fig. 8e, we present a cross-correlogram of SWRs recorded in healthy 
mice, which clearly shows the predicted V structure consisted with a systematic 
relationship between temporal and spatial displacements during sequence 
generation. This plot comes from ref. 41. Note that, in ref. 40, the cross-correlogram 
for the littermate controls is also presented (Fig. 4c, ref. 40) but the V structure is 
less clear (presumably, due to fewer SWRs and a smaller environment). Therefore, 
we include the V structure from the prototypical analyses in ref. 41 since it is easier 
to interpret on viewing for the first time.

Evaluating sequence generation across exploration, learning and planning. 
The central computational motivation in conceptualizing MEC as a modulator 

of hippocampal sequence generation is that distinct cognitive algorithms have 
fundamentally different requirements as to the statistical and dynamical structure 
of the input sequences received from EHC. To establish this empirically, we 
evaluated sequences generated with respect to metrics sensitive to the performance 
of exploration, learning and sampling-based planning algorithms. The three 
metrics are exploration efficiency, consolidation accuracy and sampling coverage, 
and are defined in the following three subsections.

Exploration efficiency. To evaluate how appropriate a generative sampling regime is 
for exploration, we quantified exploration efficiency as the fraction of environment 
states or positions visited relative to the cumulative distance traversed. This 
definition is a simple adaptation to graph structures of the standard definition 
commonly studied in the foraging literature53. Exploration efficiency is plotted as a 
function of the number of states sampled in Fig. 7b for diffusive, superdiffusive and 
minimally autocorrelated sequence generation. Note that, if the generator model 
samples successive nonadjacent states, then it is assumed that the agent visits all 
states along the shortest path between the sampled states as if physically traversing 
the environment. In a discrete state-space, the distance is taken to be the number 
of steps taken while in a continuous domain, it is the Euclidean distance between 
positions.

Propagators may repeatedly sample the same state on multiple iterations 
leading to a period of immobility for the agent. We assume that the cost of 
remaining in a state is zero since the agent has not traversed any distance. However, 
resampling the same state adds to the total time cost of exploration, which can 
be defined as the total time taken for sampling subsequent states and moving 
to those states. Assuming that hippocampal state sampling is embedded within 
theta11 or slow-gamma36 cycles, the rate at which new states are sampled is on the 
order of centiseconds. In contrast, a rodent requires time periods on the order of 
seconds to move between positions sampled in a typical open-box environment. 
Thus, the contribution of sampling time to total exploration time is negligible and 
is therefore not reflected in the exploration efficiency measure. Note that, in this 
regard, the definition of exploration efficiency contrasts sharply with the sampling 
coverage measure that specifically penalizes for time and not distance.

Consolidation accuracy. We quantify how well a structural representation of an 
environment (in particular, a SR39) can be learned from replayed state sequences. 
As a measure of consolidation accuracy, we use the Spearman correlation between 
the true and learned state-space SRs as a function of the number of sequences 
generated. This measure is plotted as a function of the number of sequences 
generated in Fig. 7c for each modulatory regime. Before learning commences, the 
previous SR is taken to be that generated by a fully connected graph. This suggests 
that the future expected rate of occupancy is completely homogeneous across 
initial and successor states a priori. The SR is learned via a standard temporal 
difference learning rule28,39.

Sampling coverage. An important objective in sample-based inference (for 
example, in planning37 and reinforcement learning54) is to generate a diversity of 
sampled states as quickly as possible as this leads to robust and rapid estimators. 
Sampling coverage is defined as the fraction of environment states or positions 
visited relative to the number of sampling iterations (Fig. 7d). Note that, unlike 
the exploration efficiency measure, sampling coverage does not penalize for the 
distance traversed between states, as it is presumed to reflect an internal sampling 
mechanism that is completed before any contingent behavior. The sampling 
coverage measure specifically penalizes for repeatedly sampling the same state 
since the fraction of states sampled remains the same despite the number of 
sampling iterations increasing. Both exploration efficiency and sampling coverage 
are sensitive to the fraction of states visited or sampled, respectively. The major 
distinction between the two is that the former isolates the cost of distance traversed 
by the agent, while the latter penalizes the time taken to generate the sequence.

Mean-squared displacement (MSD) and MD as diagnostic measures of the 
sequence generation regime. MSD, MSD(t) = ⟨|d(t)|2⟩, is a measure of the 
scaling law of a stochastic process and can be estimated from trajectory samples8,24. 
It is a time-dependent function that characterizes the relationship between the 
spatial and temporal displacements. For any time period t, MSD(t) measures 
how far away from the initial state at t = 0 that sequence generation is expected 
to sample as a function of time. Given a trajectory x = (x0, …, xt) in Euclidean 
spaces, the measure of spatial displacement is taken to be the squared Euclidean 
distance d(t) with respect to the initial state:

d(t) = ∥xt − x0∥ =

√
√
√
√

D∑

i=1
(xt,i − x0,i)2 (14)

where xt,i is the ith position coordinate of the process at time t and D the 
dimensionality of the state-space. It can be shown analytically24 that, for 
diffusive-type processes, MSD scales according to

MSD(t) =
⟨
d(t)2

⟩
∝ K

(
τ
−1t

)α−1

. (15)
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In log space

log
⟨
d(t)2

⟩
∝ logK + α

−1log
(

τ
−1t

)
(16)

and so the intercept on a log–log plot is the log of the diffusion constant K (which 
sets the rate of diffusion independent of τ and α modulation) and the slope is the 
inverse of the stability parameter α. If the slope of the MSD graph equals 1 then the 
process is a diffusion. A slope greater than 1 indicates supralinear displacements 
and therefore the process is known as a superdiffusion (α < 1). This is the genesis 
of the term superdiffusion. Therefore, the stability regime of sequence generation 
can be inferred from sample trajectories by estimating MSD(t). The key implication 
of a supralinear MSD is that a superdiffusion is expected to sample further away 
from its origin over time compared to diffusion. When computing MSD(t) for 
sequences generated by our model, we consider the Euclidean distance d induced 
by embedding the state-space within an ambient Euclidean space.

The MD is analyzed in Fig. 6 and ref. 8. This is similar to the MSD formula but 
without squaring the distance function:

MD(t) = ⟨d(t)⟩ ∝ K
(

τ
−1t

)
(2α)−1

(17)

therefore, in log space, we have

logMD(t) ∝ logK + (2α)
−1log

(
τ
−1t

)
. (18)

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
No data was acquired for this study.

Code availability
Simulation code was written using open source packages in the Python 3 
programming environment and can be found at https://github.com/dmcnamee/
FlexModEHC.
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Extended Data Fig. 1 | Sequence generation in an inhomogeneous environment with tempo τ and stability α modulation. a, Spectral components of 
the four-room grid world are presented as a function of spatial scale. Generator eigenvectors coincide with the eigenvectors of the corresponding SR. 
Therefore, many examples of generator eigenvectors may be observed in ref. 28. b, As the tempo parameter τ is reduced (with the stability parameter 
held at α = 1), the power spectrum sτ,α(λ) reweights the spectral components leading to changes in the spatial scale of the propagation densities ρt. c, The 
generated sequences vary in the extent of their spatiotemporal traversal of the environment.
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Extended Data Fig. 2 | exploration efficiency in a structured environment. The exploration simulation in Fig. 2 is repeated here but for an environment 
decomposed into four areas connected by bottlenecks. each area consisted of 50 × 50 states. Simulation parameters were unchanged from Fig. 2 
(Methods). e, error bands ± s.e.m. for n = 20 trajectories.
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Extended Data Fig. 3 | Propagator analysis across all possible current and future positions for the circular track task. a,b, We plot the superdiffusive 
(panel A, α = 0.5) and diffusive propagators (panel B, α = 1) for the circular track task11 for all current positions (y-axis) with all goals activated. The y-axis 
(x-axis) indexes the current (future) position. each row reports the probability of each position being sampled given the current position (the row index).  
c, The difference in diffusive and superdiffusive propagators is plotted. For example, the row corresponding to the initial X position (marked by the thick 
black line), shows that the local activations are less likely (red) under superdiffusions compared to diffusion (though they are still possible) while remote 
goal locations specifically are more likely (blue).
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Extended Data Fig. 4 | Diffusions are optimized for consolidating directed transition structures. Three regimes of sequence generation are compared  
in terms of consolidating a directed policy on the same graph used in Fig. 7 where the policy was assumed to be undirected (that is a random walk).  
a, The directed policy is dominated by high probability anticlockwise transitions (heavy black arrows) between the clique bottleneck states (highlighted 
by increased size). Within each clique, transitions to the bottleneck state facilitating an anti-clockwise transition to the next clique are relatively likely to 
occur. b, The same rank order as in Fig. 7c is observed with the diffusive regime leading to the most accurate consolidation of the directed policy successor 
representation (SR). c, The true directed policy SR. d–f, The SRs learned via superdiffusion, diffusion, and minimally autocorrelated sampling respectively. 
Note that the superdiffusive and minimal autocorrelation regimes identify the the dominant anti-clockwise transition structure but fail to reflect the 
clustering of states based on their clique membership. This simulation indicates that the diffusive regime is optimal for consolidation regardless of whether 
the target transition structure corresponds to a random walk or not.
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Extended Data Fig. 5 | Detailed analyses of spectrally modulated propagation in the linear track environment. a, Copy of Fig. 2d for context and 
comparative visualization. b, The propagation distributions in panel A are re-expressed as the difference with respect to the baseline (τ = 1, α = 1). c, each 
propagation density is plotted against the baseline propagation density (τ = 1, α = 1) on log scales. Note that only superdiffusion results in a non-linear 
warping of the propagation density. This non-linearity underpins the heavy-tail in the propagation density. d, Small-scale (dashed line) and large-scale 
(full line) spectral components (that is, generator eigenvectors) are plotted as a function of linear track position. eigenvalues take a maximum value of 0 
and are ordered according to the spatial scale of the corresponding spectral component. For example, eigenvalues close to zero correspond to large-scale 
spectral components with the spatial scale of the corresponding spectral component decreasing with the eigenvalue which are always less than or equal 
to zero. Therefore, the scale of a spectral component ϕk decreases as the absolute value |λk| of its corresponding eigenvalue λk increases. e, Spectral power 
is plotted as a function of eigenvalue on a log scale. As the tempo τ decreases towards zero, the spatiotemporal horizon increases and the propagation 
density converges on the stationary state distribution. This corresponds to all spectral components with non-zero eigenvalues decaying to zero. Note that 
diffusion linearly changes the slope of the power spectrum while superdiffusion imposes a non-linear reweighting. This effect underpins the nonlinear 
time warping in the propagation densities in panel C. f, The characteristic modulation of the power spectrum under diffusion and superdiffusion is 
demonstrated by the relative power spectrum sτ,α(λ)

s1,1(λ)
 computed as the power ratio with respect to the baseline propagator. Note that the long-range 

diffusion propagator (α = 1, τ = 0.5, thick red line) downweights small-scale components and upweights large-scale components while superdiffusion 
(α = 0.5, τ = 1, thick blue line) relatively upweights both small- and large-scale components but suppresses at medium scales. This enables a superdiffusive 
propagator to jump to remote positions without traversing intermediate locations.
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Extended Data Fig. 6 | Mean displacement scales linearly on a log-log plot. The data and simulations from Fig. 6 are plotted on a logarithmic scales 
demonstrating the linear relationship between mean spatial displacement and time intervals. Mean displacement (MD) measures the ratio between the 
spatial displacement and time interval of sequence generation and can be used to infer whether a generative sampling process is operating in a diffusive 
or superdiffusive regime based on sampled sequences. In particular, the MD function has a slope proportional to α−1 with respect to the time interval Δt 
(Methods). error bars ± s.e.m..
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Extended Data Fig. 7 | Sampled sequences exhibit distinctive patterns across spectral modulation regimes. each column shows five sample sequences 
generated in one of the three sampling regimes studied in Fig. 7. Note that diffusions (left column) tend to remain within a single clique. Superdiffusions 
(middle column) interleave local diffusions with occasional jumps to other cliques. Jumps are observed as lines crossing the center of the ring which do 
not conform to any transition step in the underlying state-space structure (gray lines). Minimally autocorrelating propagators (right column) repeatedly 
generate large jumps between cliques.
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